人教版数学八下《数据的代表》(平均数)word学案

合集下载

人教版数学八下《20.1数据的代表》(平均数)word学案2

人教版数学八下《20.1数据的代表》(平均数)word学案2

20.1.1平均数(2)
年级:八年级 科目:数学 课型:新授 执笔:徐中国 审核:姜艳 薛柏双
备课时间:2010.5.12 上课时间:2010.5.18
学习目标
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
学习重难点
1、重点:会求加权平均数
2、难点:对“权”的理解
学习过程:阅读教材P124 — 127 , 完成课前预习内容
【课前预习】
1、知识准备
(1)算术平均数的概念:
(2)加权平均数的概念:
2、探究:完成在教材P128问题
为了解5路公共汽车的运营情况,公交部门统计了某天5路公关汽车每个运营班
(的数的平均数。

例如小组1≤x <21的组中值为)112
211=+ (2)这天5天公关汽车平均每班的载客量是多少?
【课堂活动】
活动1、预习反馈
活动2、例题分析
例3 某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使
练习:种菜能手李大叔种植了一批新品种黄瓜。

为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图。

请估计这个新品种黄瓜平均每株结多少根黄瓜。

活动3:课堂小结
1、组中值:
【课后巩固】
2、为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示。

计算这些法国梧桐树干的平均周长
5
10
15
20
10131415黄瓜根数。

数学人教版八年级下册20.1.1数据的代表—平均数(1)教学设计

数学人教版八年级下册20.1.1数据的代表—平均数(1)教学设计
1、快速勾划出重难点知识及自学中存在问题的部分。
2、仔细学习例1、例2,体会数据的的权能够反映数据的的相对“重要程度”及如何运用加权平均数解决实际问题。
教师活动:出示目标及问题,并巡视指导自学。
学生活动:阅读理解目标,并自学置疑,小组合作释疑。
三、当堂检测(8分钟左右)
1、教材第127页练习
⑴某公司欲招聘公关人员,对甲、乙候选人进行了面视和笔试,他们的成绩如下表所示
候选人
测试成绩(百分制)
测试
笔试

86
90

92
83
①如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取
②如果公司认为,作为公关人员面试ቤተ መጻሕፍቲ ባይዱ成绩应该比笔试更重要,并分别赋予它们6和4的权,计算甲、两人各自的平均成绩,看看谁将被录取。
⑵晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末成绩占50%。小桐的三项成绩(百分制)依次是95分、90分、85分,小桐这学期的体育成绩是多少?
学生活动:以小组为单位解决上述问题,能独立完成的独立完成,有困难的可以合作完成,完成后由组内学困生发言,小组整体提升。
四、整体感知、互相评价(5分钟左右)
教师活动:请部分同学对当堂练习题进行点评、更正;如有学生解决不了的问题,教师可适当引导点拔。
学生活动:以口答、板演等形式对自己所完成的练习进行点评。
组长评议或同行评议(可选多人):
教师能够很好地把握教材,引导学生学生自主探究,通过小组合作交流,解决了本节课的教学中的、难点。教师教态自然。
评议一单位:太和县桑营中学姓名:周汝三日期:
五、课时小结(5分钟左右)

2024年人教版八年数学下册教案(全册)数据的分析 平均数、中位数和众数的应用

2024年人教版八年数学下册教案(全册)数据的分析 平均数、中位数和众数的应用

第2课时平均数、中位数和众数的应用课时目标1.在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的统计量.2.能结合具体情境体会平均数、中位数、众数三者的特点与差异,能根据具体问题选择这些统计量来分析数据.3.经历整理、描述、分析数据的过程,发展数据分析观念.学习重点结合具体问题情境,体会三种描述数据集中趋势的统计量的各自特点.学习难点能对具体问题进行分析,综合运用适当的统计量来多角度分析问题.课时活动设计了解众数的概念.某商店某天水果的销售情况如下表所示:问:老板说明天多购进葡萄和苹果.你知道这是为什么吗?教师给出众数的概念:一组数据中出现次数最多的数据称为这组数据的众数.众数的作用和意义:众数常作为一组数据的代表,用来描述数据的集中趋势.当一组数据有较多的重复数据时,众数往往能更好地反映其集中趋势.设计意图:用生活中的例子作为引入,容易让同学们理解众数的特点.练习1下列各组数据的众数分别是多少?(1)1,3,5,3,7,1,9,3,3;(2)3,3,5,2,7,2,3,2.解:(1)3.(2)2,3.设计意图:通过练习1,让学生认识到一组数据的众数的个数有时候是不唯一的.练习2有6户家庭的年收入(万元)分别为4,5,5,6,7,50.你认为这6户家庭的年收入水平大概是多少?≈12.83,①平均数x=4+5+5+6+7+506②中位数是5+6=5.5,2③众数是5.请你对这三种估计结果进行评价,这些结果是否比较客观地反映了这些家庭的年收入水平?追问:若把数据50改成9,结果会怎样变化?议一议:平均数、众数和中位数这三个统计量各自的特点是什么?同学们讨论,派代表回答,教师适当给予评价和补充.总结:平均数:计算要用到所有的数据,它能够充分利用数据提供的信息,在现实生活中较为常用,但它受极端值(一组数据中与其余数据差异很大的数据)的影响较大.中位数:只需要很少的计算,不易受极端值的影响,仅与数据的排列位置有关.众数:当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不易受极端值的影响.平均数、中位数和众数各有所长,要学会根据不同的问题选择不同的数据代表.平均数、中位数和众数的比较设计意图:通过练习2,让学生体会三种描述数据集中趋势的统计量的各自特点,运用适当的统计量来多角度分析问题,最后利用表格整理,让学生更清晰地分辨三者的特点.提升训练例为了提高农民收入,某农户在国家的帮扶下建起了养鸭厂,买来2 000只小鸭,经过一段时间的饲养,出售时的质量如下表所示:(1)出售时这些鸭子的平均质量是多少?(2)质量是多少的鸭子最多?(3)中间的质量是多少?=1.736 5(kg).解:(1)1.4×312+1.5×424+1.7×525+2×442+2.1×297312+424+525+442+297答:出售时这些鸭子的平均质量是1.736 5 kg.(2)由表可知,这组数据的众数是1.7,所以质量是1.7 kg的鸭子最多.(3)由表可知,这组数据的中位数是1.7,所以中间的质量是1.7 kg.设计意图:通过例题,一方面将知识放在解决实际生活问题的情境中,使学生体会数学与实际生活的联系,另一方面也加强学生利用图表整理数据的意识.课堂小结(1)结合本节内容谈谈你对平均数、众数、中位数三者的特点和意义的认识.(2)在选择适当的量时,你有什么样的心得体会?(3)你有办法减少极端数据对平均数的影响吗?请举例说明.设计意图:通过课堂小结使学生归纳、梳理本节的知识,加深对平均数、众数、中位数三个统计量的认识.课堂8分钟.1.教材118页练习第1,2题,第121页练习.2.七彩作业.第2课时平均数、中位数和众数的应用1.利用平均数、中位数和众数解决实际生活中的问题.2.利用“三种数”对成绩或方案作出选择或决策.教学反思。

人教版数学八年级下册-20.1.1平均数-教案(2)

人教版数学八年级下册-20.1.1平均数-教案(2)

20.1.1平均数——人教版版八年级上册第二十章第一节教学设计一、学生状况分析本节课是人教版版数学教材八年级下册第二十章《数据的代表》的第1节——“平均数”的第1课时.学生在小学阶段已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.进入初中阶段后,在七年级相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的教学任务是:让学生理解算术平均数、加权平均数的概念;会求一组数据的算术平均数和加权平均数;能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.根据以上分析,制定本节课的教学任务入下:1.知识与技能(1)认识权、会求加权平均数,并体会权的差异对结果的影响.(2)理解简单平均数和加权平均数的区别和联系,并能利用其解决一些实际问题.2. 过程与方法(1)通过小组活动,初步经历数据的处理过程,发展学生数据处理能力.(2)经历从特殊到到一般的数学探究方法,认识加权平均数的意义和价值,解决简单的实际问题.3. 情感态度与价值观(1)通过小组合作的活动,进一步增强与他人交流的意识与能力,培养学生的合作意识和能力.(2)通过权对结果的影响,使学生体会数学与人类社会的密切联系,通过解决身边的实际问题,体会到从不同角度考虑问题的必要性,认识事物要经历从一般到特殊的过程.了解数学的价值,增进对数学的理解和学好数学的信心.在探索过程中形成实事求是的态度和勇于探索的精神.4、教学重难点 教学重点:(1)加权平均数的概念,会求加权平均数. (2)简单平均数与加权平均数的区别和联系. 教学难点:体会权的差异对结果的影响,认识到权的重要性. 三、教学过程设计本节课由五个教学环节组成,它们是“温旧孕新——探新知权——新知升华—学以致用——小结平均数”.其具体内容与分析如下:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思教 学 内 容教师活动 学生活动 教学目的一、 温旧孕新问题1 2017年2月28日由《重庆晚报》打造的“重庆六一班”小记者培训课,在德普外国语学校开班,并授予德普为小记者培训基地. 经过激烈的比赛,学校现在要在甲、乙两名同学中选拔出一名“德普小记者”,他们的各项成绩(百分制)如下表:现在请计算两名候选者的平均成绩(百分制),如果你是评委,从他们的成绩看,应该选谁呢?展示视频图片以什么样的标准来比较他们的成绩?肯定分配中突出某项的方案具有合理性,并通过计算得出方案的可行性.在总分、平均分相等的情况下,具体该如何比较选拔?学生给出方案计算总分、平均分无法解决问题,让学生感受不同成绩在同一个问题上的重要程度不同,体会数据赋予“权”的必要性.形式变化,实质仍然反映了数据的不同重要程度.二、探新知权 1、加权平均数的概念 由小记者在四个测试中的重要程度不同,在老师的追问中,由学生自己探索出权的呈现形式,引入“权”的概念,导入课题. 权的定义: 权表示:数据的重要程度 数据的权反映数据的相对重要程度. 权形式:比例、百分比 根据不同的权重,所求的平均数就是加权平均数. 归纳: 一般地,若n 个数1x ,2x ,…,n x 的权分别提炼出权的定义:反映数据的重要程度.体会“权”的差异对“加权平均数”结果的影响.“简单平均数”可以看作是权相等的“加权平均数”.给学生一个反思自悟的过程.是 1w ,2w ,…,n w ,则 112212n nnx w x w x w x w w w ++=++叫做这n 个数的加权平均数(weighted average ) .书本171-172页“加权平均数”的相关内容.三、新知升华简单平均数与加权平均数统称为算术平均数. 当数据的权都相等时,所求的加权平均数就是简单平均数,简单平均数是加权平均数地特殊情况, 四、学以致用 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分. 其中一位选手的单项成绩(百分制)如下表:(1)按演讲内容占60%、演讲能力占30%、演讲效果占10%,计算选手的平均成绩;(2)演讲内容、演讲能力、演讲效果按 3:2: 1的比确定,计算选手的平均成绩.五、学以致用 小组编题1. 选择你感兴趣的生活中加权平均数的例子为背景;2. 可以采用不同形式给出相应考察项目的权;3. 小组合作探究,要分工明确,设计出科学合理的求加权平均数的题目;4. 小组活动时间共18分钟;5. 活动结束后 ,每个小组派两个代表上台展示成果.六、小结—平均数 我最大的收获是…我对同学和同伴的表现感到… 我从同学身上学到了…本节课在对你今后的生活中对待一些事情进行分析时,会有什么帮助?七、布置作业.必做题:教科书第113页练习第2题;归纳概括公式(权的百分数的形式与比的形式)从加权平均数的多种形式计算巩固所学知识,并为下面生活中的加权平均例子提供素材.归纳概括公式利用刚才总结的公式列出式子.学生举例巩固所学体会“权”的对结果的影响,进一步理解“权”.感受加权平均数在生活中应用的广泛,体会数学的价值.巩固演练、反馈矫正(备用)1.(★)如果一组数据5, x, 3, 4的平均数是5, 那么x=____;2.(★★)某小区月底统计用电情况:其中有4户用电45度,有5户用电42度, 有6户用电50度, 则平均每户用电_____度;3. (★★)某校规定学生的体育成绩由三部分组成:体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次为92分、80 分、84 分,则小颖这学期的体育成绩是多少分?4. (★★★)小亮买甲种练习本a本,每本m元;买乙种练习本b本,每本n元,两种练习本平均每本多少元?你得了________颗★。

(人教版)数学下八年级导学案:20.1数据的代表平均数(1

(人教版)数学下八年级导学案:20.1数据的代表平均数(1

课型 新授课 课题 数据的代表-平均数(1)学习目标 1、加深对加权平均数的理解2、会根据频数分布表(图)求加权平均数,从而解决一些实际问题 重点难点重点:根据频数分布表求加权平均数难点:根据频数分布表求加权平均数学习范围:114页-115页 第一步:课堂引入 问题如下:(1)、请同学读P114探究问题,依据统计表可以读出哪些信息(2)、这里的组中值指什么,________________________________________ 怎样确定组中值?_________________________________________________ (3)、第二组数据的频数5指什么呢?_______________________________ 第二步:应用举例:例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:载客量/人 组中值 频数(班次)1≤x <21 11 3 21≤x <41 31 5 41≤x <61 51 20 61≤x <81 71 22 81≤x <101 91 18 101≤x <12111115这天5路公共汽车平均每班的载客量是多少?分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。

例如在1≤x <21之间的载客量近似地看作组中值11,组中值11的权是它的频数3,由此这天5路公共汽车平均每班的载客量是:设计意图)(7315182********111189122712051531311人 ≈+++++⨯+⨯+⨯+⨯+⨯+⨯=x思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?年龄频数28≤X<30 430≤X<32 332≤X<34 834≤X<36 736≤X<38 938≤X<40 1140≤X<42 23、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表 (1)、第二组数据的组中值是多少?(2)、求该班学生平均每天做数学作业所用时间4、某班40名学生身高情况如下图,请计算该班学生平均身高所用时间t(分钟)人数 0<t ≤10 4 0<≤ 6 20<t ≤20 14 30<t ≤40 13 40<t ≤50 9 50<t ≤604165 105 身高(cm )185175 155 145 15 20 610204人数(人)5、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

人教版 八年级下册数学第二十章 数据的分析 数据的代表教案

人教版 八年级下册数学第二十章 数据的分析 数据的代表教案

数据的代表一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数.●在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象.●了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用.重点难点:●重点:体会平均数、中位数、众数在具体情境中的意义和应用.●难点:对于平均数、中位数、众数在不同情境中的应用.学习策略:●经历探索平均数、中位数、众数的概念的过程,学会根据数据做出总体的初步的思想、合理论证,领会平均数、中位数、众数的特征数的联系和区别.二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)调查的方式有两种:(二)总体、样本的概念(1)总体:.(2)个体:.(3)样本:.(4)样本容量:.(三)描述数据的方法有两种:和,统计图主要有统计图、统计图.(四)平均数:用一组数据的 除以这组数据的 ,所得的结果叫这组数据的平均数.知识点一:平均数用一组数据的 除以这组数据的 ,所得的结果叫这组数据的平均数,也叫 平均数.要点诠释:计算平均数的方法有三种:(1)定义法:如果有 n 个数据x 1,x 2,x 3……x n ,那么_________________________x =叫做这n 个数据x 1,x 2,x 3……x n 的平均数, x 读作 .(2)新数法:当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'____x x =+,其中a 是取接近于这组数据平均数中比较“整”的数.(3)加权法:即当x 1出现f 1次,当x 2出现f 2次,……,当x k 出现f k 次,且f 1+f 2+…f k =n ,则可根据公式: ________________________x =,求出x .注意:平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.知识点二:中位数将一组数据按照由 到 (或由大到小)的顺序排列,如果数据的个数是 ,则处于中间位置的数称为这组数据的中位数;如果数据的个数是 ,则中间两个数据的平均数称为这组数据的中位数.要点诠释:一组数据中的中位数是 的.如:一组数据1,3,2,5,4,首先按照由小到大的顺序排列为: , 因为数字 处于中间位置,所以这组数据的中位数是 .而另一组数据1,3,2,5,4,6同样按照由小到大的顺序排列为: ,因为数据的个数是 ,所以知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.请在虚线部分填写预习内容,在实线部分填写课堂学习内容.课堂笔记或者其它补充填在右栏.中间两个数据的平均数3.5为这组数据的中位数.知识点三:众数一组数据中出现次数的数据称为这组数据的众数.要点诠释:(1)众数是一组数据中出现次数最多的数据,是该组数据中的,而不是相应的次数;(2)如果数据中两个数据出现的次数相等且都最多,则这两个都是,可以有多个,如:一组数据1,2,2,3,3,4,5,这里和都出现了两次,次数最多,他们都是众数;(3)如果所有数据出现的次数都一样,那么这组数据就众数,如:一组数据1,2,3,4,5则这组数据_________众数.知识点四:平均数、中位数和众数的关系要点诠释:平均数、众数、中位数都是用来描述数据集中趋势的量.的大小与每一个数据都有关,任何一个数的波动都会引起的波动,当一组数据中有个别数据太高或太低,用来描述整体趋势则不合适,用中位数或众数则较合适.__________与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用来描述.知识点五:反映数据集中趋势的特征数要点诠释:如果要分析一组数据的平均水平,可以采用来解决;如果一组数据中个别数据与其它数据差异较大时,应考虑采用来观察这组数据的集中趋势;如果一组数据中有许多数据反复出现时,应考虑用来观察这组数据的集中趋势,其中____________应用最广泛.类型一:平均数经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.若有其它补充可填在右栏空白处.例1.从一批机器零件取出10件,称得它们的重量为210208198192218182 190200205198计算它们重量的平均值.思路点拨:以上数据都在左右波动,于是,将上面各数据同时减去得一组数值算出平均值再加上.解析:总结升华:例2.(包头市)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各测试项目测试成绩甲乙丙教学能力85 73 73科研能力70 71 65组织能力64 72 84(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.思路点拨:(1)根据平均数的定义容易求出每人各项测试成绩的平均成绩.(2)要求得分按5∶3∶2的比例确定每人的成绩,需用加权法求平均数公式,即:_____________________x .解析:总结升华:举一反三:【变式1】李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量(千克)14212717182019231922据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为().A.200千克,3000元B.1900千克,28500元C.2000千克,30000元D.1850千克,27750元答案:【变式2】某次歌唱比赛,最后三名选手的成绩统计如下:测试成绩测试项目王晓丽李真林飞扬唱功989580音乐常识8090100综合知识8090100(1)若按算术平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?(2)若按6∶3∶1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?☆(3)若最后排名:冠军是王晓丽,亚军是李真,季军是林飞扬,则权重可能是多少?答案:类型二:众数与中位数例3.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,15,16,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列问题(直接填在横线上):(1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是.(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映乙群游客年龄特征的是.思路点拨:平均数、中位数及众数都是反映数据集中趋势的量,当一组数据的大小比较接近时(如甲群游客),平均数、中位数与众数也比较接近;当一组数据中有个别数据特大或特小时(如乙群游客),它就会影响平均数的大小,但不影响、,此时可由反映这组数据的集中趋势.解析:总结升华:例4.某公司10名销售员,去年完成的销售额情况如下表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?思路点拨:(1)平均数、众数、中位数的计算只要根据各自的概念就可得出.(2)平均数易受极大值或极小值的影响,众数有时偏离,而中位数一定处于,故应选择.解析:总结升华:举一反三:【变式1】(北京)某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65这组数据的众数和中位数分别是()A.59,63B.59,61C.59,59D.57,61答案:【变式2】(陕西省)王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是().A.2.4,2.5B.2.4,2C.2.5,2.5D.2.5,2答案:【变式3】(包头市)在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是件.答案:三、总结与测评要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力。

八年级数学下册《数据的代表》学案 新人教版

八年级数学下册《数据的代表》学案 新人教版

八年级数学下册《数据的代表》学案新人教版1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

重点、难点:1、重点:会求加权平均数2、难点:对“权”的理解学习过程(一)、基本知识点回顾复习平均数的概念(二)、巩固知识点1、完成在教材P136“讨论”栏目平均数计算公式中分子是什么、分母又是什么?题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?加权平均数小学学过的平均数计算公式作比较看看意义上是否一致?(三)、解读例题1、通过教材P137例1,举例说明了公式用法和解题书写格式,这里的权没有直接给出数量,而是以------的形式出现。

2、教材P138:例2与例1的区别主要在于权的形式又有变化,以 --------的形式出现六、(四)随堂练习:2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)寿命450550600650700只数xx301525求这些灯泡的平均使用寿命?(五)、当堂检测:1、在一个样本中,2出现了x次,3出现了x次,4出现了x 次,5出现了x次,则这个样本的平均数为、2、某人打靶,有a 次打中环,b次打中环,则这个人平均每次中靶环。

3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:应聘者笔试面试实习甲858390乙808592试判断谁会被公司录取,为什么?4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

已知该班平均成绩为80分,问该班有多少人?。

八年级数学下册《数据的代表:平均数》教学设计

八年级数学下册《数据的代表:平均数》教学设计

八年级数学下册《数据的代表:平均数》教学设计这是一篇由网络搜集整理的关于八年级数学下册《数据的代表:平均数》教学设计的文档,希望对你能有帮助。

知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。

过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。

情感态度与价值观:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

重点:让学生感受算术平均数与加权平均数的练习和区别教学难点:利用算术平均数与加权平均数解决问题教学过程:第一环节:情境引入(3分钟,复习导入,学生回顾)内容:请同学们回忆:什么是算术平均数?什么是加权平均数?请同学们各举一个有关算术平均数和加权平均数的实例,并解决之。

在学生的复习交流中引入题:本节将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。

第二环节:合作探究(25分钟,小组合作探究,教师指导)内容:1.做一做[我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。

一天,三个班级的各项卫生成绩分别如下:黑板门窗桌椅地面一班95909085二班90958590三班85909590(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价。

正确的答案是:一班的卫生成绩为:95×15%+90×10%+90×35%+85×40% = 88.75二班的卫生成绩为:90×15%+95×10%+85×35%+90×40% = 88.75三班的卫生成绩为:85×15%+90×10%+95×35%+90×40% = 91因此,三班的成绩最高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.1平均数(1)
年级:八年级科目:数学课型:新授执笔:徐中国审核:姜艳薛柏双
备课时间:2010.5.12 上课时间:2010.5.17
学习目标
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
学习重难点
1、重点:会求加权平均数
2、难点:对“权”的理解
学习过程:阅读教材P124 — 127 , 完成课前预习内容
【课前预习】
1、知识准备
(1)(算术)平均数的概念:
(2)列式计算7、8、9的平均数
2
上面的平均数称为三个数0.15,0.21,0.18的,三个郊县的人数15,7,10分别为三个郊县数据的
3、加权平均数的概念:
若n个数x1,x2, ……,x n的权分别是w1,w2……,w n,则
叫做这n个数的加权平均数。

【课堂活动】
活动1、预习反馈
活动2、例题分析
例1 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、
的比确定,计算两名应试者的平均成绩(百分制)。

从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按2:2:3:3的比确定,计算两名应试者的平均成绩(百分制)。

从他们的成绩看,应该录取谁?
例2 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%、演讲效果占10%比例,计算选手的综合成绩(百分制)。

进入决赛的前两名选手
活动3:课堂小结
1、算术平均数的概念:
2、加权平均数的概念:
【课后巩固】
1、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们
(2)如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?
2、晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次是95分,90分,85分,小桐这学期的体育成绩是多少?
/。

相关文档
最新文档