四川省成都七中万达学校2020-2021年九年级上学期期中数学试题
2020-2021成都七中(高新校区)九年级数学上期中第一次模拟试题含答案

2020-2021成都七中(高新校区)九年级数学上期中第一次模拟试题含答案一、选择题1.﹣3的绝对值是()A.﹣3B.3C.-13D.132.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°4.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.A B.B C.C D.D5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.1106.已知实数x满足(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,那么x2﹣2x+1的值为()A.﹣1或3B.﹣3或1C.3D.17.如图,从一张腰长为90cm,顶角为120 的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A .15cmB .12cmC .10cmD .20cm8.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 9.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( )A .B .C .D .10.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .811.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 A .4个B .3个C .2个D .1个12.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =二、填空题13.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD 2,则BC 的长为_____.14.已知:如图,CD 是O 的直径,AE 切O 于点B ,DC 的延长线交AB 于点A ,20A ∠=,则DBE ∠=________度.15.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.16.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.17.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.18.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________ 19.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?22.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.23.如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;(2)若BD=8,sin∠DBF=35,求DE的长.24.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣5,1),B (﹣2,2),C (﹣1,4),请按下列要求画图:(1)将△ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;(2)画出与△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点A 2的坐标.25.已知二次函数243y x x =-+.(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象. (2)若1122(,),(,)A x y B x y 是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y 、的大小关系(直接写出结果).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-3|=3.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 2.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.D解析:D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.4.B解析:B【解析】试题分析:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选B.考点:动点问题的函数图象.5.A解析:A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.6.D解析:D【解析】【分析】设x2﹣2x+1=a,则(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0化为a2+2a﹣3=0,求出方程的解,再判断即可.【详解】解:设x2﹣2x+1=a,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0, ∴a 2+2a ﹣3=0, 解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3, 即(x ﹣1)2=﹣3,此方程无实数解; 当a =1时,x 2﹣2x +1=1,此时方程有解, 故选:D . 【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.7.A解析:A 【解析】 【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r . 【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠==,=, 30A B ︒∴∠∠==, 1452OE OA cm ∴==,∴弧CD 的长1204530180ππ⨯==,设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.B解析:B 【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯,解得:116k,此时116k 且0k ≠; 综上,116k .故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.9.C解析:C 【解析】 【分析】根据题意,利用分类讨论的方法,讨论k >0和k <0,函数y=kx 2与y=kx+k 的图象,从而可以解答本题. 【详解】 当k >0时,函数y=kx 2的图象是开口向上,顶点在原点的抛物线,y=kx+k 的图象经过第一、二、三象限,是一条直线,故选项A 、B 均错误, 当k <0时,函数y=kx 2的图象是开口向下,顶点在原点的抛物线,y=kx+k 的图象经过第二、三、四象限,是一条直线,故选项C 正确,选项D 错误, 故选C . 【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B解析:B 【解析】 【分析】根据旋转的性质和图形的特点解答. 【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120° ∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2;故答案为B.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.11.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.12.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.二、填空题13.8【解析】【分析】连接AD根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°故可得出AD=BD再由AB是⊙O的直径可知△ABD是等腰直角三角形利用勾股定理求出AB的长在Rt△ABC中利用勾股定解析:8【解析】【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=52.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB=22+=10.AD BD∵AC=6,∴BC=2222-=-=8.AB AC106故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.14.55【解析】【分析】连接BC由CD是⊙O的直径知道∠CBD=90°由AE是⊙O的切线知道∠DBE=∠1∠2=∠D又∠1+∠D=90°即∠1+∠2=90°;而∠A+∠2=∠1由此即可求出∠1即求出∠D解析:55【解析】【分析】连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.【详解】如图,连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°①,∠A+∠2=∠1②,-②得∠1=55°即∠DBE=55°.故答案为:∠DBE=55°.【点睛】本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,是一道较简单的题目.15.【解析】试题分析:解:连接OD∵CD是⊙O切线∴OD⊥CD∵四边形ABCD 是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.16.240【解析】【分析】根据弧长=圆锥底面周长=28πcm圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm扇形的圆心角=弧长×180÷母线长÷π=28π×解析:240【解析】【分析】根据弧长=圆锥底面周长=28πcm,圆心角=弧长⨯180÷母线长÷π计算.【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240.【点睛】此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.17.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23解析:3 4【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18.x<-1或x>3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y随x的增大而增大当时y随x的增大而减小∵∴当函数值y>0时x的取值范围是x<-1或x>3故答案为解析:x<-1或x>3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小, ∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3 故答案为:x <-1或x >3. 【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.19.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】 如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为:14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答20.9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA 是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S 阴影=S△A1BA+S△A1BC1﹣S△解析:9 【解析】 【分析】根据旋转的性质得到△ABC ≌△A 1BC 1,A 1B=AB=6,所以△A 1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.三、解答题21.(1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克【解析】【分析】(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.【详解】(1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.22.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.23.(1)详见解析;(2)9 2【解析】【分析】(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD,解直角三角形得到AD=6,在Rt△ADE中,解直角三角形得到DE=92.【详解】(1)连接OD,∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠DBF=∠ODB,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADE=90°,∵BD平分∠ABC交AC于点E,∴∠DBF=∠ABD,在Rt△ABD中,BD=8,∵sin∠ABD=sin∠DBF=35,∴AB=10,AD=6,∵∠DAC=∠DBC,∴sin∠DAE=sin∠DBC=35,在Rt△ADE中,sin∠DAC=35,设DE=3x,则AE=5x,∴AD=4x,∴tan∠DAE=34 DE x AD x∴DE=92.【点睛】本题考查了切线的判定和性质,角平分线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.24.(1)画图形如图所示见解析,(2)画图形如图所示见解析,点A2(5,-1)【解析】 【分析】(1)将三个顶点分别向右平移4个单位长度、再向下平移1个单位长度,得到对应点,再顺次连接即可得;(2)将△ABC 的三个顶点关于原点O 成中心对称的对称点,再顺次连接可得. 【详解】(1)画图形如图所示,(2)画图形如图所示,点A 2(5,-1)【点睛】本题主要考查作图-旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义及其性质,并据此得出变换后的对应点.25.(1)顶点(2,1)-;对称轴:直线2x =;与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),图象见解析;(2)12y y >. 【解析】 【分析】(1)根据二次函数解析式即可确定出顶点坐标、对称轴、与两坐标轴的交点坐标,再在坐标系中画出函数图象即可; (2)根据二次函数的图象解答. 【详解】解:(1)二次函数y =x 2﹣4x +3=(x ﹣2)2﹣1,当x =0,y =3,当y =0时,x 2﹣4x +3=0,解得:11x =,23x =,∴抛物线的顶点为(2,﹣1),对称轴为直线x =2,与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),画出图象,如图所示:(2)∵当x <1时,y 随x 的增大而减小,∴当121x x <<时,12y y >. 【点睛】此题考查了抛物线的图象与性质和二次函数与坐标轴的交点,熟练掌握二次函数的性质是解本题的关键.。
2020-2021学年四川成都九年级上数学期中试卷

2020-2021学年四川成都九年级上数学期中试卷一、选择题1. 下列说法正确的是( )A.8的立方根是2B.−4的平方根是−2C.16的平方根是4D.1的立方根是±12. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A. B.C. D.3. 2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A.3.6×103B.3.6×104C.3.6×105D.36×1044. 二次根式√x−1中,x的取值范围是( )A.x≥1B.x>1C.x≤1D.x<15. 在平面直角坐标系中,点P(−3, −5)关于原点对称的点的坐标是( )A.(3, −5)B.(−3, 5)C.(3, 5)D.(−3, −5)6. 下列计算正确的是( )A.x2+x2=x4B.(x−y)2=x2−y2C.(x2y)3=x6yD.(−x)2⋅x3=x57. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件8. 如图,直线l1 // l2 // l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为( )A.2B.3C.4D.1039. 分式方程x+1x+1x−2=1的解是( )A.x=1B.x=−1C.x=3D.x=−310. 若ab>0,则一次函数y=ax−b与反比例函数y=abx在同一坐标系中的大致图象是( )A. B.C. D.二、填空题如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为________.三、解答题(1)计算: √9−4|√3−1|+(2014−π)0−2−1;(2)解不等式组: {3x −1>5,2(x +2)<x +7.先化简,再求值:(1−4x+3)÷x 2−2x+12x+6,其中x =√2+1.2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题: (1)这次被调查的同学共有________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.综合实践课上,某兴趣小组同学用航拍无人机进行测高实践,如图为实践时绘制的截面图.无人机从地面点B 垂直起飞到达点A 处,测得学校1号楼顶部E 的俯角为60∘,测得2号楼顶部F 的俯角为45∘,此时航拍无人机的高度为50米.已知1号楼的高度为20米,且EC 和FD 分别垂直地面于点C 和D ,B 为CD 的中点,求2号楼的高度.如图,在平面直角坐标系xOy 中,一次函数y=12x +5和y =−2x 的图象相交于点A ,反比例函数y =kx的图象经过点A .(1)求反比例函数的表达式.(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.如图1,以正方形ABCD 的相邻两边AD ,CD 为边向外作等边三角形,得到△ADE ,△DCF ,点G ,H 分别是AE ,CF 的中点,连接AF ,GH .(1)问题发现:GHAF=________;(2)猜想论证:如图2,若四边形ABCD是矩形,其他条件不变,则(1)中结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)拓展延伸:如图3,在(2)的条件下,点P,Q分别为AF,GH的中点,连接PQ,DQ,猜想PQ,DQ的位置关系,并加以证明.四、填空题如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连结BD,DP,BD 与CF相交于点H.给出下列结论:①△ABE≅△DCF;②FPPH=35;③DP2=PH⋅PB;④S△BPDS正方形ABCD=√3−14.其中正确的是________.(写出所有正确结论的序号)五、解答题某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时,月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?如图,在正方形ABCD中,AB=6,M是对角线BD上的一个动点(0<DM<12BD),连接AM,过点M作MN⊥AM交BC于点N.(1)如图①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当S△AMNS△BCD=1318时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2√5时,求△HMN的面积.如图1,直线y=−x+4与x轴交于点B,与y轴交于点C,交双曲线y=kx(x<0)于点N,S△OBN=10.(1)求双曲线的解析式;(2)已知点H是双曲线上一动点,若S△HON=203,求点H的坐标;(3)如图2,平移直线BC交双曲线于点P,交直线y=−6于点Q,连接PC,QB,并延长PC,QB交于第一象限内一点G,若PG=GQ,求平移后的直线PQ的解析式.参考答案与试题解析2020-2021学年四川成都九年级上数学期中试卷一、选择题1.【答案】A【考点】平方根立方根的性质【解析】根据立方根的定义即可判定.【解答】解:A,23=8,8的立方根是2,故选项正确;B,负数没有平方根,故选项错误;C,16的平方根是±4,故选项错误;D,1的立方根是1,故选项错误.故选A.2.【答案】B【考点】简单组合体的三视图【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选B.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36000用科学记数法表示为3.6×104. 故选B.4.【答案】A【考点】二次根式有意义的条件【解析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x−1≥0,解得x≥1.故选A.5.【答案】C【考点】关于原点对称的点的坐标【解析】解答此题的关键在于理解关于原点对称的点的坐标的相关知识,掌握两个点关于原点对称时,它们的坐标的符号相反,即点P(x, y)关于原点的对称点为P’(−x, −y).【解答】解:P(−3, −5)关于原点对称的点坐标是(3, 5).故选C.6.【答案】D【考点】整式的混合运算幂的乘方与积的乘方【解析】此题暂无解析【解答】解:A中,x2+x2=2x2,故A错误;B中,(x−y)2=x2+y2−2xy,故B错误;C中,(x2y)3=x6y3,故C错误;D中,(−x)2⋅x3=x5,故D正确.故选D.7.【答案】C【考点】中位数【解析】将数据按从小到大的顺序排列,根据中位数的定义求解即可.【解答】解:将数据按从小到大的顺序排列为:42,45,46,50,50,∴中位数为46.故选C.8.【答案】D【考点】平行线分线段成比例【解析】根据平行线分线段成比例定理得出比例式,代入求出即可.【解答】解:∵直线l1 // l2 // l3,∴ABBC =DEEF.∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=103.故选D.9.【答案】A【考点】解分式方程——可化为一元一次方程【解析】观察可得最简公分母是x(x−2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:x+1x +1x−2=1,去分母,方程两边同时乘以x(x−2)得:(x+1)(x−2)+x=x(x−2),整理得:−2=−2x,解得:x=1,经检验,x=1是原分式方程的解.故选A.10.【答案】C【考点】反比例函数的图象【解析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【解答】解:根据题意可得,ab>0,故排除B,D;A,根据一次函数可判断a>0,b<0,根据反比例函数可判断ab>0,与一次函数判断的a,b相矛盾,本选项错误;C,根据一次函数可判断a<0,b<0,根据反比例函数可判断ab>0,与一次函数判断的a,b相符合,本选项正确.故选C.二、填空题【答案】√30【考点】作图—基本作图矩形的性质勾股定理线段垂直平分线的性质【解析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图所示,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD=√32−22=√5,在Rt△ADC中,AC=√(√5)2+52=√30.故答案为:√30.三、解答题【答案】解:(1)原式=3−4(√3−1)+1−12=152−4√3.(2)解不等式组:{3x−1>5,①2(x+2)<x+7,②由①得:x >2, 由②得:x <3,故不等式的解集为2<x <3. 【考点】 绝对值 实数的运算 解一元一次不等式组 【解析】 【解答】解:(1)原式=3−4(√3−1)+1−12 =152−4√3.(2)解不等式组: {3x −1>5,①2(x +2)<x +7,②由①得:x >2,由②得:x <3,故不等式的解集为2<x <3. 【答案】 解:原式=x−1x+3⋅2(x+3)(x−1)2=2x−1.当x =√2+1时, 原式=√2+1−1=√2.【考点】分式的化简求值 【解析】 此题暂无解析 【解答】 解:原式=x−1x+3⋅2(x+3)(x−1)2=2x−1.当x =√2+1时, 原式=√2+1−1=√2.【答案】 180 126∘(3)列表如下:∴ 恰好选中甲、乙两位同学的概率为212=16. 【考点】 条形统计图 扇形统计图 列表法与树状图法【解析】(1)根据跳水的人数和跳水所占的百分比即可求出这次被调查的学生数; (2)用360∘乘以篮球的学生所占的百分比即可;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案. 【解答】解:根据题意得:54÷30%=180(人). 故答案为:180. (2)根据题意得:360∘×(1−20%−15%−30%)=126∘. 故答案为:126∘. (3)列表如下:∴ 恰好选中甲、乙两位同学的概率为212=16.【答案】解:过点E 作EG ⊥AB 于点G ,过点F 作FH ⊥AB 于点H ,如图所示,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD.∵B为CD的中点,∴EG=CB=BD=HF.由题意得:∠EAG=90∘−60∘=30∘,∠AFH=45∘.在Rt△AEG中,AG=AB−GB=50−20=30(米),∴EG=AG⋅tan30∘=30×√33=10√3(米).在Rt△AHF中,AH=HF=BD=EG=10√3(米),∴FD=HB=AB−AH=50−10√3(米),∴2号楼的高度为(50−10√3)米.【考点】解直角三角形的应用-仰角俯角问题矩形的性质【解析】过点E作EG⊥AB于G,过点F作FH⊥AB于H,可得四边形ECBG,HBDF是矩形,在Rt△AEG中,根据三角函数求得EG,在Rt△AHP中,根据三角函数求得AH,再根据线段的和差关系即可求解.【解答】解:过点E作EG⊥AB于点G,过点F作FH⊥AB于点H,如图所示,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD.∵B为CD的中点,∴EG=CB=BD=HF.由题意得:∠EAG=90∘−60∘=30∘,∠AFH=45∘.在Rt△AEG中,AG=AB−GB=50−20=30(米),∴EG=AG⋅tan30∘=30×√33=10√3(米).在Rt△AHF中,AH=HF=BD=EG=10√3(米),∴FD=HB=AB−AH=50−10√3(米),∴2号楼的高度为(50−10√3)米.【答案】解:(1)由{y=12x+5,y=−2x,得{x=−2,y=4,∴A(−2, 4),∵反比例函数y=kx的图象经过点A,∴k=−2×4=−8,∴反比例函数的表达式是y=−8x.(2)解{y=−8x,y=12x+5,得{x=−2,y=4,或{x=−8,y=1,∴B(−8, 1),由直线AB的解析式为y=12x+5得到直线与x轴的交点为(−10, 0),∴S△AOB=12×10×4−12×10×1=15.【考点】反比例函数与一次函数的综合三角形的面积待定系数法求反比例函数解析式【解析】(1)联立方程求得A的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.【解答】解:(1)由{y=12x+5,y=−2x,得{x=−2,y=4,∴A(−2, 4),∵反比例函数y=kx的图象经过点A,∴k=−2×4=−8,∴反比例函数的表达式是y=−8x.(2)解{y=−8x,y=12x+5,得{x=−2,y=4,或{x=−8,y=1,∴B(−8, 1),由直线AB的解析式为y=12x+5得到直线与x轴的交点为(−10, 0),∴S△AOB=12×10×4−12×10×1=15.【答案】2√33(2)结论成立.理由:如图,连结DG,DH,∵ 四边形ABCD是矩形,∴ ∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘. ∵ AG=GE,CH=FH,∴ ∠ADG=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG =DFDH=2√33,∴ △DGH∽△DAF,∴GH AF =ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴ ∠DGQ=∠DAP.∵ DQ,DP分别是△GDH,△ADF的中线,∴DPDQ =DADG=2√33,∴ADDP =DGDQ.∵ADDG=PAQG,∴ △DGQ∼△DAP,∴ ∠GDQ=∠ADP,∴ ∠ADG=∠PDQ,∴ △ADG∼△PDQ,∴ ∠DQP=∠DGA.∵ DA=DE,AG=GE,∴ DG⊥AE,∴ ∠DGA=90∘,∴ ∠DQP=90∘,∴ DQ⊥PQ.【考点】正方形的性质等边三角形的性质特殊角的三角函数值相似三角形的性质与判定【解析】此题暂无解析【解答】解:(1)如图,连结DG,DH,∵ 四边形ABCD是正方形,∴ AD=CD,∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘.∵ 点G,H分别是AE,CF的中点,∴ ∠GDA=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG=DFDH=2√33,∴ △DGH∼△DAF,∴GHAF=ADDG=2√33.故答案为:2√33.(2)结论成立.理由:如图,连结DG,DH,∵ 四边形ABCD是矩形,∴ ∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘. ∵ AG=GE,CH=FH,∴ ∠ADG=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG =DFDH=2√33,∴ △DGH∽△DAF,∴GHAF=ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴ ∠DGQ=∠DAP.∵ DQ,DP分别是△GDH,△ADF的中线,∴DPDQ=DADG=2√33,∴ADDP=DGDQ.∵ADDG=PAQG,∴ △DGQ∼△DAP,∴ ∠GDQ=∠ADP,∴ ∠ADG=∠PDQ,∴ △ADG∼△PDQ,∴ ∠DQP=∠DGA.∵ DA=DE,AG=GE,∴ DG⊥AE,∴ ∠DGA=90∘,∴ ∠DQP=90∘,∴ DQ⊥PQ.四、填空题【答案】①③④【考点】全等三角形的性质与判定相似三角形的性质与判定正方形的性质解直角三角形三角形的面积【解析】【解答】解:∵△BPC等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60∘.在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90∘,∴∠ABE=∠DCF=30∘.在△ABE与△DCF中,{∠A=∠CDF,∠ABE=∠DCF,AB=DC,∴△ABE≅△DCF(ASA),故①正确;∵PC=BC=CD,∠PCD=30∘,∴∠PDC=75∘,∴∠FDP=15∘.∵∠DBA=45∘,∴∠PBD=15∘,∴∠FDP=∠PBD.∵∠DFP=∠BPC=60∘,∴△DFP∼△BPH,∴PFPH=DFPB=DFCD=√33,故②错误;∵∠PDH=∠PCD=30∘.又∠DPH=∠DPC,∴△DPH∼△CPD,∴PDCD=PHPD,∴PD2=PH⋅CD.∵PB=CD,∴ PD 2=PH ⋅PB ,故③正确;如图,过点P 作PM ⊥CD 于M ,PN ⊥BC 于N ,设正方形ABCD 的边长是4, △BPC 为正三角形,∴ ∠PBC =∠PCB =60∘,PB =PC =BC =CD =4, ∴ ∠PCD =30∘, ∴ PN =PB ⋅sin 60∘=4×√32=2√3,PM =PC ⋅sin 30∘=2, S △BPD =S 四边形PBCD −S △BCD =S △PBC +S △PDC −S △BCD=12×4×2√3+12×2×4−12×4×4 =4√3+4−8=4√3−4, ∴ S △BPDS正方形ABCD=√3−14,故④正确. 故答案为:①③④.五、解答题【答案】解:(1)根据题意得:y =(30+x −20)(230−10x)=−10x 2+130x +2300, 自变量x 的取值范围是:0<x ≤10.(2)当y =2520时,得−10x 2+130x +2300=2520, 解得x 1=2,x 2=11(不合题意,舍去), 当x =2时,30+x =32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y =−10x 2+130x +2300 =−10(x −6.5)2+2722.5.∵ a =−10<0,函数开口向下, ∴ 当x =6.5时,y 有最大值为2722.5.答:每件玩具的售价定为6.5元时可使月销售利润最大,最大的月利润是2722.5. 【考点】根据实际问题列二次函数关系式 一元二次方程的应用——利润问题 解一元二次方程-因式分解法 二次函数的应用【解析】(1)根据题意知一件玩具的利润为(30+x −20)元,月销售量为(230−10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y =2520时代入y =−10x 2+130x +2300中,求出x 的值即可.(3)把y =−10x 2+130x +2300化成顶点式,求得当x =6.5时,y 有最大值,再根据0<x ≤10且x 为正整数,分别计算出当x =6和x =7时y 的值即可. 【解答】解:(1)根据题意得:y =(30+x −20)(230−10x)=−10x 2+130x +2300, 自变量x 的取值范围是:0<x ≤10.(2)当y =2520时,得−10x 2+130x +2300=2520, 解得x 1=2,x 2=11(不合题意,舍去), 当x =2时,30+x =32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y =−10x 2+130x +2300 =−10(x −6.5)2+2722.5.∵ a =−10<0,函数开口向下, ∴ 当x =6.5时,y 有最大值为2722.5.答:每件玩具的售价定为6.5元时可使月销售利润最大,最大的月利润是2722.5. 【答案】(1)证明:过点M 作MF ⊥AB 于点F ,作MG ⊥BC 于点G ,如图所示:∴ ∠AFM =∠MFB =∠NGM =90∘. ∵ 四边形ABCD 是正方形,∴ ∠ABC =∠DAB =90∘,AD =AB ,∠ABD =∠DBC =45∘. ∵ MF ⊥AB ,MG ⊥BC , ∴ MF =MG . ∵ ∠ABC =90∘,∴ 四边形FBGM 是正方形, ∴ ∠FMG =90∘,∴ ∠FMN +∠NMG =90∘. ∵ MN ⊥AM ,∴ ∠AMF +∠FMN =90∘, ∴ ∠AMF =∠NMG . 在△AMF 和△NMG 中,{∠AFM=∠NGM,MF=MG,∠AMF=∠NMG,∴△AMF≅△NMG(ASA),∴MA=MN.(2)解:在Rt△AMN中,由(1)知:MA=MN,∴∠MAN=45∘.∵∠DBC=45∘,∴∠MAN=∠DBC,∴Rt△AMN∼Rt△BCD,∴S△AMNS△BCD =(ANBD)2.在Rt△ABD中,AB=AD=6,∴BD=6√2,∴2(6√2)2=1318,解得:AN=2√13,∴在Rt△ABN中,BN=√AN2−AB2=√(2√13)2−62=4.∵在Rt△AMN中,MA=MN,O是AN的中点,∴OM=OA=ON=12AN=√13,OM⊥AN,∴∠AOP=90∘,∴∠AOP=∠ABN.∵∠PAO=∠NAB,∴△PAO∼△NAB,∴OPBN =OABA,即OP4=√136,解得:OP=2√133,∴PM=OM+OP=√13+2√133=5√133.(3)解:过点A作AF⊥BD于点F,如图所示:∴∠AFM=90∘,∴∠FAM+∠AMF=90∘.∵MN⊥AM,∴∠AMN=90∘,∴∠AMF+∠HMN=90∘,∴∠FAM=∠HMN.∵NH⊥BD,∴∠AFM=∠MHN=90∘.在△AFM和△MHN中,{∠FAM=∠HMN,∠AFM=∠MHN,AM=MN,∴△AFM≅△MHN(AAS),∴AF=MH.在等腰直角△ABD中,AF⊥BD,∴AF=12BD=3√2,∴MH=3√2.∵AM=2√5,∴MN=2√5,∴HN=√MN2−MH2=√2,∴S△HMN=12MH⋅HN=12×3√2×√2=3,∴△HMN的面积为3.【考点】正方形的判定与性质全等三角形的性质与判定相似三角形的性质与判定勾股定理三角形的面积等腰三角形的性质:三线合一【解析】(1)过点M作MF⊥AB于F,作MG⊥BC于G,由正方形的性质得出∠ABD=∠DBC=45∘,由角平分线的性质得出MF=MG,证得四边形FBGM是正方形,得出∠FMG=90∘,证出∠AMF=∠NMG,证明△AMF≅△NMG,即可得出结论;(2)证明Rt△AMN∽Rt△BCD,得出S△AMNS△BCD=(ANBD)2,求出AN=2√13,由勾股定理得出BN=√AN2−AB2=4,由直角三角形的性质得出OM=OA=ON=12AN=√13,OM⊥AN,证明△PAO∽△NAB,得出OPBN=OAAB,求出OP=2√133,即可得出结果;(3)过点A作AF⊥BD于F,证明△AFM≅△MHN得出AF=MH,求出AF=12BD=12×6√2=3√2,得出MH =3√2,MN =2√5,由勾股定理得出HN =√MN 2−MH 2=√2,由三角形面积公式即可得出结果. 【解答】(1)证明:过点M 作MF ⊥AB 于点F ,作MG ⊥BC 于点G ,如图所示:∴ ∠AFM =∠MFB =∠NGM =90∘.∵ 四边形ABCD 是正方形,∴ ∠ABC =∠DAB =90∘,AD =AB ,∠ABD =∠DBC =45∘. ∵ MF ⊥AB ,MG ⊥BC , ∴ MF =MG . ∵ ∠ABC =90∘,∴ 四边形FBGM 是正方形, ∴ ∠FMG =90∘,∴ ∠FMN +∠NMG =90∘. ∵ MN ⊥AM ,∴ ∠AMF +∠FMN =90∘, ∴ ∠AMF =∠NMG . 在△AMF 和△NMG 中, {∠AFM =∠NGM ,MF =MG ,∠AMF =∠NMG ,∴ △AMF ≅△NMG(ASA), ∴ MA =MN .(2)解:在Rt △AMN 中,由(1)知:MA =MN , ∴ ∠MAN =45∘.∵ ∠DBC =45∘, ∴ ∠MAN =∠DBC ,∴ Rt △AMN ∼Rt △BCD , ∴S △AMN S △BCD=(AN BD)2. 在Rt △ABD 中,AB =AD =6, ∴ BD =6√2, ∴ 2(6√2)2=1318,解得:AN =2√13, ∴ 在Rt △ABN 中,BN =√AN 2−AB 2=√(2√13)2−62=4. ∵ 在Rt △AMN 中,MA =MN ,O 是AN 的中点,∴ OM =OA =ON =12AN =√13,OM ⊥AN ,∴ ∠AOP =90∘, ∴ ∠AOP =∠ABN . ∵ ∠PAO =∠NAB , ∴ △PAO ∼△NAB , ∴ OPBN =OABA ,即OP4=√136, 解得:OP =2√133, ∴ PM =OM +OP =√13+2√133=5√133.(3)解:过点A 作AF ⊥BD 于点F ,如图所示:∴ ∠AFM =90∘,∴ ∠FAM +∠AMF =90∘. ∵ MN ⊥AM , ∴ ∠AMN =90∘,∴ ∠AMF +∠HMN =90∘, ∴ ∠FAM =∠HMN . ∵ NH ⊥BD ,∴ ∠AFM =∠MHN =90∘. 在△AFM 和△MHN 中,{∠FAM =∠HMN ,∠AFM =∠MHN ,AM =MN ,∴ △AFM ≅△MHN(AAS), ∴ AF =MH .在等腰直角△ABD 中,AF ⊥BD , ∴ AF =12BD =3√2, ∴ MH =3√2. ∵ AM =2√5, ∴ MN =2√5,∴ HN =√MN 2−MH2=√2,∴ S △HMN =12MH ⋅HN =12×3√2×√2=3,∴ △HMN 的面积为3. 【答案】解:(1)如图,作NG ⊥x 轴于点G .∵ 直线y =−x +4与x 轴交于点B ,与y 轴交于点C ,∴ B(4,0),C(0,4). ∵ S △NOB =12⋅OB ⋅NG ,∴ 12×4×NG =10, ∴ NG =5, ∴ N(−1,5).∵ 反比例函数y =kx 经过点N(−1,5),∴ k =−5, ∴ y =−5x .(2)如图,作NM ⊥x 轴于点M ,HE ⊥x 轴于点E ,设H(m,−5m ). ∵ S △HEO =S △NMO ,又S 四边形HEON =S △HNO +S △HEO =S △NMO +S 梯形MNHE , ∴ S △OHN =S 梯形NMHE , ∴ 12⋅(5−5m )⋅|m +1|=203.当m <−1时,整理得3m 2+8m −3=0, 解得m =−3或m =13(舍去),当0>m >−1时,整理得3m 2−8m −3=0, 解得m =−13或m =3(舍去),综上所述,满足条件的点H 的坐标为(−3,53)或(−13,15). (3)如图,∵ GP =GQ , ∴ ∠GPQ =∠GQP . ∵ BC//PQ ,∴ ∠GCB =∠GPQ ,∠GBC =∠GQP , ∴ ∠GCB =∠GBC , ∴ GC =GB . ∵ OC =OB ,∴ OG 垂直平分BC ,∴ P ,Q 关于直线OG 对称. ∵ 点P 在y =−5x 上,∴ 点Q 也在y =−5x 上. 又∵ 点Q 在直线y =−6上,∴ Q(56,−6).设直线PQ 的解析式为y =−x +b , ∴ −6=−56+b ,∴ b =−316,∴ 直线PQ 的解析式为y =−x −316.【考点】待定系数法求反比例函数解析式 三角形的面积一次函数图象上点的坐标特点 反比例函数与一次函数的综合 待定系数法求一次函数解析式 线段垂直平分线的性质【解析】 此题暂无解析 【解答】解:(1)如图,作NG ⊥x 轴于点G .∵ 直线y =−x +4与x 轴交于点B ,与y 轴交于点C ,∴ B(4,0),C(0,4). ∵ S △NOB =12⋅OB⋅NG , ∴12×4×NG =10, ∴ NG =5, ∴ N(−1,5).∵ 反比例函数y =kx 经过点N(−1,5), ∴ k =−5, ∴ y =−5x .(2)如图,作NM ⊥x 轴于点M ,HE ⊥x 轴于点E ,设H(m,−5m ). ∵ S △HEO =S △NMO ,又S 四边形HEON =S △HNO +S △HEO=S △NMO +S 梯形MNHE , ∴ S △OHN =S 梯形NMHE , ∴ 12⋅(5−5m )⋅|m +1|=203.当m <−1时,整理得3m 2+8m −3=0, 解得m =−3或m =13(舍去),当0>m >−1时,整理得3m 2−8m −3=0, 解得m =−13或m =3(舍去),综上所述,满足条件的点H 的坐标为(−3,53)或(−13,15).(3)如图,∵ GP =GQ , ∴ ∠GPQ =∠GQP .∵ BC//PQ ,∴ ∠GCB =∠GPQ ,∠GBC =∠GQP , ∴ ∠GCB =∠GBC , ∴ GC =GB . ∵ OC =OB ,∴ OG 垂直平分BC ,∴ P ,Q 关于直线OG 对称. ∵ 点P 在y =−5x 上, ∴ 点Q 也在y =−5x 上.又∵ 点Q 在直线y =−6上, ∴ Q(56,−6).设直线PQ 的解析式为y =−x +b , ∴ −6=−56+b , ∴ b =−316,∴ 直线PQ的解析式为y=−x−31.6。
四川省成都市部分学校2020-2021学年九年级上学期期中数学试题

3.2021年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系 的中心,距离地球 万光年.将数据 万用科学计数法表示为()
A. B. C. ห้องสมุดไป่ตู้.
4.一元二次方程 的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
5.已知函数y= ,则自变量x的取值范围是( )
A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠1
6.若△ABC∽ ,其面积比为 , 与 的周长比为()
A. B. C. D.
7.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为: , , , , 则这组数据的中位数是()
A. 件B. 件C. 件D. 件
A. B. C. D.
二、填空题
11.已知 则 _______________
12.关于 的一元二次方程 有一个根为0,则 的值为________.
13.已知反比例函数y= 的图象经过点(1,2),则k的值为_____.
14.如图, 是 斜边AB上的高,其中 则 ________________
15.方程 的两根为 , ,则 =______.
19.如图,在 中, , , ,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点 恰好落在 的中位线上,则CN的长为______.
三、解答题
20.(1)计算: ;
(2)解方程: .
21.先化简,再求值: ,其中 .
22.国务院办公厅在2021年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:
【精品】2020年四川省成都七中九年级上学期数学期中试卷及解析

2018学年四川省成都七中九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)若反比例函数的图象过点(3,2),那么下列各点中在此函数图象上的点是()A.B. C.D.2.(3分)一元二次函数(x﹣1)(x﹣2)=0的解为()A.x1=﹣1,x2=﹣2 B.x1=1,x2=2 C.x1=0,x2=1 D.x1=0,x2=23.(3分)如图所示的几何体中,它的主视图是()A.B.C.D.4.(3分)某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确的是()A.100(1﹣x%)2=120 B.100(1+x%)2=120C.100(1﹣2x%)2=120 D.100(1﹣x2%)2=1205.(3分)如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为()A.k1>k2>k3B.k3>k2>k1C.k2>k3>k1D.k3>k1>k26.(3分)如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A.B.C.D.7.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.(3分)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成9.(3分)形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.﹣10 B.10 C.2 D.﹣210.(3分)如图,边长为2的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.B.6 C.D.2+二、填空题:(每小题3分,共12分)11.(3分)在Rt△ABC中,∠C=90°,tanA=,则sinB的值为.12.(3分)已知,则=.13.(3分)若一元二次方程x2+px+q=0的两根为﹣3和4,则二次三项式x2+px+q可分解为.14.(3分)已知图中,AE:ED=3:2,则四边形ABCD与四边形EFGD的位似比为.三、解答题:(本大题共6个小题,共58分)15.(15分)(1)计算:|﹣5|﹣2cos60°﹣+()﹣1(2)解分式方程:﹣=(3)解方程:3x(x﹣2)=2(2﹣x)16.(6分)先化简,再求值:,其中x=2+.17.(8分)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.18.(9分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?19.(10分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限的相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,﹣6),=27且S△DBP(1)求上述一次函数与反比例函数的表达式;(2)求一次函数与反比例函数的另一个交点坐标.20.(10分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.一、B卷填空题:(每小题4分,共20分)21.(4分)是y关于x的反比例函数,且图象在第二、四象限,则m的值为.22.(4分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是.23.(4分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.24.(4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出个这样的停车位.(≈1.4)25.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为.(用含n的代数式表示,n为正整数)二、解答题:(本大题共3个小题,共30分)26.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?27.(10分)探索绕公共顶点的相似多边形的旋转:(1)如图1,已知:等边△ABC和等边△ADE,根据(指出三角形的全等或相似),可得CE与BD的大小关系为:.(2)如图2,正方形ABCD和正方形AEFG,求:的值;(3)如图3,矩形ABCD和矩形AEFG,AB=kBC,AE=kEF,求:的值.(用k的代数式表示)28.(12分)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.2018学年四川省成都七中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若反比例函数的图象过点(3,2),那么下列各点中在此函数图象上的点是()A.B. C.D.【解答】解:因为反比例函数的图象经过点(3,2),故k=3×2=6,只有B中9×=6=k.故选:B.2.(3分)一元二次函数(x﹣1)(x﹣2)=0的解为()A.x1=﹣1,x2=﹣2 B.x1=1,x2=2 C.x1=0,x2=1 D.x1=0,x2=2【解答】解:(x﹣1)(x﹣2)=0,x﹣1=0,或x﹣2=0,所以x1=1,x2=2.故选:B.3.(3分)如图所示的几何体中,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:D.4.(3分)某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确的是()A.100(1﹣x%)2=120 B.100(1+x%)2=120C.100(1﹣2x%)2=120 D.100(1﹣x2%)2=120【解答】解:依题意得两次涨价后售价为100(1+x%)2,∴方程为:100(1+x%)2=120.故选:B.5.(3分)如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为()A.k1>k2>k3B.k3>k2>k1C.k2>k3>k1D.k3>k1>k2【解答】解:由图知,y=的图象在第二象限,y=,y=的图象在第一象限,∴k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1.故选:B.6.(3分)如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A.B.C.D.【解答】解:由勾股定理知,AC2=CD2+AD2=25,∴AC=5.∵AC2+BC2=169=AB2,∴△CBA是直角三角形.∴sinB==.故选:A.7.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选:C.8.(3分)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成【解答】解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.9.(3分)形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.﹣10 B.10 C.2 D.﹣2【解答】解:根据题意得:=1×4﹣2×(﹣3)=4+6=10.故选:B.10.(3分)如图,边长为2的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.B.6 C.D.2+【解答】解:连接B′C,∵旋转角∠BAB′=45°,∠BAC=45°,∴B′在对角线AC上,∵AB=AB′=2,在Rt△ABC中,AC==2,∴B′C=2﹣2,在等腰Rt△OB′C中,OB′=B′C=2﹣2,在直角三角形OB′C中,OC=(2﹣2)=4﹣2,∴OD=2﹣OC=2﹣2,∴四边形AB′OD的周长是:2AD+OB′+OD=4+2﹣2+2﹣2=4.故选:A.二、填空题:(每小题3分,共12分)11.(3分)在Rt△ABC中,∠C=90°,tanA=,则sinB的值为.【解答】解:如图,∵在Rt△ABC中,∠C=90°,tanA=,∴设AC=12k,BC=5k,则AB==13k,∴sinB===.故答案为:.12.(3分)已知,则=.【解答】解:∵===(e+f+g≠0),∴=.故答案为:.13.(3分)若一元二次方程x2+px+q=0的两根为﹣3和4,则二次三项式x2+px+q可分解为(x+3)(x﹣4).【解答】解:∵方程x2+px+q=0的两个根为x1=﹣3,x2=4,∴(x+3)(x﹣4)=0,∴二次三项式x2+px+q=(x+3)(x﹣4);故答案为(x+3)(x﹣4).14.(3分)已知图中,AE:ED=3:2,则四边形ABCD与四边形EFGD的位似比为5:2.【解答】解:∵AE:ED=3:2,∴AD:ED=5:2,∴四边形ABCD与四边形EFGD的位似比为:5:2.故答案为:5:2.三、解答题:(本大题共6个小题,共58分)15.(15分)(1)计算:|﹣5|﹣2cos60°﹣+()﹣1(2)解分式方程:﹣=(3)解方程:3x(x﹣2)=2(2﹣x)【解答】解:|﹣5|﹣2cos60°﹣+()﹣1=5﹣2×﹣3+2=5﹣1﹣3+2=3;(2)方程两边同乘2(x﹣2),得3﹣2x=x﹣2,解得:x=,将x=代入2(x﹣2)≠0,所以x=是方程的解;(3)3x(x﹣2)=2(2﹣x),3x(x﹣2)﹣2(2﹣x)=0,(x﹣2)(3x+2)=0,x﹣2=0或3x+2=0,x1=2,x2=﹣.16.(6分)先化简,再求值:,其中x=2+.【解答】解:原式=(﹣)÷=•=•=x+4,当x=2+时,原式=2++4=6+.17.(8分)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.【解答】解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的有:(﹣3,﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的概率为:=.18.(9分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?【解答】解:(1)由对称性可知AP=BQ,设AP=BQ=xm∵MP∥BD∴△APM∽△ABD∴∴∴x=3经检验x=3是原方程的根,并且符合题意.∴AB=2x+12=2×3+12=18(m)答:两个路灯之间的距离为18米.(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F,则BF即为此时他在路灯AC的影子长,设BF=ym∵BE∥AC∴△EBF∽△CAF∴,即解得y=3.6,经检验y=3.6是分式方程的解.答:当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6米.19.(10分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限的相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,﹣6),=27且S△DBP(1)求上述一次函数与反比例函数的表达式;(2)求一次函数与反比例函数的另一个交点坐标.【解答】解:(1)令一次函数解析式y=kx+3中x=0,解得y=3,∴D坐标为(0,3),即OD=3,又B(0,﹣6),即OB=6,∴BD=OD+OB=3+6=9,∵S Rt=BD•BP=×9×BP=27,△BDP∴BP=6,∴P的坐标为(6,﹣6),将x=6,y=﹣6代入一次函数解析式得:﹣6=6k+3,解得:k=﹣,∴一次函数解析式为y=﹣x+3,将x=6,y=﹣6代入反比例解析式得:﹣6=,解得:m=﹣36,∴反比例函数的表达式为y=﹣;(2)联立两个关系式得:,消去y得:﹣x+3=﹣,整理得:(x﹣6)(x+4)=0,解得:x1=6,x2=﹣4,经检验是原方程的解,∴y1=﹣6,y2=9,∴一次函数与反比例函数交点为(6,﹣6)或(﹣4,9),则一次函数与反比例函数的另一交点坐标为(﹣4,9).20.(10分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.【解答】(1)证明:在菱形ABCD中,AD∥BC,OA=OC,OB=OD,∴∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴OE=OF,又∵OB=OD,∴四边形BFDE是平行四边形;(2)解:设OM=x,∵EF⊥AB,tan∠MBO=,∴BM=2x,又∵AC⊥BD,∴∠AOM=∠OBM,∴△AOM∽△OBM,∴=,∴AM==x,∵AD∥BC,∴△AEM∽△BFM,∴EM:FM=AM:BM=x:2x=1:4.一、B卷填空题:(每小题4分,共20分)21.(4分)是y关于x的反比例函数,且图象在第二、四象限,则m的值为﹣2.【解答】解:∵是y关于x的反比例函数,∴m2﹣m﹣7=﹣1,解得m=﹣2或3,∵图象在第二、四象限,∴m2﹣5<0,解得:m=﹣2.故答案为:﹣2.22.(4分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是﹣≤k<且k≠0.【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,∴k≠0,△=(﹣)2﹣4k>0,∴k<且k≠0,∵2k+1≥0,∴k≥﹣,∴k的取值范围是﹣≤k<且k≠0,故答案为:﹣≤k<且k≠0.23.(4分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为6.【解答】解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=12,∴2AC2﹣2AD2=12,即AC2﹣AD2=6,∴(AC+AD)(AC﹣AD)=6,∴(OC+BD)•CD=6,∴a•b=6,∴k=6.故答案为:6.24.(4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)【解答】解:如图,CE=2.2÷sin45°=2.2÷≈3.1米,BC=(5﹣CE×)×≈1.98米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.1米,(56﹣3.1﹣1.98)÷3.1+1=50.92÷3.1+1≈17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.25.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n为正整数)【解答】解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1,由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(4+8)×8﹣×(4+8)×8=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.二、解答题:(本大题共3个小题,共30分)26.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【解答】解:(1)由题意,得60(360﹣280)=4800元.答:降价前商场每月销售该商品的利润是4800元;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由题意,得(360﹣x﹣280)(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.27.(10分)探索绕公共顶点的相似多边形的旋转:(1)如图1,已知:等边△ABC和等边△ADE,根据△AEC≌△ADB(指出三角形的全等或相似),可得CE与BD的大小关系为:CE=BD.(2)如图2,正方形ABCD和正方形AEFG,求:的值;(3)如图3,矩形ABCD和矩形AEFG,AB=kBC,AE=kEF,求:的值.(用k的代数式表示)【解答】解:(1)如图1,∵△ABC和△ADE都是等边三角形,∴AE=AD,AC=AB,∠CAB=∠EAD.∴∠CAE=∠BAD.在△AEC和△ADB中,.∴△AEC≌△ADB.∴CE=BD.故答案分别为:△AEC≌△ADB、CE=BD.(2)如图2,∵四边形ABCD和四边形AEFG都是正方形,∴AC=AB,AF=AE,∠CAB=∠FAE=45°.∴==,∠CAF=∠BAE.∴△AFC∽△AEB.∴==.∴的值为.(3)连结FA、CA,如图3,∵四边形ABCD和四边形AEFG都是矩形,AB=kBC,AE=kEF,∴∠FEA=∠CBA=90°,==k.∴△FEA∽△CBA.∴=,∠FAE=∠CAB.∴∠FAC=∠EAB.∴△FAC∽△EAB.∴=∵AC===BC.∴==.∴的值为.28.(12分)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.【解答】解:(1)把A(2,1)代入y=得k=2×1=2;(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入得,解,∴直线AC的解析式为y=x﹣1;(3)设M点坐标为(t,)(0<t<2),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,=•t•(﹣t+1)∴S△CMN=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴当t=时,S有最大值,最大值为.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
四川省成都七中育才学校2020-2021学年九年级上学期期中数学试题

四川省成都七中育才学校2020-2021学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,由6个相同的小正方体搭成的几何体,那么从左面看几何体的平面图形是( )A .B .C .D . 2.若关于x 的一元二次方程x 2﹣2x+m=0有一个解为x=﹣1,则另一个解为( ) A .1 B .﹣3 C .3 D .43.下列说法正确的是( )A .对角线相等且互相平分的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两角分别相等的两个三角形相似D .两边成比例且一角相等的两个三角形相似4.如图,点P 是线段AB 的黄金分割点,AP BP >,若6AB =,则PB 的长是( )A.1) B .1) C .9-D .6-5.若关于x 的方程kx 2+4x ﹣1=0有实数根,则k 的取值范围是( )A .k≥﹣4且k≠0B .k≥﹣4C .k >﹣4 且k≠0D .k >﹣4 6.已知点1(1,)A y 、2(2,)B y 、3(2,)C y -都在反比例函数6y x=的图象上,则1y 、2y 、3y 的大小关系是( )A .312y y y <<B .123y y y <<C .213y y y <<D .321y y y << 7.某闭合电路中,电源电压为定值,电流()I A 与电阻()R Ω成反比例,如图表示该电路中电流I 与电阻R 的函数关系图象.则该电路中某导体电阻为()4Ω,导体内通过的电流为( )A .()1?.5AB .() 6AC .()23A D .()4A 8.某商店原来平均每天可销售某种水果150千克,每千克盈利7元,为了减少库存,经市场调查,这种水果每千克降价1元,那么每天可多售出20千克,若要平均每天盈利960元,则每千克应降价多元?设每千克降价x 元,则所列方程是A .(150+x )(7+x )=960B .(150+20x )(7-x )=960C .(150+20x )(7+x )=960D .(150+x )(7+20x )=9609.对于二次函数221y x =+,下列说法中正确的是( )A .图象的开口向下B .函数的最大值为1C .图象的对称轴为直线1x =D .当0x <时y 随x 的增大而减小 10.如图,DE 是ABC ∆的中位线,F 是DE 的中点,CF 的延长线交AB 于点G ,若CEF ∆的面积为218cm ,则DGF S ∆的值为( )A .24cmB .25cmC .26cmD .27cm二、填空题 11.在ABC ∆中,90C ∠=︒,则1sin 3B =,则tan A =__. 12.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.13.如图,Rt ABC ∆中,90ACB ∠=︒,CD 是AB 边上的高,8AC =,6BC =,则AD =____________.14.抛物线2y ax b =+的形状与22y x =的图象的形状相同,开口方向相反,与y 轴交于点(0,2)-,则该抛物线的解析式为__.15.已知1x ,2x 是一元二次方程2220150x x --=的两根,则2121222016x x x x +--=__.16.已知222b c c a a b k a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为__.对于平移后的抛物线,当25x 时,y 的取值范围是__.17.如图,已知点1A 、2A 、2018A ⋯在函数22y x =位于第二象限的图象上,点1B 、2B ,⋯,2018B 在函数22y x =位于第一象限的图象上,点1C ,2C ,⋯,2018C 在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,⋯,2017201820182018C A C B 都是正方形,则正方形2017201820182018C A C B 的边长是___.18.如图,矩形ABCD 中,2AB BC =,点(1,0)D -,点A 、B 在反比例函数k y x =的图象上,CD 与y 轴的正半轴交于点E ,若E 为CD 的中点,则k 的值为__.19.一副含30和45︒角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,12BC EF cm ==(如图1),点G 为边()BC EF 的中点,边FD 与AB 相交于点H ,此时线段BH 的长是__.现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长共为__.(结果保留根号)三、解答题20.(1)解方程:(23)46x x x +=+(2)计算:40(1)2cos30tan 60(3)π-+︒-︒--21.化简求值 235(2)362x x x x x -÷+---, 已知 x 是一元二次方程x 2+3x-1=0 的实数根. 22.已知O 是坐标原点,A 、B 的坐标分别为(3,1)、(2,1)-.(1)画出OAB ∆绕点O 顺时针旋转90︒后得到的△11OA B ;(2)在y 轴的左侧以O 为位似中心作OAB ∆的位似图形△22OA B ,使新图与原图相似比为2:1;(3)求出△22OA B 的面积.23.成都七中育才学校2021年秋季运动会上,学生电视台用无人机航拍技术全程直播.如图,在无人机的镜头下,观测A 处的俯角为30,B 处的俯角为45︒,如果此时无人机镜头C 处的高度CD 为20米,点A 、B 、D 在同一条直线上,则A 、B 两点间的距离为多少米?(结果保留根号)24.如图,在直角坐标系中,矩形OABC 的顶点O 与原点重合,A 、C 分别在坐标轴上,2OA =,4OC =,直线1132y x =-+交AB ,BC 分别于点M ,N ,反比例函数2k y x=的图象经过点M ,N .(1)求反比例函数的解析式;(2)直接写出当12y y <时,x 的取值范围;(3)若点P 在y 轴上,且OPM ∆的面积与四边形BMON 的面积相等,求点P 的坐标. 25.如图,O 为正方形ABCD 对角线的交点,E 为AB 边上一点,F 为BC 边上一点,EBF ∆的周长等于BC 的长.(1)若24AB =,6BE =,求EF 的长;(2)求EOF ∠的度数;(3)若OE =,求AE CF的值. 26.在信息技术飞速发展的今天,智能手机的使用呈现出低龄化的趋势,中小学生使用智能手机成为十分普遍的现象,但智能手机给生活带来便利的同时,也对中小学生的身心发展带来一些不利影响,比如手机屏幕对视力的伤害、关注各种“垃圾新闻”对时间的浪费、沉迷手机游戏缺少运动、人际交往等等,这些现象引起了家长、学校、社会的广泛关注.对此,成都某中学学生会发出了“中小学生使用非智能手机”的倡议,鼓励同学们全面发展,追逐梦想,把更多时间用在将来能够成就自我的地方.据统计,今年9月该中学使用非智能手机的同学有128人,倡议发出后,11月使用非智能手机的同学上升到了200人.(1)若从9月到11月使用非智能手机的同学平均增长率相同,那么按此增长率增长到12月份该校使用非智能手机的同学将有多少人?(2)某于机制造商发现当下市场上售卖的非智能手机大多品质不佳、外观设计成就,难以满足市场的需要,所以该厂决定投入12万元全部用于生产A 型、B 型两款精美的“学生专用手机”投入市场,一部A 型手机生产成本为400元,售价为600元;一部B 型手机生产成本为600元,售价为930元,该厂计划生产B 型手机的数量不少于A 型手机数量的2倍,但不超过A 型手机数量的2.3倍,求生产这批手机并全部售卖后可获得的最大利润.27.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,,则BC= .28.如图(1),O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,5OA =,反比例函数(0)k y x x =>在第一象限内的图象经过点A ,与BC 交于点D .(1)求点A的坐标和反比例函数解析式;(2)若59CDAC,求点D的坐标;(3)在(2)中的条件下,如图(2),点P为直线OD上的一个动点,点Q为双曲线上的一个动点,是否在这样的点P、点Q,使以B、D、P、Q为顶点的四边形是平行四边形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.参考答案1.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看第一层三个小正方形,第二层中间一个小正方形.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.C【分析】设方程的另一个解为x1,根据两根之和等于﹣ba,即可得出关于x1的一元一次方程,解之即可得出结论.【详解】设方程的另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3,故选C.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.3.C【分析】通过菱形的判定正方形的判定可判断A,B,根据相似三角形的判定可判断C,D.【详解】A.对角线垂直且互相平分的四边形是菱形.则A错误;B.对角线垂直且相等的平行四边形四边形是正方形,则B错误;C.两角分别相等的两个三角形相似,则C正确;D.两边成比例且夹角相等的两个三角形相似.则D错误.故选C .【点睛】本题考查了相似三角形的判定,菱形的判定,正方形的判定,关键是熟练运用这些判定解决问题.4.C【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值)叫做黄金比. 【详解】点P 是线段AB 的黄金分割点,AP PB >,若6AB =,则6(19BP =⨯=- 故选C .【点睛】本题考查了黄金分割,解题关键在于掌握黄金分割的概念:较长线段是较短线段与原线段的比例中项.5.B【解析】【分析】分k =0和k ≠0两种情况考虑,当k =0时可以找出方程有一个实数根;当k ≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】当k =0时,原方程为-4x +1=0,解得:x =14, ∴k =0符合题意;当k ≠0时,∵方程kx 2-4x -1=0有实数根,∴△=(-4)2+4k ≥0,且k ≠0解得:k ≥-4且k ≠0.综上可知:k 的取值范围是k ≥4.故选B .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 6.D【分析】利用待定系数法求出y 的值即可判断.【详解】点1(1,)A y 、2(2,)B y 、3(2,)C y -都在反比例函数6y x=的图象上, 16y ∴=,23y =,33y =-,321y y y ∴<<, 故选:D .【点评】本题考查反比例函数图象上的点的特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题.7.A【解析】【分析】可设I=k R,由于点(3,2)适合这个函数解析式,则可求得k 的值,然后代入R=4求得I 的值即可.【详解】解:设I=k R ,那么点(3,2)适合这个函数解析式,则k=3×2=6, ∴I=6R. 令R=4Ω,解得:I=1.5A .故选:A .【点睛】本题考查了反比例函数的解析式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.8.B【分析】设每千克降价x 元,根据等量关系“每天利润=每天的销售量×每千克的利润”列方程即可.【详解】设每千克降价x 元,根据题意得:(150+20x )(7﹣x )=960,故选B .【点睛】本题考查了一元二次方程的应用,设出未知数,利用等量关系“平均每天售出的数量×每千克盈利=每天销售的利润”列方程是解决问题的关键.9.D【分析】根据二次函数的性质,可以判断各个选项中的说法是否正确.【详解】二次函数221y x =+,20a =>, ∴该函数的图象开口向上,对称轴是y 轴,顶点坐标为(0,1),有最小值1,当0x >时,y 随x 的增大而增大,当0x <时,y 随x 的增大而减小;故选项A 、B 、C 错误,选项D 正确,故选D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.10.C【分析】作GH BC ⊥于H 交DE 于M ,根据三角形中位线定理得到//DE BC ,12DE BC =,证明GDF GBC ∆∆∽,根据相似三角形的性质、三角形的面积公式计算.【详解】作GH BC ⊥于H 交DE 于M , DE 是ABC ∆的中位线,//DE BC ∴,12DE BC =, F 是DE 的中点,14DF BC ∴=, //DF BC ,GDF GBC ∴∆∆∽, ∴14GM DF GH BC ==, ∴13GM MH =, DF FE =,13DGF S CEF ∆∴=⨯∆的面积26cm =, 故选C .【点睛】本题考查的是相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.11. 【分析】根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系及勾股定理,可求出各边的长,代入三角函数进行求解.【详解】在ABC ∆中,因为90C ∠=︒,1sin 3B =, 设AC k =,3AB k =,BC ∴=,tan4AC A BC ∴===,【点睛】 本题考查锐角三角函数和勾股定理解直角三角形,解直角三角形,解题关键在于由直角三角形已知元素求未知元素的过程.12.5.【解析】根据题意,易得△MBA ∽△MCO , 根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5. ∴小明的影长为5米.13.325 【分析】根据已知条件利用勾股定理可求得10AB =,根据ABC 面积的不同求法可以求得245CD =,再由勾股定理即可求得结论. 【详解】解:∵在Rt ABC 中,8AC =,6BC =∴10AB =∵CD 是AB 边上的高 ∴22ABC AC BC AB CD S ⋅⋅== ∴861022CD ⨯⋅= ∴245CD =∴在ACD 中,325AD === 故答案是:325 【点睛】本题考查了勾股定理、直角三角形面积的不同求法等知识点,熟练掌握各项知识点是顺利解题的关键.14.222y x =--.【分析】根据二次函数2y ax b =+的图象与22y x =的图象形状相同,开口方向相反,得到2a =-,然后把点(0,2)-代入22y x b =-+求出对应的b 的值,从而可得到抛物线解析式.【详解】二次函数2y ax b =+的图象与22y x =的图象形状相同,开口方向相反, 2a ∴=-,∴二次函数是22y x b =-+,二次函数2y ax b =+经过点(0,2)-, 2b ∴=-,∴该二次函数的解析式为222y x =--;故答案是:222y x =--.【点睛】本题考查了用待定系数法求二次函数的解析式,解题关键在于用待定系数法列方程来求解. 15.2018.【分析】根据根与系数的关系即可求出答案.【详解】由题意可知:122x x +=,122015x x =-,211220150x x --=,∴21122015x x =+,∴原式12122220152016x x x x =++--4201520152016=++-2018=,故答案为2018【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 16.22(1)2y x =+- 1670x【分析】由已知可得:2a b kc -=,2b c ka -=,2c a kb -=;三式相加,即可求得k 的值,然后平移的规律求得平移后的解析式,计算出当2x =和5x =对应的函数值,然后根据二次函数的性质解决问题.【详解】 由222b c c a a b k a b c+++===得: 2a b kc -=①2b c ka -=②2c a kb -=③①+②+③得:()222(222)()k a b c a b b c c a a b c a b c a b c ++=-+-+-=++-++=-++;0a b c ++≠,1k ∴=-.将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为22(1)2y x =+-;∴抛物线的顶点(1,2)--,对称轴为直线1x =-,当2x =时,22(21)216y =+-=,当5x =时,22(51)270y =+-=,∴当25x 时,函数值y 的取值范围为1670x ;故答案为22(1)2y x =+-,1670x【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,解题关键在于求出解析式. 17.【分析】根据正方形对角线平分一组对角可得1OB 与y 轴的夹角为45︒,然后表示出1OB 的解析式,再与抛物线解析式联立求出点1B 的坐标,然后求出1OB 的长,再根据正方形的性质求出1OC ,表示出12C B 的解析式,与抛物线联立求出2B 的坐标,然后求出12C B 的长,再求出12C C 的长,然后表示出23C B 的解析式,与抛物线联立求出3B 的坐标,然后求出23C B 的长,从而根据边长的变化规律解答即可.【详解】111OAC B 是正方形,1OB ∴与y 轴的夹角为45︒,1OB ∴的解析式为y x =,联立方程组得:22y x y x =⎧⎨=⎩, 解得1100x y =⎧⎨=⎩,221212x y ⎧=⎪⎪⎨⎪=⎪⎩. B ∴点的坐标是:1(2,1)2,11OB ∴==同理可得:正方形1222C A C B 的边长122C B = ⋯依此类推,正方形2017201820182018C A C B 的边长是为2018=故答案为【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.18.32+-. 【分析】根据点(1,0)D -可得OD 的长;由矩形ABCD ,2AB BC=,E 为CD 的中点,可得出AD DE EC BC ===,进而证明三角形全等,得出1AM OD ==,MD OE =,由E 为CD 的中点,//OE CN ,可得1ON OD ==,2CN OE =,设DM 的长为a ,进而表示点A 和点B 的坐标,根据都在反比例函数的图象上,列出方程求出a 的值,进而求出k 的值.【详解】矩形ABCDAB BC CD DA ∴===,90ABC BCD CDA DAB ∠=∠=∠=∠=︒, E 为CD 的中点,2AB BC=, DE EC AD BC ∴===,点(1,0)D -,1OD ∴=,易证AMD DOE ∆≅∆()AAS1AM OQ ∴==,MD OE =,设MD a =,则OE a =, E 为CD 的中点,//OE CN ,2CN a ∴=,1OD ON ==,由ABP DCN ∆≅∆得2BP CN a ==,(1,1)A a ∴--,(1,21)B a a -++点A 、B 在反比例函数k y x=的图象上, 1(1)(21)a a a k ∴--=-+=,解得:12a =,152a (舍去)11k a ∴=--=-=,故答案为32+-【点睛】此题考查反比例函数图象上点的坐标特征,矩形的性质,三角形全等的判定和性质,以及一元二次方程等知识,方程思想和函数思想得到充分的应用,表示出点A 点B 的坐标是正确解答的关键.19.12)cm 18)cm .【分析】如图1中,作HM BC ⊥于M ,设HM CM a ==.在Rt BHM ∆中,22BH HM a ==,BM =,根据BM MF BC +=12a +=,推出6a =,推出212BH a ==.如图2中,当DG AB ⊥时,易证1GH DF ⊥,此时1BH 的值最小,易知113BH BK KH =+=,当旋转角为60︒时,F 与2H 重合,易知2BH =图象可知,在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长122HH HH =+,由此即可解决问题.【详解】如图1中,作HM BC ⊥于M ,设HM a =,则CM HM a ==.在Rt ABC ∆中,30ABC ∠=︒,12BC =,在Rt BHM ∆中,22BH HM a ==,BM =,BM FM BC +=, ∴12a +=,6a ∴=,212BH a ∴==.如图2中,当DG AB ⊥时,易证1GH DF ⊥,此时1BH 的值最小,易知113BH BK KH =+=,1115HH BH BH ∴=-=,当旋转角为60︒时,F 与2H 重合,易知2BH =观察图象可知,在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长1223012)]18HH HH =+=+=.故答案为12)cm ,18)cm .【点睛】本题考查旋转变换、解直角三角形、锐角三角函数,解题的关键是正确寻找点H 的运动轨迹.20.(1)1 1.5x =-,22x =;(2)【分析】(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先根据二次根式的性质,特殊角的三角函数值,零指数幂和有理数的乘方进行计算,再求出即可.【详解】(1)整理得:2260x x --=,(23)(2)0x x +-=,230x +=,20x -=, 1 1.5x =-,22x =;(2)原式121=+11=+=.【点睛】本题考查了二次根式的性质,特殊角的三角函数值,零指数幂,有理数的乘方,解一元二次方程等知识点,能正确运用知识点进行计算是解此题的关键.21.2139x x +;13. 【分析】先算括号里面的,再算除法,再求出x 2+3x=1代入进行计算即可.【详解】原式=()239322x x x x x --÷--,=()()()32•3233x x x x x x ---+-, =()133x x +, =()2133x x +, ∵x 满足一元二次方程x 2+3x-1=0,∴x 2+3x=1,∴原式=13. 【点睛】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22.(1)详见解析;(2)详见解析;(3)10.【分析】(1)直接利用旋转变换的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)以x 轴为分割线,将△22OA B 分成两部分,即可求得△22OA B 的面积.【详解】(1)如图所示:△11OA B 即为所求;(2)如图所示:△22OA B 即为所求;(3)△22OA B 的面积15(22)102=⨯⨯+=.【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.23.A 、B 两点间的距离为20)米.【分析】根据等腰直角三角形的性质求出BD ,根据正切的定义求出AD ,结合图形计算即可.【详解】由题意得,30CAD ∠=︒,45CBD ∠=︒,在Rt CBD ∆中,45CBD ∠=︒,20BD CD ∴==,在Rt CAD ∆中,tan CD CAD AD∠=,则tan30CD AD ==︒,则20AB AD BD =-=,答:A 、B 两点间的距离为20)米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.(1)4y x =;(2)02x <<或4x >;(3)点P 的坐标是(0,4)或(0,4)-. 【分析】(1)由2OA BC ==,将2y =代入1132y x =-+求出2x =,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案;(2)根据图象即可求得;(3)将4x =代入1132y x =-+求出1y =,得出N 的坐标,求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)2OA =,4OC =,四边形OABC 是矩形,(4,2)B ∴, 将2y =代入1132y x =-+得:2x =,(2,2)M ∴,把M 的坐标代入2k y x=得:4k =, ∴反比例函数的解析式是4y x=; (2)当12y y <时,x 的取值范围是02x <<或4x >;(3)把4x =代入4y x=得:1y =, 即1CN =, AOM CON OABC BMON S S S S ∆∆=--矩形四边形11422241422=⨯-⨯⨯-⨯⨯=, 由题意得:142OP AM ⨯=, 2AM =,4OP ∴=,∴点P 的坐标是(0,4)或(0,4)-.【点睛】本题考查了反比例函数综合题,利用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,三角形的面积,矩形的性质等知识点的应用,解题关键在于应用性质进行计算.25.(1)10;(2)45°;(3)32AE CF =. 【分析】(1)设BF x =,则24FC x =-,根据EBF ∆的周长等于BC 的长得出18EF x =-,Rt BEF ∆中利用勾股定理求出x 的值即可得;(2)在FC 上截取FM FE =,连接OM .首先证明90EOM ∠=︒,再证明()OFE OFM SSS ∆≅∆即可解决问题;(3)证明FOC AEO ∠=∠,结合45EAO OCF ∠=∠=︒可证AOE CFO ∆∆∽,根据相似三角形的性质得到得OE AE AO OF CO CF ===,于是得到结论. 【详解】(1)设BF x =,则24FC BC BF x =-=-,6BE =,且BE BF EF BC ++=, 18EF x ∴=-,在Rt BEF ∆中,由222BE BF EF +=可得2226(18)x x +=-,解得:8x =,则1810EF x =-=;(2)如图,在FC 上截取FM FE =,连接OM ,EBF C BE EF BF BC ∆=++=的周长,则BE EF BF BF FM MC ++=++,BE MC ∴=, O 为正方形中心,OB OC ∴=,45OBE OCM ∠=∠=︒,在OBE ∆和OCM ∆中,OB OC OBE OCM BE CM =⎧⎪∠=∠⎨⎪=⎩,()OBE OCM SAS ∴∆≅∆,EOB MOC ∴∠=∠,OE OM =,EOB BOM MOC BOM ∴∠+∠=∠+∠,即90EOM BOC ∠=∠=︒,在OFE ∆与OFM ∆中,OE OM OF OF EF MF =⎧⎪=⎨⎪=⎩,()OFE OFM SSS ∴∆≅∆,1452EOF MOF EOM ∴∠=∠=∠=︒. (3)证明:由(2)可知:45EOF ∠=︒,135AOE FOC ∴∠+∠=︒,45EAO ∠=︒,135AOE AEO ∴∠+∠=︒,FOC AEO ∴∠=∠,45EAO OCF ∠=∠=︒,AOE CFO ∴∆∆∽.∴OE AE AO OF CO CF ===,AE ∴=,AO =, AO CO =,32AE CF ∴=, ∴32AE CF =. 【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题.26.(1)到12月份该校使用非智能手机的同学有250人;(2)生产这批手机A 型75台,B 型150台,全部售卖后可获得的最大利润为55500元.【分析】(1)根据题意可以列出相应的方程,从而可以求得使用非智能手机的同学平均增长率相同;再由增长率求出到12月份该校使用非智能手机的同学数.(2)设生产A 型手机x 只,则B 型手机y 只,列方程求出y 与x 的关系,再根据生产B 型手机的数量不少于A 型手机数量的2倍,但不超过A 型手机数量的2.3倍,列不等式,求出x 的取值范围,用含x 的式子表示出总利润w ,再根据一次函数的增减性,计算即可.【详解】(1)设从9月到11月使用非智能手机的同学平均增长率为x ,依题意得:2128(1)200x +=,解得,10.2525%x ==,2 2.25x =-(舍去),∴按此增长率增长,到12月份该校使用非智能手机的同学200(125%)250=+=(人) 答:到12月份该校使用非智能手机的同学有250人.(2)设生产A 型手机x 只,则B 型手机y 只,依题意得:40060012000x y +=,22003y x ∴=-, 因为x ,y 均为整数,x 为3的倍数,又因为B 型手机的数量不少于A 型手机数量的2倍,但不超过A 型手机数量的2.3倍, 即:2 2.3x y x , ∴22200 2.33x x x -,解得:17756989x , 设总利润为W .(600400)(930600)200270W x y x y =-+-=+2200270(200)20540003W x x x ∴=+-=+. W 随x 增大而增大,∴当75x =时,最大利润55500W =.答:生产这批手机A 型75台,B 型150台,全部售卖后可获得的最大利润为55500元.【点睛】本题主要考查一次函数的应用、一元二次方程的应用、一元一次不等式的应用,能根据题目中的等量关系式列出方程或不等式是解题的关键.27.(1)①四边形CEGF 是正方形;;(2)线段AG 与BE 之间的数量关系为BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得;(3)证AHG ∽CHA 得AG GH AH AC AH CH==,设BC CD AD a ===,知AC =,由AG GH AC AH =得2AH a 3=、1DH a 3=、CH a 3=,由AG AH AC CH=可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形,∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°, ∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CG CE=,GE ∥AB ,∴AG CG BE CE ==;(2)连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG CB CA ,∴CG CE =CA CB= ∴△ACG ∽△BCE ,∴AG CA BE CB ==∴线段AG 与BE 之间的数量关系为BE ;(3)∵∠CEF=45°,点B 、E 、F 三点共线,∴∠BEC=135°, ∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG ,∴△AHG ∽△CHA , ∴AG GH AH AC AH CH==,设BC=CD=AD=a ,则a ,则由AG GHAC AH ==, ∴AH=23a ,则DH=AD ﹣AH=13a ,,∴由AG AH AC CH =2a =, 解得:故答案为.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.28.(1)(3,4)A , 12(0)y x x =>;(2)点(6,2)D ;(3)存在,点154P5)4+或33(4114或5(4P ,26)11. 【分析】(1)根据4sin 5AOB ∠=,5OA =,可知点A 的坐标,代入解析式求解; (2)过点D 作DE OB ⊥于E ,设9AC a =,5CD a =,由平行四边形的性质可得5OA BC ==,9AC OB a ==,//OA BC ,由锐角三角函数可求用a 表示的点D 坐标,代入解析式可求a 的值,即可求点D 坐标;(3)分两种情况讨论,由平行四边形的性质可求解.【详解】(1)如图1,过点A 作AH OB ⊥于点H ,4sin 5AOB ∠=,5OA =, 4AH ∴=,3OH =,(3,4)A ∴,根据题意得:43k =,可得12k =, ∴∴反比例函数的解析式为12(0)y x x =>, (2)如图2,过点D 作DE OB ⊥于E ,59CD AC = ∴设9AC a =,5CD a =,四边形OACB 是平行四边形5OA BC ∴==,9AC OB a ==,//OA BC ,55BD a ∴=-,AOB DBE ∠=∠,4sin 5DBE ∴∠=, 44DE a ∴=-,33BE a =-,36OE OB BE a ∴=+=+,∴点(36,44)D a a +- 反比例函数12(0)y k x=>在第一象限内的图象经过点D , (36)(44)12a a ∴+-=0a ∴=(不合题意舍去),12a = ∴点9(2B ,0),点(6,2)D ,(3)点(6,2)D ,点(0,0)O∴直线OD 解析式为:13y x =若以PD 为边,则//BQ PD ,BQ PD =,∴设BQ 解析式为:13y x b =+, 19032b ∴=⨯+ 32b ∴=- ∴直线BQ 解析式为:1332y x =-, ∴133212y x y x ⎧=-⎪⎪⎨⎪=⎪⎩解得:9434x y ⎧=⎪⎪⎨⎪=⎪⎩94Q ∴+3)4- 设点1(,)3P a a , PD BQ =,22221993(6)(2)))3424a a ∴-+-=+-+,334a ∴=154a =+ ∴点154P +5)4+或33(4114若以PD 为对角线,以B 、D 、P 、Q 为顶点的四边形是平行四边形,PD ∴,BQ 互相平分设点(Q a ,12)(0)a a> BQ ∴的中点为9(42a +,6)a∴619()342a a =+ 114a ∴=,BQ ∴的中点为29(8,24)11 5(4P ∴,26)11 【点睛】本题是反比例函数综合题,考查了待定系数法求解析式,平行四边形的性质,锐角函数的应用,利用分类讨论思想解决问题是本题的关键.。
四川省成都市七中育才学校2020-2021学年九年级上学期期中数学试题

四川省成都市七中育才学校2020-2021学年九年级上学期期中数学试题一、选择题(本题共10小题,每小题3分,共30分)1. 下列方程中,是关于x 的一元二次方程的是( ) A. x+2x =1 B. x (x+3)=5 C. x 3+2x =0 D. 2x 2+xy ﹣3=02. 下列四个点中,在反比例函数y =﹣8x 图象上的是( ) A. (2,4) B. (2,﹣4)C. (﹣4,﹣2)D. (4,2) 3. 在ABC 中,90ACB ∠=︒,若8AC =,6BC =,则sin A 的值为( ) A. 53 B. 35 C. 45 D. 544. 线段8AB =,P 是AB 的黄金分割点,且AP BP <,则BP 的长度为( )A. 8-B. 8C. 4D. 4 5. 若关于x 的一元二次方程240x kx ++=有两个相等实数根,则以k 为边长的正方形的面积为( )A. 2B. 4C. 8D. 166. 下列说法正确的是( )A. 对角线互相垂直平分四边形是正方形B. 对边平行且相等的四边形是菱形C. 两边成比例且一角相等的两个三角形相似D. 两个等边三角形相似7. 如图,在平面直角坐标系中,P 是第一象限内的点,其坐标是(a ,3)且OP 与x 轴的夹角α的正切值是34,则cosα的值为( ) A. 35 B. 45 C. 34 D. 43的8. 若反比例函数y =k x 的图象位于一、三象限,图象上有两点A (1,y 1),B (3,y 2),则y 1与y 2的大小关系( )A. y 1<y 2B. y 1>y 2C. y 1=y 2D. 无法确定大小关系 9. 如图,平行四边形ABCD 中,点E 为AD 边中点,连接AC 、BE 交于点F ,若△AEF 的面积为关于x 的一元二次方程x 2+x ﹣2=0的解,则△FBC 的面积为( )A. 4B. 5C. 6D. 710. 在同一直角坐标系中反比例函数a y x=与一次函数()0y x a a =+≠的图象大致是( ) A. B.C. D.二、填空题(本题共4小题,每小题4分,共16分)11. 已知34a b =,那么a a b+的值为_____. 12. 如图,已知点P 在双曲线(0)k y k x =≠上,PH 垂直于y 轴,POH 的面积为2,则此双曲线的解析式为_____.13. 一名同学想要测量旗杆的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为2米,同时另一名同学测量旗杆的影子时,发现旗杆的影子全落在地面上,若此时落在地面上的影长为14米,则旗杆高为_____米.14. 如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.三、解答题(本题共6小题,共54分)15. 请回答下列问题.(1)计算:(12)﹣2+|1﹣2cos 30°|﹣tan 60°+(20200. (2)解方程:x 2+4x ﹣5=0.16. 先化简:(1﹣12x -)÷22944x x x --+,再从不等式235x -<的解中选择一个正整数解代入求值. 17. 为了测量建筑物高度AB ,兴趣小组在C 处用高为1.5米的测角仪CD ,测得屋顶B 的仰角为45︒,再向房屋方向前进15米,又测得房屋的顶端B 的仰角为61︒,求房屋的高度AB .(参考数据sin610.67tan61 1.80︒≈︒≈,,结果保留整数)18. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.(1)点A 的坐标为 ,点B 的坐标为 ,点C 的坐标为 .(2)以原点O 为位似中心,将△ABC 放大,使变换后得到△A 1B 1C 1与△ABC 对应边的比为2:1,请在网格内画出△A 1B 1C 1.的(3)求出△A 1B 1C 1的面积.19. 如图,一次函数y kx b =+的图象交反比例函数m y x=的图象于A (2,-4),B (a ,-1)两点.(1)求反比例函数与一次函数表达式;(2)连接OA ,OB ,求△OAB 面积;(3)根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?20. 如图1所示,矩形ABCD 中,点E ,F 分别为边AB ,AD 的中点,将△AEF 绕点A 逆时针旋转α(0°<α≤360°),直线BE 、DF 相交于点P .(1)若AB =AD ,将△AEF 绕点A 逆时针旋转至如图2所示的位置,则线段BE 与DF 的数量关系是 . (2)若AD =nAB (n ≠1),将△AEF 绕点A 逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB =8,BC =12,将△AEF 旋转至AE ⊥BE ,请算出DP 的长.四、填空题.(本题共5小题,每小题4分,共20分)21. 若m 、n 是一元二次方程x 2+2x ﹣2020=0的两个实数根,则2m +2n ﹣mn 的值为_____.22. 一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.23. 从﹣4,﹣3,﹣2,﹣1,0,1,2,3,4这9个数中任意选一个数作为m 的值,使关于x 的分式方程:21x m x -+=3的解是负数,且使关于x 的函数y =3m x-图象在每个象限y 随x 的增大而增大的概率为_____. 24. 函数y =2x(x >0)的图象上有一动点P ,过点P 作直线l ,l 与x 轴交于点A ,与y 轴交于点B ,若BP =2AP ,则OA •OB =_____.25. 如图,在△ABC 中,∠ABC =90°,AB =12,BD =2CD ,E 是边AC 上的一个动点(可与A 、C 重合),连接DE ,在DE 右侧作DF ⊥DE ,且AB DE BC DF=2,连接EF ,点M 为EF 的中点,则当点E 从A 运动到C 的过程中,点M 所走过的路径长为_____.五、解答题(本题共3小题,共30分)26. 疫情复学后学校为每个班级买了免洗抑菌洗手液,当购买量不超过100瓶时,洗手液单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不低于每瓶5元,设学校共买了x 瓶洗手液(1)当x=80时,每瓶洗手液的价格是____元;当x=150时,每瓶洗手液的价格是___元;当x=____时,每瓶洗手液的价格恰好降为5元(2)若学校共花费1200元,请问一共购买了多少瓶洗手液?27. 如图,在正方形ABCD 中,AB =4,E 为AB 上任意一点,连结ED ,作ED 的中垂线交AD 于点M ,交DC 延长线于点N ,连结EN 交BC 于点F .(1)当E 为AB 中点时,求∠MED 的正切值.(2)在(1)的条件下,求△FCN 的面积.(3)当△BEF 的周长与△AEM 的周长之差为1时,求∠EFB 的正弦值.的28. 如图,在平面直角坐标系中,A(a,0),C(0,b),且满足(a﹣3)2=0,矩形OABC的边CB上有一点E,且CE=1.(1)求直线OB的解析式.(2)连接OB,AE,以AE为边作平行四边形AEPQ,使得点P在直线OB上,Q为坐标平面内的一点,且平行四边形AEPQ的面积为6,求点P坐标.(3)连接OE,点M是线段OE中垂线上一点,若点O、H关于点M成中心对称,连结EH,BH.当△BEH 是等腰三角形时,直接写出所有符合条件的M点坐标.。
四川省成都市成都七中万达学校通锦校区2021-2022学年九年级上学期期中数学试题

2021-2022学年四川省成都七中万达学校通锦校区九年级(上)期中数学试卷A 卷一、单选题1. 如图所示的四棱柱的主视图为( )A. B. C. D.2. 一元ㅡ次方程22210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根3. 一元二次方程2650x x -+=配方后可化为( )A. 2(3)14x +=B. 2(3)4x -=-C. 2(3)14x +=-D. 2(3)4x -=4. 如图,已知AB ∥CD ∥EF ,AD :DF=3:2,BC=6,CE 的长为( )A. 2B. 7C. 4D. 55. 菱形具有而矩形不一定具有的性质是( )A. 对角相等B. 四条边都相等C. 邻角互补D. 对角线互相平分6. 已知y 与x 成反比例,且当x =-1时y =2,则反比例函数的表达式为( )A. y =2x - B. y =2x C. 12y x =- D. y =12x7. 如图,矩形ABCD 中,120BOC ∠= ,4AB =,则AC 的长是( )A. 2B.C. 4D. 88. 某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是( )A. 10米B. 12米C. 14.4米D. 15米9. 有一根1m 长的铁丝,怎样用它围成一个面积为20.06m 的长方形?设长方形的长为xm ,依题意,下列方程正确的是( )A. x (1-x )=0.06B. x (1-2x )=0.06C. x (0.5-x )=0.06D. 2x (1-2x )=0.0610. 如图,为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具,移动竹竿使竹竿和旗杆两者顶端的影子恰好落在地面的同一点A ,此时,竹竿与点A 相距8m ,与旗杆相距22m ,则旗杆的高为( )A. 6mB. 8.8mC. 12mD. 30m二、填空题11. 关于x 的方程x 2﹣kx ﹣6=0有一根为x =﹣3,则k 的值为____.12. 已知函数()43m y m x -=+是反比例函数,则m =______.13. 如图,平面直角坐标系中,点E (﹣4,2),F (﹣1,﹣1),以原点O 为位似中心,把 EFO 缩小为E F O '' ,且E F O '' 与 EFO 的相似比为1:2,则点E 的对应点E '的坐标为_______.14. 如图,在菱形ABCD 中,∠A =40°,分别以点A 、B 为圆心,大于12AB 的长为半径作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD .则∠EBD 的度数为_______.三、解答题15. (1)计算:31)0+(﹣13)﹣2﹣2;(2)解方程:(x +2)(1﹣3x )=2x (3x ﹣1).16. 先化简,再求值:1()1x x x x +--÷2244x x x x++-,其中x 是方程x 2+4x +1=0的根.17. 如图,在平面直角坐标系中,已知 ABC 三个顶点的坐标分别为.A (2,4),B (1,1),C (5,2).(1)以点B 为位似中心,在网格内画出 ABC 的位似 A 1BC 1,使得 A 1BC 1与 ABC 的位似比为2;(2)求出 ABC 和 A 1BC 1的面积.18. 如图,小明欲测量一座垂直于地面的古塔DE的高度,他直立站在该塔的影子AE上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他与该塔的距离CE=32m,已知小明的身高BC=1.8m,他的影长AC=4m.(1)图中 ABC与 ADE是否相似?请说明理由.(2)求出古塔的高度.19. 某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰好是销售收入的25%.如果第一天的销售收入5万元,且每天的销售收入都有增长,第三天的利润是1.8万元,(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?20. 在 ABC中,正方形DEFG的边FG在BC上,顶点D,E分别在AB,AC 上.S =27,则正方形DEFG的边长为;(1)如图1,若BC=6,ABC(2)如图2,在BE上取点P,作PN⊥BC于点N,PM∥DE交AB于点M,求证:PM=PN;(3)如图3,在BE 上取点O ,使OE =FE ,连结OG ,OF ,若34EF BF =.求证:∠GOF =90°.B 卷一、填空题21. 若232a b b-=34,则b a 的值为______.22. 如果a 、b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则a 2+2b +ab ______.23. 如图,AB BD ⊥,CD BD ⊥, AB=6,CD=4,BD=14.点P 在BD 上移动,当以P ,C ,D 为顶点的三角形与△ABP 相似时,则PB 的长为__________.24. ,利用这个比例,我们规定一种“黄金算法”即:a ⊗b =a b ,比如1⊗2=×2.若x ⊗(4⊗8)=10,则x 的值为______.25. 在平面直角坐标系中,(1,0),A B ,过点B 作直线BC ∥x 轴,点P 是直线BC 上的一个动点以AP 为边在AP 右侧作Rt APQ ,使90APQ ︒∠=,且:AP PQ =AB 、BQ ,则ABQ 周长的最小值为___________.二、解答题26. 商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?27. 如图,在 ABC与 EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD AE与直线CD交于点P,DE与BC交于点M.(1)求证: ABE∽ CBD;(2)若AB∥ED,求①AE的长;②PCAP的值.28. 如图,在直角坐标系中,直线BC经过点B(﹣4,0)和点C(0,3),A点坐标为(3,0),点P为直线BC上一点,连接AC、AP.(1)求直线BC的解析式;(2)如图,当点P在线段BC上,∠APC=45°时,求P点坐标;(3)点P在直线BC上移动,当△APB与△BOC相似时,求点P的坐标.2021-2022学年四川省成都七中万达学校通锦校区九年级(上)期中数学试卷A 卷一、单选题【1题答案】【答案】B【解析】【分析】直接根据三视图的定义可得答案.【详解】解:正面看易得四棱柱的两条棱位于四棱柱的主视图内, 且为虚线.故选B.【点睛】本题考查了三视图的知识, 主视图是从物体的正面看得到的视图, 找到从正面看所得到的图形即可, 注意所有的看到的棱都应表现在主视图中.【2题答案】【答案】B【解析】【分析】先求出△的值,再判断出其符号即可.【详解】解:∵2(2)42(1)48120.∆=--⨯⨯-=+=>∴有两个不相等的实数根.故选:B .【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)的根与△的关系是解答此题的关键.【3题答案】【答案】D【解析】【分析】将方程左边配成完全平方式即可求解.【详解】解:由题意可知:方程左边22265(3)95(3)4x x x x =-+=--+=--,故原方程变形为:2(3)4x -=,故选:D .【点睛】本题考查了一元二次方程配方法,属于基础题,计算过程中细心,熟练掌握配方法是解决本题的关键.【4题答案】【答案】C【解析】【分析】根据平行线分线段成比例,列出比例式可得出答案.【详解】∵AB∥CD∥EF∴AD BC3== DF CE2∴2BC CE==43故选C.【点睛】本题考查平行线分线段成比例,准确找到对应边是关键.【5题答案】【答案】B【解析】【分析】根据菱形和矩形的性质,容易得出结论.【详解】解:菱形的性质有:四条边都相等,对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是四条边都相等;故选B.【点睛】本题考查了菱形和矩形的性质;熟练掌握菱形和矩形的性质是解决问题的关键.【6题答案】【答案】A【解析】【分析】根据反比例定义设解析式,代入求值即可.【详解】∵y与x成反比例∴设k yx∵当x =-1时y =2∴21k=-2k =-∴反比例函数的表达式为2y x =-故选A【点睛】本题考查反比例函数的定义,熟记反比例函数的三种书写形式是解题的关键.【7题答案】【答案】D【解析】【分析】由矩形的性质得出OA =OB ,再证明△AOB 是等边三角形,得出OA =AB =4,由AC =2OA ,即可得出结果.【详解】解:∵四边形ABCD 是矩形,∴OA =12AC ,OB =12BD ,AC =BD ,∴OA =OB ,∵∠BOC =120°,∴∠AOB =60°,∴△AOB 是等边三角形,∴OA =AB =4,∴AC =2OA =8;故选D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.【8题答案】【答案】C【解析】【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】∵同一时刻物高与影长成正比例,∴1.8:1.5=旗杆的高度:12,∴旗杆的高度为14.4米.故选C.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度,体现了方程的思想.【9题答案】【答案】C【解析】【分析】设长方形的长为xm,则设长方形的宽为(0.5﹣x)m,根据长×宽=0.06m2列出方程即可.【详解】解:设长方形的长为xm,则设长方形的宽为(0.5﹣x)m,由题意,得x(0.5﹣x)=0.06故选C.【点睛】本题考查了由实际问题抽象出一元二次方程.设出长方形的长为x m,根据长方形的周长公式用含x的代数式正确表示长方形的宽是解题的关键.【10题答案】【答案】C【解析】【分析】根据此时旗杆与竹竿平行即可证相似,再根据相似三角形的性质列比例方程即可.【详解】解:如下图所示:∵竹竿ED∥旗杆CB∴△ADE∽ABC∴AD DE AB BC=∴8 3.2 228BC=+解得:旗杆BC=12m故选C.【点睛】此题考查的是相似三角形的应用,根据相似三角形的性质列比例方程是解决此题的关键.二、填空题【11题答案】【答案】1-【解析】【分析】将3x =-,代入260--=x kx 中,即可得到k 值.【详解】解:将3x =-代入260--=x kx 中,得到:()23+360k --=33k =-1k =-故答案为:1-【点睛】本题考查知道一元二次方程的解的应用,根据相关知识点解题是重点.【12题答案】【答案】3.【解析】【分析】根据反比例函数定义,得到相关参数取值即可.【详解】解:∵||4(3)m y m x -=+是反比例函数,∴41{30m m -=-+≠解得:3m =m ∴的值为3.故答案为:3.【点睛】本意主要考查反比例函数定义,掌握反比例函数解析式中相关参数的取值是解题关键.【13题答案】【答案】(−2,1)或(2,−1)##(2,−1)或(−2,1)【解析】【分析】根据位似变换的性质计算即可.【详解】解:∵以O 为位似中心,将△EFO 缩小为E F O '' ,且E F O '' 与 EFO 的相似比为1:2,E (−4,2),∴点E ′的坐标为(−4×12,2×12)或(−4×(−12),2×(−12)),即(−2,1)或(2,−1),故答案为:(−2,1)或(2,−1).【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .【14题答案】【答案】30°【解析】【分析】根据∠EBD =∠ABD -∠ABE ,求出∠ABD ,∠ABE 即可解决问题.【详解】解:如图,∵四边形ABCD 是菱形,∴AD =AB ,∴∠ABD =∠ADB =12(180°-∠A )=70°,由作图可知,EA =EB ,∴∠ABE =∠A =40°,∴∠EBD =∠ABD -∠ABE =70°-40°=30°,故答案为30°.【点睛】本题考查作图-基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识.三、解答题【15题答案】【答案】(1)83-(2)(11=3x ,223x =-.【解析】【分析】(1)先化简二次根式,零指数幂,指数合并,再计算负指数幂,合并同类项即可;(2)先移项整理符号,提公因式因式分解得出()()31320x x -+=,然后化为一元一次方程求解即可.【详解】解(1)31)0+(﹣13)﹣2﹣2,=41313-⎛⎫--+-- ⎪⎝⎭=3181-+-,=83-;(2)(x +2)(1﹣3x )=2x (3x ﹣1).()()()2313120x x x x -+-+=()()31320x x -+=310x -=或320x +=,解得:11=3x ,223x =-.【点睛】本题考查二次根式混合运算,零指数幂,负指数幂,因式分解法解一元二次方程,掌握运算法次与一元二次方程的解法是解题关键.【16题答案】【答案】21(2)x +,13【解析】【分析】根据分式的运算法则将原式化简,求出方程的解代入求值即可.【详解】解:1(1x x x x +--÷2244x x x x++-=22(1)(1)(2)(1)(1)(1)x x x x x x x x x x ⎡⎤-++-÷⎢⎥---⎣⎦=2221(1)(1)(2)x x x x x x x ⎡⎤-+-⨯⎢⎥-+⎣⎦=21(1)(1)(2)x x x x x -⨯-+=21(2)x +,方程x 2+4x +1=0,2443x x ++=,2(2)3x +=,∴2x +=,∴12x =,22x =-,当2x =-时,原式=2113(2)x ==+,当2x =时,原式=2113(2)x ==+,∴原式=13.【点睛】本题考查了分式的化简求值,解一元二次方程,熟练掌握分式的运算法则以及解一元二次方程的方法是解本题的关键.【17题答案】【答案】(1)△A 1BC 1为所求 ABC 的位似图形;图形见祥解;(2)112;22.【解析】【分析】(1)根据以点B 为位似中心, A 1BC 1与 ABC 的位似比为2,可得A 1B =2AB ,C 1B =2CB ,根据A (2,4),B (1,1),C (5,2),求出点A 1(3,7),点C 1(9,3),描点A 1,C 1,连接BA 1、BC 1,则△A 1BC 1为所求 ABC 的位似图形;(2)补成矩形利用矩形面积减去3个三角形面积S △ABC =S 矩形BGFE -S △BGC -S △CFA -S △BEA ,111111ΔΔΔΔA BC BHC C NA A MB BHNM S S S S S =---矩形,代入数据计算即可.【详解】解:(1)∵以点B 为位似中心, A 1BC 1与 ABC 的位似比为2,∴A 1B =2AB ,C 1B =2CB ,∵A (2,4),B (1,1),C (5,2),设A 1(x 1,y 1),点C 1(m 1,n 1),∴x 1-1=2(2-1),y 1-1=2(4-1),m 1-1=2(5-1),n 1-1=2(2-1),∴x 1=3,y 1=7,m 1=9,n 1=3,点A 1(3,7),点C 1(9,3),描点A 1,C 1,连接BA 1、BC 1,则△A 1BC 1为所求 ABC 的位似图形;(2)如图补成长方形BGFE ,与矩形BHNM ,∴S △ABC =S 矩形BGFE -S △BGC -S △CFA -S △BEA ,=111222EB BG BG GC CF AF EA BE ⋅-⋅-⋅-⋅,=312232---,=112;111111ΔΔΔΔA BC BHC C NA A MB BHNM S S S S S =---矩形,=1111111222BM BH BH BC C N A N A M BM ⋅-⋅-⋅-⋅,=488126---,=22.【点睛】本题考查位似三角形的图形画法,求对应点坐标,描点画图,利用割补法求三角形面积,掌握位似三角形的图形画法,求对应点坐标,描点画图,利用割补法求三角形面积是解题关键.【18题答案】【答案】(1)相似,理由见解析;(2)16.2m【解析】【分析】(1)根据两组角对应相等的两个三角形相似证明即可;(2)根据相似三角形的性质进行解答即可.【详解】解:(1)相似,理由如下:∵90BCA DEA∠=∠=︒,BAC DAE∠=∠,∴AABC DE∽△△;(2)∵AABC DE∽△△,∴AC BCAE DE=,即4 1.8432DE=+,解得:16.2DE=,∴古塔的高度为16.2m.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的判定定理以及性质定理是解本题的关键.【19题答案】【答案】(1)7.2万元;(2)20%.【解析】【分析】(1)利用第三天的销售收入=第三天的利润÷销售利润占销售收入的比例,即可求出结论;(2)设第二天和第三天销售收入平均每天的增长率是x ,根据第一天及第三天的销售收入,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】(1)1.8÷25%=7.2(万元).答:第三天的销售收入是7.2万元.(2)设第二天和第三天销售收入平均每天的增长率是x ,依题意,得:5(1+x)2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:第二天和第三天销售收入平均每天的增长率是20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【20题答案】【答案】(1)185;(2)见解析;(3)见解析【解析】【分析】(1)如图1中,设正方形的边长为x ,理由相似三角形的对应高的比等于相似比构建方程即可解决问题;(2)利用平行线分线段成比例定理即可证明;(3)设3EF GF k ==,4NF k =,则5BE k =,可得224BO BG BF k =⋅=,推出BO BF BG BO =推出EOF FBO ∽,推出BOG OFB ∠=∠,再证明90EOF BOG ∠+∠=︒可得结论.【详解】解:(1)过点A 作AH BC ⊥,交DE 于点K ,设正方形的边长为x ,∵AH BC ⊥,∴1272ABC S BC AH =⋅⋅= ,∴16272AH ⨯⨯=,∴9AH =,∵四边形DEFG 为正方形,∴∥DE BC ,∴ADE ABC △△∽,∴AK DE AH BC =,∴996x x -=,∴185x =,∴正方形DEFG 的边长为185;(2)∵PM DE ∥,∴~BPM BED ∆∆,∴PM BP ED BE=,∵,PN BC EF BC ⊥⊥,∴PN EF ∥,∴~BPN BEF ∆∆,∴PN BP EF BE=,∵四边形DEFG 为正方形,∴DE DF =,∴PM PN =;(3)在Rt EBF △中,∵34EF BF =,∴设3EF GF k ==,4BF k =,则5BE k =,∵3EO EF k ==,∴2BO BE EO k =-=,∴224BO BG BF k =⋅=,∴BO BF BG BO=,∵OBG OBF ∠=∠,∴OBG FBO ∽,∴BOG OFB ∠=∠,∵EO EF =,∴EOF EFO ∠=∠,∵90EFO BFO ∠+∠=︒,∴90EOF BOG ∠+∠=︒,∴90FOG ∠=︒.【点睛】本题考查了四边形综合题,考查了正方形的性质,平行线分线段成比例定理,相似三角形的判定与性质,解题的关键是正确寻找相似三角形解决问题.B 卷一、填空题【21题答案】【答案】49【解析】【分析】根据比例性质把竖式化为等积式,恒等变形,得到a 与b 的关系式,再把等积式化为比例式即可.【详解】解:∵232a b b-=34,∴()42332a b b -=⨯,∴8126a b b -=,∴49a b =,∴49b a =.故答案为:49.【点睛】本题考查了比例性质,熟练掌握比例性质是解本题的关键.【22题答案】【答案】4【解析】【分析】根据根与系数的关系可得a +b =2,ab =-1,根据一元二次方程的解的定义可得a 2-2a =1,然后把a 2+2b +ab 变形为a 2-2 a +2(a +b )+ab ,整体代入计算即可.【详解】解:∵a 、b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,∴a +b =2,ab =-1, a 2﹣2 a ﹣1=0,∴a 2﹣2 a =1,∴a 2+2b +ab =a 2-2 a +2 a +2b +ab = a 2-2 a +2(a +b )+ab =1+2×2-1=4.故答案为4.【点睛】本题考查根与系数的关系及一元二次方程的解,代数式求值,关键掌握用根与系数的关系与代数式变形相结合进行解题.【23题答案】【答案】8.4或2或12【解析】【分析】分两种情况:ABP PDC △△和ABP CDP △△,然后分别利用相似三角形的性质即可得出答案.【详解】若ABP PDC △△,∴AB PD BP CD=, 设BP x = ,6,4,14AB CD BD === ,6144x x -∴=,解得122,12x x ==;若ABP CDP △△,∴AB CD BP PD=, 设BP x =,6,4,14AB CD BD === ,6414x x∴=-,解得8.4x = ,综上所述,BP 的长度为8.4或2或12,故答案为:8.4或2或12.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质并分情况讨论是解题的关键.【24题答案】【答案】【解析】【分析】根据定义新运算,先计算出4⊗8,然后根据定义新运算,列出方程,即可求出x 的值即可.【详解】解:由题可知:4⊗848=+=,∴x ⊗x =+10x =+-,即1010x +-=,∴x =.故答案为:【点睛】此题考查的是定义新运算,二次根式混合运算,一元一次方程的解法,掌握定义新运算的公式和运算顺序是解决此题的关键.【25题答案】【答案】2+【解析】【分析】先证明△AOB ∽△APQ ,得到OA AB AP AQ=,由△OAP ∼△BAQ ,得到BQ =2OP ,进而得到ABQ C = 22()AP OP ++.作O 关于直线y =O ’,连接'AO ,PO ',则OP =O 'P ,AO 根据两边之和大于第三边即可得到AP OP AO '+≥,从而得到答案.【详解】如图所示.连接OP .在t R APQ 中,90APQ ︒∠=.:AP PQ =2AQ AP∴=又在Rt OAB ∆中,:OA OB =OA PA OB PQ∴=又∵90AOB APQ ︒∠=∠=~AOB APQ∴ OA AB AP AQ∴=,∠OAB =∠PAQ ,OAP BAQ∴∠=∠OAP BAQ∴ 21BQ AQ OP AP ∴==2BQ OP ∴=.∵OA =1.OB AB 2==,ABQ C AB AQ BQ ∴=++ 222AP OP =++22()AP OP =++又P 为直线y =上的动点.∴作O 关于直线y =的对称点O ’,(0,O '∴,连接'AO ,PO '.∴OP =O 'P ,AO =,∴AP +OP =AP +PO 'AO '≥=()min 2ABQ C ∴=+即ABQ △的最小值为2+.故答案为:2+【点睛】本题考查了相似三角形的判定与性质.解题的关键是把△ABQ 周长的最小值转化为求AP +OP 的最小值.二、解答题【26题答案】【答案】(1)1748元;(2)20元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值, 再根据尽快减少库存即可确定x 的值.【详解】解:(1)当天盈利:(50-4)×(30+2×4)=1748(元).答:若某天该商品每件降价4元,当天可获利1748元.(2)设每件商品降价x 元,则商场日销售量增加2x 件,每件商品,盈利(50-x )元.根据题意,得:(50-x )×(30+2x )=2100,整理,得:x 2-35x +300=0,解得:x 1=15,x 2=20,∵商城要尽快减少库存,∴x =20.答:每件商品降价20元时,商场日盈利可达到2100元.【点睛】本题考查了一元二次方程的应用,根据数量关系列出一元二次方程(或算式)是解题的关键.【27题答案】【答案】(1)见详解;(2)①AE =;②13PC PA =.【解析】【分析】(1)根据两边成比例夹角相等两三角形相似证明即可.(2)如图,设DE 交BC 于M .根据四边形对角互补证明∠P =90°,求出PC ,PA 即可解决问题.【详解】(1)证明:∵,∠ABC =∠EBD =90°,∴∠ABE +∠EBC =∠EBC +∠CBD ,∴∠ABE =∠CBD ,∵AB =6,BC =3,EB =BD ∴2AB EB CB BD==,∴△ABE ∽△CBD .(2)解:①如图,设DE 交BC 于M .∵AB ∥DE ,∠ABC =90°,∴∠DMB =∠ABC =∠DMC =90°,在Rt △DEB 中,∵∠EBD =90°,BE =BD∴DE 5==,∴S △EBD =1122BE BD DE BM ⋅=⋅,∴BM=2BE BD DE ⋅==,∴DM1==,∴CM =BC -BM =3-2=1,∴CM =DM =1,∠DMC =90°∴CD====CDM =∠DCM =45°,∵△ABE ∽△CBD ,∴2AE AB CD BC==,∠CDB =∠AEB ,∴AE =;②∵∠AEB +∠PEB =180°,∴∠CDB +∠PEB =180°,∴∠EPD +∠EBD =180°∵∠EBD =90°,∴∠APC =90°,∴PE =PD=5=,∵CD,AE =,∴PC =PD ﹣CDPA =PE +AE∴13PC PA ==.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,等腰直角三角形判定与性质,平行线性质,线段的比,三角形面积,解直角三角形,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.【28题答案】【答案】(1)334y x =+;(2)7221(,2525P -;(3)P 的坐标为1284(,)2525或21(3,4【解析】【分析】(1)用待定系数法求解即可;(2)当点P 在线段BC 上时,得出CAP CBA ∽,进而得出CA CP AP CB CA BA==,设3(,3)4P m m +,可得185CP =,在Rt PQC 中,222CP PQ CQ =+,代入求解舍去正值即可求解;(3)分两种情况进行解答:①当90APB ∠=︒,②当90PAB ∠=︒,分别求出点P 的坐标即可.【详解】解:(1)设直线BC 的解析式为:y ax b =+,∵直线BC 经过点B (﹣4,0)和点C (0,3),∴043a b b =-+⎧⎨=⎩,解得343k b ⎧=⎪⎨⎪=⎩,∴直线BC 的解析式为:334y x =+;(2)当点P 在线段BC 上,∵C (0,3),A (3,0),∴OA OC =,AOC △为等腰直角三角形,∴45OCA OAP PAC ∠=∠+∠=︒,又∵45APC OAP PBO ∠=∠+∠=︒,∴PAC PBO ∠=∠,∴CAP CBA ∽,∴CA CP AP CB CA BA==,设3(,3)4P m m +,7AP ==,∴185CP =,过点P 作PQ y ⊥轴于点Q ,在Rt PQC 中,222CP PQ CQ =+,即222183(()54m m =+,∴7225m =±(舍去正值),∴7225m =-,此时3213425m +=,∴7221(,)2525P -;(3)过点A 作AP BC '⊥交BC 延长线于点P ',∵90AP B COB '∠=∠=︒,ABP CBO '∠=∠,∴AP B COB ' ∽,过点P '作P D x '⊥轴于点D ,∵B (﹣4,0),C (0,3),A (3,0),∴4OB =,3OC =,7AB =,∴5BC ==,∴BC BO BA BP =',即547BP =',∴285 BP'=,∵CO P D'∥,∴BC BOBP BD=',即54285BD=,∴11225 BD=,∴1121242525 OD BD OB=-=-=,∴33128433442525y x=+=⨯+=,∴1284 (,2525P';过点A作AP AB''⊥交直线BC于点P'',∵CO P A''∥,∴BOC BAP''∽,∴CO BOP A BA='',即347P A='',∴214P A''=,∴2133 44x=+,解得3x=,∴21 (3,)4P'',综上:当点P的坐标为1284(,2525或21(3,)4时,△APB与△BOC相似.【点睛】本题考查了待定系数法求一次函数解析式,相似三角形的判定与性质,勾股定理等知识点,熟练掌握相似三角形的判定定理以及性质定理是解本题的关键.。
四川省成都市七中育才学校2021-2022学年九年级上学期期中数学试题

2021-2022学年四川省成都七中育才中学九年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 如图所示“属于物体在太阳光下形成的影子”的图形是()A. B. C. D.2. 已知关于x的方程(m﹣2)x|m|﹣3x﹣4=0是一元二次方程,则()A. m≠±2B. m=﹣2C. m=2D. m=±23. 将一元二次方程3x2﹣4=5x化为一般形式后,其中二次项系数、一次项系数分别是()A. 3,5B. 3,﹣5C. ﹣4,5D. ﹣4,﹣54. 如图,l1∥l2∥l3,且ADDF=32,则错误的是()A.35ADAF= B.32BCCE= C.23ABEF= D.35BCBE=5. 用配方法解一元二次方程x2-8x+5=0,将其化成(x+a)2=b的形式,则变形正确的是( )A. (x+4) 2=11B. (x-4) 2=21C. (x-8) 2=11D. (x-4) 2=116. 如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是()A. B. C. D.7. 已知线段a 、b 、c ,若求作线段x ,使a ∶b =c ∶x ,则以下作图正确的是( )A. B. C. D.8. 如图,已知ABC A B C ''△∽△,则图中角度α和边长x 分别为( )A. 40°,9B. 40°,6C. 30°9D. 30°,69. 如图,在Rt △ABC 中,∠BAC =90°,点D 、E 、F 分别是三边的中点,且DE =4cm ,则AF 的长度是( )A. 2cmB. 3cmC. 4cmD. 6cm10. 参加足球联赛的每两队之间都进行两场比赛(这样的比赛叫做双循环比赛),共要比赛90场.设有x 个球队参加比赛,根据题意,列出方程为( )A. (1)=90x x + B. (1)=902x x -⨯C. (1)=90x x - D. 2(1)=90x x +二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11. 若b a =k ,则b a b+=___.(用k 的代数式表示)12. 如果x =﹣1是关于x 的一元二次方程ax 2+bx +1=0(a ≠0)的一个根,那么2021﹣4a +4b =___.13. 如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC 等于8米,则树高AB 等于___米.14. 如图,取一张长为a ,宽为b 的矩形纸片,将它对折两次后得到一张小矩形纸片,若要使小矩形与原矩形相似,则a 、b 的大小关系式为____.三、解答题(本大题共6个小题,共4分,解答过程写在答题卡上)15. 按要求解下列方程:(1)x 2﹣7x +10=0(因式分解法);(2)3x 2﹣2x ﹣1=0(求根公式法).16. 如图,在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系,并给出了格点△ABC (顶点为网格线的交点).(1)若△A 1B 1C 1与△ABC 以点O 为对称中心对称,画出△A 1B 1C 1.(2)若△A 2B 2C 2,与△ABC 以点O 为位似中心位似,A 2B 2=2AB ,在第四象限,画出△A 2B 2C 2.17. 若234xy z ==,且x +2y +3z =40,求3x +4y +5z 的值.18. 如图,数学兴趣小组利用硬纸板自制的Rt △ABC 来测量操场旗杆MN 的高度,他们通过调整测量位置,并使边AC与旗杆顶点M在同一直线上,已知AC=0.8米,BC=0.5米,目测点A到地面的距离AD=1.5米,到旗杆的水平距离AE=20米,求旗杆MN的高度.19. 已知关于x的方程b(x2﹣1)+2ax+c(x2+1)=0,其中a,b,c分别为△ABC三边的长.(1)若x=﹣1是方程的根,试判断△ABC的形状;(2)若△ABC是等边三角形,试求这个方程的根;(3)若方程有两个相等的实数根,且a=5,b=12,求c的值.20. 如图,在正方形ABCD中,点G是对角线上一点,CG的延长线交AB于点E,交DA的延长线于点F,连接AG.(1)求证:AG=CG;(2)求证:△AEG∽△FAG;(3)若GE•GF=9,求CG的长.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21. 若一元二次方程x2﹣2x﹣a=0没有实数根,则直线y=(a+1)x+a﹣1一定不经过的象限是____.22. 如图,点A(3,4),点B(4,0),以O为位似中心,按比例1∶2,将△AOB 放大后得△A1O1B1,则A1坐标为____.23. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30角时,已知两次测量的影长相差8米,则树高AB 为多少?___.(结果保留根号)24. 若α2﹣2α+k =0,β2﹣2β+k =0,且α2﹣α+β=5,α≠β,则k =___.25. 如图,△ABC 中,点PQ 分别在AB ,AC 上,且PQ ∥BC ,PM ⊥BC 于点M ,QN ⊥BC 于点N .AD ⊥BC 于点D ,交PQ 于点E ,且AD =BC .连接MQ ,若△ABC 的面积等于8,则MQ 的最小值为____.二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)26. 某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?27. 已知关于x的一元二次方程x2﹣mx+2m﹣4=0.(1)求证:该一元二次方程总有两个实数根;(2)若该方程一个小于5的根,另一个根大于5,求m的取值范围;(3)若x1,x2为方程的两个根,且n=x12+x22﹣8,试判断动点P(m,n)所形成的图象是否经过定点(﹣3,21),并说明理由.28. 如图,在矩形ABCD中,BC=2AB=4,点G为边BC上一点,连接AG,过点G作GE⊥AG,且GE=2AG,GE交DC于点F,连接AE.(1)如图1,连接AC,求证:△AGE∽△ABC;(2)如图2,连接CE,求证:∠DCE=∠AEG;(3)如图3,当点E正好在BD的延长线上时,求BG的长.2021-2022学年四川省成都七中育才中学九年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)【1题答案】【答案】A【解析】【分析】根据平行投影特点在同一时刻,不同物体的物高和影长成比例且方向相同解答即可.【详解】解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B 、D 的影子方向相反,都错误;C 中物体的物高和影长不成比例,也错误.故选A .【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.【2题答案】【答案】B【解析】【分析】由题意可得20m -≠,2m =,求解即可.【详解】解:由题意可得:20m -≠,2m =∴2m ≠,2m =±∴2m =-故选B【点睛】此题考查了一元二次方程的定义,解题的关键是掌握一元二次方程的定义,只含有一个未知数并且未知数的次数为2的整式方程.【3题答案】【答案】B【解析】【分析】将一元二次方程转化为一般形式,然后求解.【详解】解:将一元二次方程3x 2﹣4=5x 化为一般形式为23540x x --=则二次项系数为3,一次项系数为5-故选B【点睛】本题考查的知识点是二元一次方程的一般形式,解题关键是熟记其一般形式为20(a 0)++=≠ax bx c .【4题答案】【答案】C【解析】【分析】根据比例的性质与平行线分线段成比例,列出比例式,逐项判断即可【详解】 AD DF =32,35AD AF ∴=,故A 选项正确,不符合题意; l 1∥l 2∥l 3,且AD DF =32,32AD BC DF CE ∴==,故B 选项正确,不符合题意;32BC CE = 35BC BE ∴=故D 选项正确,不符合题意;根据已知条件不能求出AB EF的值,故C 选项不正确,故选C .【点睛】本题考查了比例的性质与平行线分线段成比例,掌握比例的性质与平行线分线段成比例是解题的关键.【5题答案】【答案】D【解析】【分析】将一元二次方程x 2-8x +5=0,移项,配方,即可得出答案.【详解】解:由题意得,285x x -=-,2816516x x -+=-+,2(4)11x -=,故选D .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是本题的关键.【6题答案】【答案】C【解析】【分析】长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图【详解】从左面可看到一个长方形和一个长方形,且两个长方形等高.故选C【点睛】本题考查了简单几何题的三视图,掌握简单几何题的三视图是解题的关键.【7题答案】【答案】D【解析】【分析】根据平行线分线段成比例,逐项分析即可【详解】A.根据平行线分线段成比例,可得::a b x c =,故该选项不符合题意;B.根据平行线分线段成比例,可得::a x b c =,故该选项不符合题意;C.根据平行线分线段成比例,可得::a c x b =,故该选项不符合题意;D.根据平行线分线段成比例,可得::a c b x =,即::a b c x =,故该选项符合题意;故选D【点睛】本题考查了平行线分线段成比例,掌握平行线分线段成比例是解题的关键.【8题答案】【答案】A【解析】【分析】直接根据相似三角形的性质求解即可.【详解】解:∵ABC A B C''△∽△∴40C C '∠=∠=︒,即∠α=40°;BC AC B C A C ='''',即218a a x= ∴9x =故选:A .【点睛】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解答此题的关键.【9题答案】【答案】C【解析】【分析】根据中位线的性质可得8cm BC =,再根据直角三角形斜边中线等于斜边一半,即可求解.【详解】解:点D 、E 、F 分别是三边的中点∠BAC =90°∴DE 为ABC 的中位线,AF 为斜边BC 的中线,∴28cm BC DE ==,12AF BC =∴4cmAF =故选C【点睛】此题考查了三角形中位线的性质,以及直角三角形的性质,解题的关键是熟练掌握相关基本性质.【10题答案】【答案】C【解析】【分析】有x 个球队参加比赛,每两队之间都进行两场比赛即每个队伍都要进行(x -1)场比赛,共进行x (x -1)场比赛,根据题意列方程即可.【详解】由题意可得:(1)=90x x -.故选:C .【点睛】本题主要考查一元二次方程的应用,根据题意找出等量关系列方程是解题关键.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)【11题答案】【答案】1k k +【解析】【分析】由已知可得b ak =,代入b a b +即可求得答案【详解】b a =k ,∴b ak =,∴b a b +1ak k a ak k==++故答案为:1k k+【点睛】本题考查了比例的性质,掌握比例的性质是解题的关键.【12题答案】【答案】2025【解析】【分析】将1x =-代入方程,求得-a b 的值,再整体代数求解即可.【详解】解:将1x =-代入方程得:10a b -+=,即1a b -=-将1a b -=-代入202144a b -+得,20214420214()20214(1)202142025a b a b -+=--=-⨯-=+=故答案为2025【点睛】此题考查了一元二次方程根的含义,解题的关键是正确求得-a b 的值,整体代入求解.【13题答案】【答案】10【解析】【详解】解:如图所示,作DH ⊥AB 与H ,则DH =BC =8 m ,CD =BH =2 m ,根据题意得∠ ADH = 45°,所以△ADH 为等腰直角三角形,所以AH =DH =8 m ,所以AB =AH +BH =8+2=10 m .故答案为:10.【14题答案】【答案】2a b =##2b a=【解析】【分析】根据相似四边形的性质得出比例式,再求出答案即可.【详解】解:对折两次后,得到的小矩形纸片的长,宽分别为b ,14a ,由小矩形和原矩形相似,可得14ab b a=,即2214a b =224a b =2a b =或2a b =-(舍去)故答案为2a b=【点睛】本题考查了矩形的性质和相似多边形的性质,能够根据相似得出比例式是解题的关键.三、解答题(本大题共6个小题,共4分,解答过程写在答题卡上)【15题答案】【答案】(1)12x =,25x =;(2)11x =,213x =-【解析】【分析】(1)直接运用十字相乘法因式分解进行计算即可(2)运用求根公式进行计算即可得出答案.【详解】解:(1)x 2﹣7x +10=0,因式分解得:(2)(5)0x x --=,由此得:20,50x x -=-=,∴12x =,25x =;(2)3x 2﹣2x ﹣1=0,∵3,2,1a b c ==-=-,∴22=4(2)43(1)160b ac ∆-=--⨯⨯-=>,∴246x ±==,∴11x =,213x =-.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,,要根据题意要求的方法求解.【16题答案】【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用中心对称的性质作出,,A B C 的对应点1A ,1B 1C 即可;(2)利用位似变换的性质分别作出,,A B C 的对应点222,A B C ,即可.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求.【点睛】本题考查了作图-位似变换,,中心对称,解题的关键是掌握位似变换,中心对称的性质,正确作出图形.【17题答案】【答案】76【解析】【分析】设234x y z t ===,再根据2340x y z ++=,求得x y z ,,的值,然后求解即可.【详解】解:设234xy z t ===,则2x t =,3y t =,4z t =2340x y z ++=,则261240t t t ++=,解得2t =即4x =,6y =,8z =34534465812244076x y z ++=⨯+⨯+⨯=++=【点睛】本题考查的知识点是比例的性质,解题的关键是熟练的掌握比例的性质.【18题答案】【答案】14米【解析】【分析】根据题意,得90AEM ∠=︒,AD DN ⊥,//AD MN ,//AE DN ;根据相似三角形的性质,通过证明MAE BAC △∽△,计算得ME ;通过证明四边形ADNE 为矩形,得EN ,从而完成求解.【详解】根据题意,得90AEM ∠=︒,AD DN ⊥,//AD MN ,//AE DN∵Rt △ABC∴90ACB ∠=︒∵MAE BAC ∠=∠∴MAE BAC △∽△ ∴ME AE BC AC= ∵AC =0.8米,BC =0.5米,AE =20米∴12.5AE BC ME AC ⨯==米∵AD DN ⊥,//AD MN ,//AE DN∴四边形ADNE 为矩形∴ 1.5EN AD ==米∴12.5 1.514MN ME EN =+=+=米.【点睛】本题考查了矩形、相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.【19题答案】【答案】(1)等腰三角形;(2)10x =,21x =-;(3)13c =【解析】【分析】(1)将1x =-代入方程,可得a c =,即可求解;(2)△ABC 是等边三角形,则0a b c ==≠,同时除以a ,化简求解即可;(3)先将5a =,12b =代入方程,将方程化为一般式,再根据判别式等于0,求解即可.【详解】解:(1)将1x =-代入方程,得220a c -+=,解得a c=△ABC 为等腰三角形故答案为等腰三角形;(2)△ABC 是等边三角形,则0a b c ==≠方程两边同时除以a ,得:22(1)2(1)0x x x +++=-化简得:20x x +=解得10x =,21x =-故答案为10x =,21x =-(3)将5a =,12b =代入方程得2212(1)10(1)0x x c x +++=-化简得2(12)10120c x x c +++-=方程有两个相等的实数根,则2104(12)(12)0c c ∆=-+-=化简得:2169c =解得13c =或13c =-(舍去)13c =,符合三角形三边关系,故答案为13c =【点睛】此题考查了一元二次方程的求解,涉及了等腰三角形的判定、三角形三边关系、一元二次方程根的情况与判别式的关系,熟练掌握相关基本知识是解题的关键.【20题答案】【答案】(1)见解析;(2)见解析;(3)CG =3【解析】【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB −∠DAG =∠DCB −∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CD ADG CDG DG DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB −∠DAG =∠DCB −∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GE GA GA GF=,即GA 2=GE •GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的性质,注意运用数形结合的思想方法,从图形中寻找角之间的和差关系.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)【21题答案】【答案】一象限【解析】【分析】首先由一元二次方程x 2−2x −a =0无实数根求出a 的取值范围,然后判断一次函数y =(a +1)x +a −1的图象一定不经过第几象限.【详解】解:∵一元二次方程x 2−2x −a =0无实数根,∴4+4a <0,解得a <−1,故a +1<0,a −1<0,故一次函数y =(a +1)x +a −1的图象一定不经过第一象限,故答案为:一.【点睛】本题主要考查根的判别式Δ=b 2−4ac 的情况,当Δ=b 2−4ac <0,方程没有实数根,知道直线的斜率k 和b 就能判断直线不经过哪些象限.【22题答案】【答案】()6,8或()6,8--【解析】【分析】根据位似图形的性质可得位似比为2或2-,将点A 的坐标乘以2或2-即可得到A 1坐标.【详解】依题意, 点A (3,4),按比例1∶2,将△AOB 放大后得△A 1O 1B 1,1A 的坐标为()16,8A 或()6,8--,故答案为:()6,8或()6,8--.【点睛】本题考查了求位似图形的坐标,理解位似比等于相似比是解题的关键.【23题答案】【答案】【解析】【分析】设AB x =,利用正切的定义以及特殊角的正切值,表示出BC 和CD ,然后求解即可.【详解】解:设AB x =米在Rt ABD △中,tan tan 60AB ADB BD ∠=︒==BD x =在Rt ABC 中,tan tan 30AB ACB BC ∠=︒==BC =CD BC BD =-8=,解得x即AB =故答案为【点睛】本题考查了解直角三角形的实际应用,涉及正切的定义,解题的关键是掌握正切三角函数的定义以及特殊角的正切值.【24题答案】【答案】3-【解析】【分析】由α2﹣2α+k =0,β2﹣2β+k =0,可得,αβ是方程220x x k -+=的两根,进而根据一元二次方程根与系数的关系求得2αβ+=,进而代入α2﹣α+β=5,即可求得k 的值【详解】 α2﹣2α+k =0,β2﹣2β+k =0,∴,αβ是方程220x x k -+=的两根,∴2αβ+= α2﹣α+β=5,α2﹣2α=-k即225αααβ++=-,25k ∴-+=解得3k =-故答案为:3-【点睛】本题考查了一元二次方程解的定义,一元二次方程根与系数的关系,求得2αβ+=是解题的关键.【25题答案】【答案】【解析】【分析】根据题意可得四边形MNQP 为矩形,APQ ABC ∽,从而得到AE PQ =,线段之间的关系QN BM NC =+,设MN x =根据勾股定理可得MQ =【详解】解:∵PM ⊥BC ,QN ⊥BC∴90PMN QNM ∠=∠=︒又∵PQ ∥BC ,AD ⊥BC∴AE PQ ⊥,90MPQ PMN QNM ∠=∠=∠=︒∴四边形MNQP 为矩形∴,PQ MN PM QN==∵PQ ∥BC∴APQ ABC∽∴AE PQ AD BC=∵AD BC=∴AE PQ =211822ABC S AD BC BC =⨯==△,解得4AD BC ==由题意可得四边形PMDE 为矩形∴QN PM DE AD AE BC PQ BC MN===-=-=-设MN x =,则4PM x=-由勾股定理得:MQ ===所以当2x =,MQ 最小,为故答案为【点睛】此题考查了相似三角形的判定与性质,三角形面积,勾股定理,矩形的判定与性质,解题的关键是熟练掌握相似三角形的判定和性质定理.二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)【26题答案】【答案】(1)y =10x +100;(2)这种消毒液每桶实际售价43元【解析】【分析】(1)设y 与x 之间的函数表达式为y kx b =+,将点(1,110)、(3,130)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得关于x 的一元二次方程,通过解方程即可求解.【详解】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(1,110)、(3,130)代入一次函数表达式得:1101303k b k b =+⎧⎨=+⎩,解得:10100k b =⎧⎨=⎩,故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=,整理,得210240x x --=.解得112x =,22x =-(舍去).所以5543x -=.答:这种消毒液每桶实际售价43元.【点睛】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润=总利润得出一元二次方程是解题关键.【27题答案】【答案】(1)见解析;(2)7m >;(3)经过定点(﹣3,21),理由见解析【解析】【分析】(1)计算一元二次方程的根的判别式,即可证明;(2)根据一元二次方程的求根公式得出方程的两个根,继而列出不等式解不等式求解即可;(3)先由一元二次方程根与系数的关系得出121224x x m x x m +-=,=,代入n =x 12+x 22﹣8,,从而将动点P (m ,n )仅用含m 的代数式表示,再将点(﹣3,21)代入验证即可.【详解】(1) 关于x 的一元二次方程x 2﹣mx +2m ﹣4=0,1,,24a b m c m ==-=-,∴()()()2222442481640b ac m m m m m -=---=-+=-≥∴该一元二次方程总有两个实数根;(2) 关于x 的一元二次方程x 2﹣mx +2m ﹣4=0,1,,24a b m c m ==-=-,42m m x ±-∴==122,2x m x ∴=-= 该方程一个小于5的根,另一个根大于5,25m ∴->解得7m >(3)121224x x m x x m +-=,= ∴ n =x 12+x 22﹣8()2121228x x x x =+--()22248m m =---24m m=-∴动点()P m n ,可表示为()24m m m -,∴当m =-3时,2491221m m -=+=∴动点()P m n ,所形成的数图象经过点点()3,21-.【点睛】本题考查了一元二次方程()200++=≠ax bx c a 的根的判别式24b ac =-△:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;同时本题还考查了公式法求解方程及根与系数的关系的应用,以及点的坐标与函数的对应关系.【28题答案】【答案】(1)见解析;(2)见解析;(3)43【解析】【分析】(1)根据两组对应边成比例,夹角相等的三角形相似进行判定即可;(2)连接AC ,交GE 于M 点,由△AGE ∽△ABC 得∠AEG =∠ACB ,进一步证得△AME ∽△GMC 和△AMG ∽△EMC ,得到∠ECM =90°,最终根据余角性质推出∠ACB =∠DCE ,即可得证;(3)作EH ⊥BC 的延长线于H 点,设BG =x ,根据△ABG ∽△GHE ,分别表示出EH ,BH ,再通过△DCB ∽△EHB 建立方程求解并检验即可.【详解】(1)∵四边形ABCD 为矩形,∴∠B =∠D =90°,∵2GE AG =,2BC AB =,∴GE AG BC AB=,又∵∠AGE =∠B =90°,∴△AGE ∽△ABC ,(2)如图所示,连接AC ,交GE 于M 点,∵△AGE ∽△ABC ,∴∠AEG =∠ACB ,∵∠AME =∠GMC ,∴△AME ∽△GMC ,∴AM ME GM MC=,又∵∠AMG =∠EMC ,∴△AMG ∽△EMC ,∴∠AGM =∠ECM =90°,即:∠BCD =∠ECM =90°,∴∠ACB =∠DCE ,∴∠AEG =∠DCE ;(3)如图,作EH ⊥BC 的延长线于H 点,设BG =x ,,,AB BC EH CH AG GE⊥⊥⊥ 90ABG H AGE ∴∠=∠=∠=︒90AGB EGH AGB BAG ∴∠+∠=∠+∠=︒EGH BAG∴∠=∠∴△ABG ∽△GHE∵△ABG ∽△GHE ,2GE AG=∴EH =2BG =2x ,GH =2AB =4,则BH =BG +GH =4+x ,∵△DCB ∽△EHB ,∴12DC EH BC BH ==,∴2142x x =+,解得:43x =,经检验,43x =是原分式方程的解,∴BG 的长为43.【点睛】本题主要考查相似三角形的判定与性质综合,熟练掌握并灵活运用相似三角形的各种判定方法是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)小王统计发现平均每天可售出甲40件和乙30件,如果将甲商品的售价每提高1元,则每天会少售出8件.于是小王决定将甲种商品的价格提高a元,乙种商品价格不变,不考虑其他因素,预期每天利润能达到234元,求a的值.
27.如图,已知锐角 ,且 ,点P为 内部一点,矩形PQMN的边MN在射线OB上(点Q在点P左侧),MQ=4,MN=a,过点P作直线 于点D,交射线OB于点E.
3.如图,直线a//b//c,分别交直线m,n于点A,B,C,D,E,F,若AB=2,BC=4,DE=3,则DF的长是().
A.8B.9C.10D.11
4.如图,过反比例函数 的图象上一点 作 轴于点 ,连接 ,若 ,则 的值为()
A.3B.4C.5D.6
5.已知方程x2﹣(k+1)x+3k=0的一个根是2,则k为( )
(1)如图1,当矩形PQMN的顶点Q落在射线OA上时,若a=4,求DP的值.
(2)如图2,当矩形PQMN的顶点Q落在 内部时,连接OP交QM于点R,若 ,a=3,求 的值.
(3)连接DM、DQ,当 与 相似时,直接写出所有符合条件的a的值.
28.如图,在平面直角坐标系 中,已知直线 与直线 相交于点 ,分别交坐标轴于点A、B、C、D,点P是线段CD延长线上的一个点, 的面积为15.
10.如图,在平行四边形 中,点 在边 上, ,连接 交 于点 ,则 的面积与 的面积之比为()A.源自B. C. D.二、填空题
11.若 ,则 的值为__________.
12.如图,在 中,P为边AB上一点,且 ,若 , ,则AC的长为________.
13.已知反比例函数 的图象上三个点的坐标分别是 , , ,则 , , 的大小关系是__________(用“<”号连接).
3.B
【分析】
根据平行线分线段成比例定理得到 ,然后根据比例的性质求EF的长,即可得出DF.
【详解】
解:∵直线a∥b∥c,
∴ ,
即 .
∴EF=6.
则DF=DE+EF=9.
故答案为:B.
【点睛】
本题考查了平行线分线段成比例性质,掌握定理内容并建立相应的比例式是解题的关键.
4.D
【分析】
根据反比例函数k的几何意义,根据 可得 ,再根据图象在第一象限即可得到结果;
(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)
(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.
26.成都放开地摊经济后,一夜增加近10万就业.摊贩小王响应政府号召,摆地摊经销甲、乙两种商品.已知一件甲商品和一件乙商品进价之和为30元.每件甲商品的利润为4元,每件乙商品的售价比其进价的2倍少11元,顾客小张在该商店购买8件甲和6件乙共用262元.
【详解】
解:在Rt△ABC中,
∵cosB= = ,BC=4,
∴AB=6.
∵CM是Rt△ABC斜边AB的中线,
∴CM= AB=3,
故选:B.
【点睛】
本题考查了直角三角形的边角间关系及直角三角形斜边上的中线与斜边的关系.掌握直角三角形斜边的中线等于斜边的一半,是解决本题的关键.
8.D
【分析】
根据增长率问题的列式方法进行列式.
本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:
①把原方程化为ax2+bx+c=0(a≠0)的形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
三、解答题
20.回答下列问题.
(1)计算: .
(2)解方程: .
21.已知关于x的方程x2+mx+m-2=0.
(1)若此方程的一个根为1,求m的值;
(2)求证:不论m取何实数,此方程都有两个不相等的实数根.
22.某数学小组为调查成都七中万达学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.
16.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.
17.如图,在 中,AB=AC=10, ,点D为BC边上的动点(点D不与点B,C重合),以D为顶点作 ,射线DE交AC边于点E,若BD=4,则AE=__________.
【点睛】
本题考查一元二次方程的根,其中涉及一元一次方程的解法,是基础考点,难度较易,掌握相关知识是解题关键.
6.D
【分析】
根据平行四边形的判定、矩形的判定、菱形的性质和正方形的判定逐一分析即可.
【详解】
A.一组对边相等,另一组对边平行的四边形不一定是平行四边形(如等腰梯形),故错误;
B.一组邻边相等的平行四边形是菱形,故错误;
(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形心角是度.
(2)请补全统计图.
(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具的概率.
23.兰州白塔山山势起伏,山中白塔七级八面,上有绿项,下筑圆基,几经强烈地震仍屹立未动,显示了我国古代劳动人民在建筑艺术上的智慧与才能.
参考答案
1.B
【分析】
根据锐角三角函数值求解.
【详解】
解:tan30° .
故选:B.
【点睛】
本题考查特殊角的三角函数值,对于特殊角的三角函数值必须熟记.
2.A
【分析】
根据配方法解一元二次方程的步骤计算可得.
【详解】
解:∵ ,
∴y2+y= ,
则y2+y+ = + ,
即(y+ )2=1,
故选:A.
【点睛】
【详解】
解:由 ,得4b=a-b.
得a=5b,
∴ =5,
故答案是:5.
【点睛】
本题考查了比例的性质,利用比例的性质得出b表示a是解题关键.
12. .
【分析】
根据相似三角形的判定可得:△ACP∽△ABC,然后根据相似三角形的性质,列出比例式即可求出AC.
【详解】
解:∵ ,∠A=∠A
∴△ACP∽△ABC
∴反比例函数图象分布在第一、三象限,且每个象限内y随x的增大而减小,
∴
∵ , ,
∴AB=AP+BP=10
∴
解得:AC=
故答案为: .
【点睛】
此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.
13.
【分析】
直接利用反比例函数图象分布规律得出点的位置,再根据反比例函数增减性得出答案.
【详解】
解:反比例函数 中,∵ k=3>0,
【详解】
∵ 是 上一点, 轴, ,
∴ ,
∴ ,
解得: ,
∵反比例函数图象在第一象限,
∴ .
故答案选D.
【点睛】
本题主要考查了反比例函数k的几何意义,结合函数图象所在的象限判断k的值是重点.
5.A
【分析】
根据题意,将根2代入方程中,解关于字母k的方程即可解题.
【详解】
把 代入方程 得,
,即 ,
故选:A.
问题提出:如何测量白塔的高MN.
方案设计:九年级三班的白亮同学去测量白塔的高,如图,他在点A处测得塔尖M的仰角是30°,向前走了50米到达点B处,又测得塔尖M的仰角是60°.
问题解决:根据上述方案和数据,求白塔的高度MN(结果精确到1m,参考数据: ≈1.73).
24.如图, 两点的坐标分别为 ,将线段 绕点 逆时针旋转90°得到线段 ,过点 作 ,垂足为 ,反比例函数 的图象经过点 .
(1)直接写出点 的坐标,并求反比例函数的解析式;
(2)点 在反比例函数 的图象上,当 的面积为3时,求点 的坐标.
25.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.
(1)如图1,若k=1,则AF与AE之间的数量关系是;
【详解】
解:第一次降价,价格变为 ,
第二次降价,价格变为 ,
列式 .
故选:D.
【点睛】
本题考查一元二次方程的应用列式,解题的关键是掌握增长率问题的列式方法.
9.C
【分析】
画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ、PB的长度,再根据PQ=AQ+PB-AB即可求出PQ的长度.
【详解】
解:如图,
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴ ,
∴ ,
∵△DFE和△DAE同底
∴
又∵ ,
∴ .
故选:B.
【点睛】
本题考查了平行四边形的性质以及相似三角形的判定和性质,掌握相似三角形的高的比等于相似比是解题的关键.
11.5
【分析】
根据比例的性质,可用b表示a,代入可得答案.