2017-2018学年高中数学 第二章 统计阶段质量检测A卷(含解析)新人教A版必修3

合集下载

2017-2018学年高中数学人教A版必修2练习:第二章 单元

2017-2018学年高中数学人教A版必修2练习:第二章 单元

第二章单元检测班级____姓名____考号____分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.若点M在直线a上,a在平面α内,则M、a、α间的关系可记为()A.M∈a,a∈αB.M∈a,a⊂αC.M⊂a,a⊂αD.M⊂a,a∈α答案:B2.有下列命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行.其中正确命题的个数为()A.1 B.2C.3 D.4答案:B解析:平行于同一直线的两平面可能相交,①错,垂直于同一直线的两条直线可能平行,也可能相交或异面,③错,可知②④正确.3.若α⊥β,α∩β=l,直线a⊂α,直线b⊂β,a,b与l都不垂直,那么()A.a与b可能垂直,但不可能平行B.a与b可能垂直,也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能垂直,也不可能平行答案:C解析:两平面垂直,两直线分别在两平面内,且两直线与交线不垂直,两直线若平行,则均与交线平行,因此可能平行;若a与b垂直,根据面面垂直的性质,则a与l垂直或b 与l垂直,与已知矛盾,选C.4.两条异面直线在同一平面的正投影不可能是()A.两条平行直线B.两条相交直线C.一个点和一条直线D.两个点答案:D解析:如果两条直线在同一平面内的正投影是两个点,则这两条直线都和平面垂直,这两条直线平行,不会是异面直线.5.给出下列命题:①和直线a都相交的两条直线在同一个平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两平面重合;④两两平行的三条直线确定三个平面,其中正确命题的个数是()A.0个B.1个C.2个D.3个答案:A解析:两两相交且过同一点的直线,可以不在同一平面内,所以①②都错;两平面相交,也可以有三个不同的公共点,所以③错;两两平行的三条直线可以在同一平面内,所以④错.6.如图所示,在正方体ABCD-A′B′C′D′中,直线AC与直线BC′所成的角为() A.30°B.60°D .45° 答案:B解析:AC 与A ′C ′平行,三角形A ′C ′B 为等边三角形,结合等角定理可知所求角为60°.7.已知三条不同的直线a ,b ,c ,三个不同的平面α,β,γ,有下面四个命题: ①若α∩β=a ,β∩γ=b 且a ∥b ,则α∥γ;②若直线a ,b 相交,且都在α,β外,a ∥α,a ∥β,b ∥α,b ∥β,则α∥β; ③若α⊥β,α∩β=a ,b ⊂β,a ⊥b ,则b ⊥α; ④若a ⊂α,b ⊂α,c ⊥a ,c ⊥b ,则c ⊥α. 其中正确的命题是( ) A .①② B .②③ C .①④ D .③④ 答案:B解析:命题①错误,因为α与γ还可能相交;命题②正确,设a 与b 确定的平面为γ,由题设知α∥γ,β∥γ,所以α∥β,所以排除A 、C 、D ,答案选B.8.如图,a ∥α,A 是α的另一侧的点,B ,D ∈a ,线段AB ,AD 分别交α于E ,G ,若BD =15,BE =2AE ,则EG 等于( )A .10 B.103C .5 D.53答案:C解析:由三角形AEG 与三角形ABD 相似得,EG =13BD =5.9.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10 答案:B解析:令AB =x ,CD =y ,则⎩⎪⎨⎪⎧ x +y =28x 2-81=y 2-25,⎩⎪⎨⎪⎧x =15y =13. 10.如图所示,正三棱锥V —ABC (顶点在底面的射影是底面正三角形的中心)中,D ,E ,F 分别是VC ,VA ,AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( )A .30°B .90°侧棱垂直于底面且底面为正三角形的三棱柱所成角的正弦值为(,在等边△ABC为所求,=2a,,CD⊥α,垂足分别为,给出四个条件:BD在β内的正投影在同一条直线上;内的正投影所在的直线交于一点.内的正投影所在的直线相交时,平面若EF⊥BD,由于EF⊥小题,每小题5分,共20分.把答案填在题中横线上.中,平面AB1D1和平面∥平面AB1D1,同理BC,BC1⊂平面BDC1,1ABCD所在平面,且∠ABCD 是菱形且∠ABC =上的射影,即∠PCA 为所求角,的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离所求距离即球心与球的外切正方体的顶点的距离,也即正方体对角线长度的一,故其外切正方体的棱长为2R ,其对角线长为ABCD -A 1B 1C 1D 1中,已知A 1EF ⊥平面EFP ,则1O ,OP ,显然A 1E =P 的平面角,若平面A 1中,A 1O =1+(14(1-x )2,∴98+98+x 2=-A 1B 1C 1D 1中,底面AF 綊CD ,∴AD ∥CF ADD 1A 1,-BCD 中,侧棱长和底面边长均相等,,同理⎬⎪⎫AD =BD ⇒DE ⊥中,平面P AD ⊥平面ABCD 5.AD =2,BD =4,AB =,平面P AD ∩平面ABCD =PO ⊥平面ABCD . 的等边三角形,中,4 55.×5×4 55=2.13×2×3=2 3 3某高速公路收费站入口处的安全标识墩如图底面为正方形且顶点在底面的射影是正方形中心的四棱锥、图3分别是该标识墩的正(主)视图和俯视图.请画出该安全标识墩的侧(左)视图;求该安全标识墩的体积;⊥平面PEG.该安全标识墩的侧视图如图所示.该安全标识墩的体积为:-EFGH×20=32000+32000=64000(cm3).(3)证明:如图,由题设知四边形ABCD和四边形EFGH均为正方形,∴FH⊥EG,又∵ABCD-EFGH为长方体,∴BD∥FH,设点O是EFGH的对称中心,∵P-EFGH是正四棱锥,∴PO⊥平面EFGH,而FH⊂平面EFGH,∴PO⊥FH.∵FH⊥PO,FH⊥EG,PO∩EG=O,PO⊂平面PEG,EG⊂平面PEG,∴FH⊥平面PEG.而BD∥FH,故直线BD⊥平面PEG.21.(12分)如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C,求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.证明:(1)由E、F分别是A1B,A1C的中点,知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC,所以EF∥平面ABC.(2)由三棱柱ABC-A1B1C1为直三棱柱知,CC1⊥平面A1B1C1,又A1D⊂平面A1B1C1故DD1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,CC1,B1C⊂平面BB1C1C.所以A1D⊥平面BB1C1C.又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.22.(12分)在正三角形ABC中,E,F,P分别是AB,AC,BC边上的点,满足AE :EB=CF :F A=CP :PB=1 :2(如图甲).将△AEF沿EF折起到△A1EF的位置,使二面角A1—EF—B成直二面角,连接A1B,A1P(如图乙).(1)求证:A1E⊥平面BEP;(2)求二面角A1—BP—E的大小.解:不妨设正三角形的边长为3,则(1)证明:在题图甲中,取BE的中点D,连接DF,∵AE :EB=CF :F A=1 :2,∴AF=AD=2,而∠A=60°.∴△ADF为正三角形.又AE=DE=1,∴EF⊥AD.在题图乙中,A1E⊥EF,BE⊥EF.∴∠A1EB为二面角A1—EF—B的一个平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.又BE∩EF=E,。

2017-2018学年高中新课标数学人教A版选修2-2:第二章

2017-2018学年高中新课标数学人教A版选修2-2:第二章
答案:A
8.求证: + > .
证明:因为 + 和 都是正数,
所以为了证明 + > ,
只需证明( + )2>( )2,
展开得5+2 >5,即2 >0,
此式显然成立,
所以不等式 + > 成立.
上述证明过程应用了()
A.综合法
B.分析法
C.综合法、分析法配合使用
D.间接证法
解析:证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.
解析:由等差数列性质,有a1+a9=a2+a8=…=2a5.易知D成立.
答案:D
3.已知f(x+1)= ,f(1)=1(x∈N*),猜想f(x)的表达式为()
A.f(x)= B.f(x)=
C.f(x)= D.f(x)=
解析:f(2)= ,f(3)= ,f(4)= ,猜想f(x)= .
答案:B
4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是()
A.把a(b+c)与loga(x+y)类比,则有loga(x+y)=logax+logay
B.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sinx+siny
C.把a(b+c)与ax+y类比,则有ax+y=ax+ay
D.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)
解析:(xy)z=x(yz)是乘法的结合律,正确.
A.a-b>0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
解析:要证 < a
只需证b2-ac<3a2
∵a+b+c=0,∴b=-a-c
只需证(-a-c)2-ac<3a2

2017-2018学年高中数学人教B版2练习:第二章阶段质量检测含解析

2017-2018学年高中数学人教B版2练习:第二章阶段质量检测含解析

(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过两点A(4,y),B(2,-3)的直线的斜率是-1,则y=( )A.1 B.-1C.5 D.-5解析:y+34-2=-1,∴y=-5.答案:D2.点P(3,-2,4)关于点A(0,1,-3)的对称点的坐标是()A.(-3,2,-4)B.(-3,4,-10)C.(-3,3,-7) D.(6,-5,11)解析:P(3,-2,4)关于点A(0,1,-3)的对称点的坐标是(0-3,1×2-(-2),2×(-3)-4),即(-3,4,-10).答案:B3.(2010·安徽高考)过点(1,0)且与直线x-2y-2=0平行的直线方程是( )A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0解析:与直线x-2y-2=0平行的直线方程可设为:x-2y+c =0,将点(1,0)代入x-2y+c=0,解得c=-1,故直线方程为x -2y-1=0。

答案:A4.直线x-2y+1=0关于直线x=1对称的直线方程是( )A.x+2y-1=0 B.2x+y-1=0C.2x+y-3=0 D.x+2y-3=0解析:设所求直线上任一点P(x,y),则P关于直线x=1的对称点p′(2-x,y),一定在直线x-2y+1=0上,得(2-x)-2y+1=0,即x+2y-3=0.答案:D5.(2010·安徽联考)过点P(-1,3)且垂直于直线x-2y+3=0的直线方程是()A.2x+y-1=0 B.2x+y-5=0C.x+2y-5=0 D.x-2y+7=0解析:设所求方程为2x+y+m=0.将P(-1,3)代入得2×(-1)+3+m=0,解得m=-1,∴所求方程为2x+y-1=0。

答案:A6.若点P(a,2a)在圆(x-1)2+y2=5a2-1的内部,则a的取值范围是( )A.a>1 B.a≥1C.a〈1 D.a≤1解析:由(a-1)2+(2a)2〈5a2-1,解得a〉1,5a2-1>4,满足题意.答案:A7.一束光线自点P(1,1,1)发出,被xOy平面反射到达点Q(3,3,6)被吸收,那么光线所走的路程是()A.错误!B。

2017—2018学年度第二学期教学质量检查高一数学参考答案20180528_最新修正版

2017—2018学年度第二学期教学质量检查高一数学参考答案20180528_最新修正版

2017—2018学年度第二学期教学质量检查 高一数学参考答案及评分标准二、填空题(每小题5分,满分20分)13.52 14.7; 15.0.95; 16.5三、解答题 17.(本小题满分10分)解:(1) 与2+a b 垂直,得2+0a a b ⋅=() 即22+=0a a b ……………………2分即10120k -+= ……………………3分解得92k =-. ……………………4分 (2)依题意,10102521||||cos =⨯+-==b a b a θ, ……………………6分因为[0,]θπ∈ s i n 10θ∴==……………………7分 sin tan 3cos θθθ∴== ……………………8分 54110121cos 22cos 2-=-⨯=-=∴θθ ……………………10分18.(本小题满分l2分)解: (1)由题意:第2组的人数:7050.07n =⨯⨯,得到:=200n , 故该组织有200人.……………………3分(2)第3组的人数为0.3200=60⨯, 第4组的人数为0.2200=40⨯,第5组的人数为0.1200=20⨯. ∵第3,4,5组共有120名志愿者,∴利用分层抽样的方法在120名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:606=3120⨯;第4组:406=2120⨯;第5组:206=1120⨯. ……………………5分 记第3组的3名志愿者为1A ,2A ,3A ,第4组的2名志愿者为1B ,2B , 第5组的1名志愿者为C .则从6名志愿者中抽取2名志愿者有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C ,,()12B B ,,()1B C ,,()2B C ,, 共有15种.……………………8分其中第3组的3名志愿者为1A ,2A ,3A ,至少有一名志愿者被抽中的有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C , 共有12种.……………………10分则第3组的为至少有一名志愿者被抽中的概率为541512==P . ……………………12分 [用间接法求解亦可以给满分] 19. (本小题满分l2分) 解:(1)66880838490+++++=q y ,又80y =,75=∴q . ……………………3分(2)4567891362x +++++==, ……………………4分2133050680241327162b ∧-⨯⨯∴==-⎛⎫- ⎪⎝⎭……………………6分 ()138041062a ∧∴=--⨯= ……………………7分 4106y x ∧∴=-+ ……………………8分(3)4106y x ∧=-+1111410690,909001y x y y ∧∧∴=-+=-=-=<,所以()()11,4,90x y =是“理想数据”;2222410686,=868421y x y y ∧∧=-+=--=>,所以()()22,5,84x y =不是“理想数据”;3333410682,838211y x y y ∧∧=-+=-=-==,所以()()33,6,83x y =是“理想数据”.所以所求的“理想数据”为)90,4( ,)83,6(. ……………………12分20. (本小题满分l2分)解: (1)()2ππ2sin 1cos 242f x x x x x ⎛⎫⎛⎫=+-=-+⎪ ⎪⎝⎭⎝⎭π1sin22sin 213x x x ⎛⎫=+=-+ ⎪⎝⎭, ……………………4分∴函数()f x 最小正周期为22T ππ== ……………………5分 (2)ππ,42x ⎡⎤∈⎢⎥⎣⎦∴ππ2π2,363x ⎡⎤-∈⎢⎥⎣⎦, ……………………7分∴π1sin 2[,1]32x ⎛⎫-∈ ⎪⎝⎭ ∴π2sin 2[1,2]3x ⎛⎫-∈ ⎪⎝⎭ ……………………10分 ∴()[2,3]f x ∈……………………11分 ∴函数()f x 的值域是[2,3]……………………12分21. (本小题满分l2分)(1)解:设点(),Q x y 、()00,P x y .点P 在圆C 上,∴2200(3)(5)4x y -+-=. ① ……………………1分又PA 中点为点Q∴002121x x y y =+⎧⎨=+⎩ ………………… 3分 可得021x x =-,021y y =-代入①得22(2)(3)1x y -+-=∴点Q 的轨迹方程为22(2)(3)1x y -+-= …………………… 4分 (2)假设存在直线l ,使得6=∙OM ,设()11,M x y ,()22,N x y ,由222(2)(3)1y kx x y =+⎧⎨-+-=⎩ 得22(1)(24)40k x k x +-++= …………………… 6分因为直线与Q 的轨迹交于两点所以22=(24)16(1)0k k ∆+-+> 得403k <<② …………………… 7分 且121222244,11k x x x x k k++==++ …………………… 8分又212121212(1)2()4OM ON x x y y k x x k x x +=+∙++=+222424(1)24=1011k k k k k +=+⨯+⨯+++ …………………… 9分∴2410k k +-=解得2k =-± …………………… 10分因为2k =--②, …………………… 11分 所以存在直线l:(22y x =-++,使得=10OM ON ∙ ……………………12分22. (本小题满分l2分)解:(1)当1=a 时,1cos sin cos sin )(-++-=x x x x x f ,令x x t cos sin +=,则]2,2[-∈t ,21cos sin 2-=t x x ,22)1(21121)(--=-+--=t t t t g , 当1=t 时,0)(max =t g ,当2-=t 时,223)(min --=t g , 所以)(x f 的值域为]0,223[--……………………4分 (2)1)cos (sin cos sin )(-++-=x x a x x x f ,令sin cos t x x =+,则当3[0,]4x π∈时,t ∈,21sin cos 2t x x -=, 2221111()1()2222t h t at t a a -=-+-=--++, …………………… 5分 )(x f 在3[0,]4π内有且只有一个零点等价于()h t 在[0,1){2}内有且只有一个零点,)2,1[无零点.因为1≥a , ……………………6分 ∴()h t 在[0,1)内为增函数,①若()h t 在[0,1)内有且只有一个零点,)2,1[无零点,故只需10(1)01(0)0020302a h h h ⎧⎪->⎧>⎪⎪-⎪≤⇒≤⎨⎨⎪⎪>⎩->得423>a ;……………………10分②若2为()h t 的零点,)2,1[内无零点,则0232=-a ,得423=a , 经检验,423=a 不符合题意. 综上,423>a . ……………………12分。

2017—2018学年度第二学期教学质量检查高一数学参考答案_最新修正版

2017—2018学年度第二学期教学质量检查高一数学参考答案_最新修正版

2017—2018学年度第二学期教学质量检查 高一数学参考答案及评分标准二、填空题(每小题5分,满分20分)13.52 14.7; 15.0.95; 16.5三、解答题 17.解:(1)与垂直,得0a b ⋅= 即021=+-k ……………………3分解得21=k .……………………5分 (2)依题意,10102521||||cos =⨯+-==b a b a θ,……………………7分 54110121cos 22cos 2-=-⨯=-=∴θθ.……………………10分18.(本小题满分l2分)(1)由题意:第2组的人数:70=5×0.07×n ,得到:n =200,故该组织有200人.……………………………………………… 3分(2)第3组的人数为0.3×200=60,第4组的人数为0.2×200=40,第5组的人数为0.1×200=20. ∵第3,4,5组共有120名志愿者,∴利用分层抽样的方法在120名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:60120×6=3;第4组:40120×6=2;第5组:20120×6=1. ……………… 5分记第3组的3名志愿者为A 1,A 2,A 3,第4组的2名志愿者为B 1, B 2, 第5组的1名志愿者为C 1.则从6名志愿者中抽取2名志愿者有: (A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1), (A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1), (A 3,B 2),(A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1), 共有15种.……………………………………………… 8分其中第3组的3名志愿者A 1,A 2,A 3,至少有一名志愿者被抽中的有: (A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),共有12种.…………………………………………… 10分则第3组至少有一名志愿者被抽中的概率为P =1215=45. ………12分19. (本小题满分l2分) 解:(1)66880838490+++++=q y ,又80y =,75=∴q . ……………………………………………………3分(2)4567891362x +++++==, ………………………………………………………………4分2133050680241327162b ∧-⨯⨯∴==-⎛⎫- ⎪⎝⎭………………………………………………………………6分 ()138041062a ∧∴=--⨯= ………………………………………………………………7分 4106y x ∧∴=-+ ………………………………………………………………8分(3)4106y x ∧=-+1111410690,909001y x y y ∧∧∴=-+=-=-=<,所以()()11,4,90x y =是“理想数据”;2222410686,|868421y x y y ∧∧=-+=-=-=,所以()()22,5,84x y =不是“理想数据”;3333410682,838211y x y y ∧∧=-+=-=-==,所以()()33,6,83x y =是“理想数据”.所以所求的“理想数据”为)90,4( ,)83,6(. …………………………………………12分 20. (本小题满分l2分) 解析: (1)()2ππ2sin 1cos 242f x x x x x ⎛⎫⎛⎫=+=-+⎪ ⎪⎝⎭⎝⎭π1sin22sin 213x x x ⎛⎫=+=-+ ⎪⎝⎭,………………………3分令222232k x k πππππ-+≤-≤+ k Z ∈51212k x k ππππ∴-+≤≤+ k Z ∈ …………………3分∴()f x 单调增区间为5[,]1212k k ππππ-++,k Z ∈.令ππ2π32x k -=+, k Z ∈,得5ππ122k x =+, k Z ∈,………………………4分∴()f x 的对称轴为5ππ122k x =+, k Z ∈. ………………………………5分(2) 关于x 的方程()2f x m -=在ππ,42x ⎡⎤∈⎢⎥⎣⎦上有两解∴()2f x m -=∴π2sin 2123x m ⎛⎫-+=+ ⎪⎝⎭在ππ,42x ⎡⎤∈⎢⎥⎣⎦上有两解 ………………………6分 ∴函数πsin 23y x ⎛⎫=-⎪⎝⎭的图像和直线12m y +=在ππ,42x ⎡⎤∈⎢⎥⎣⎦有两个不同的交点……8分ππ,42x ⎡⎤∈⎢⎥⎣⎦∴ππ2π2,363x ⎡⎤-∈⎢⎥⎣⎦,由图可知,1122m +≤< ………………10分11m ≤<. ……………………………12分 21.(1)解:设点Q (x ,y )、P (x 0,y 0). ……………………………… 1分∵点P 在圆C 上, ∴(x 0-3)2+(y 0-5)2=4. ………………………………………… 2分又∵P A 的中点为点Q ,∴⎩⎨⎧2x =x 0+12y =y 0+1②③………………………………………… 3分由②③得x 0=2x -1,y 0=2y -1代入①得 (2x -1-3)2+(2y -1-5)2=4,化简得(x -2)2+(y -3)2=1.………………………………………… 4分(2) 假设存在直线l ,使得6=∙OM ,设M (x 1,y 1),N (x 2,y 2),由⎩⎨⎧y =kx +2 (x -2)2+(y -3)2=1,得(1+k 2)x 2-(2k +4)x +4=0, ………… 6分由△=(2k +4)2-16(1+k 2)>0得0<k <43,且x 1+x 2=2k +41+k 2,x 1x 2=41+k 2,…………………………………… 8分 又ON OM ∙=x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4=(1+k 2)41+k 2+2k ×2k +41+k 2+4=10, …………… 10分解得2k =-±2k =-不满足△>0, ………… 11分所以当2k =-+l ,使得10=∙ON OM .……… 12分22.解:(1)当1=a 时,1cos sin cos sin )(-++-=x x x x x f ,令x x t c o s s i n +=,则]2,2[-∈t ,21cos sin 2-=t x x ,22)1(21121)(--=-+--=t t t t g ,当1=t 时,0)(m ax =t g ,当2-=t 时,223)(m in --=t g ,所以)(x f 的值域为]0,223[-- ………………………………………………………………4分(2)1)cos (sin cos sin )(-++-=x x a x x x f ,令sin cos t x x =+,则当3[0,]4x π∈时,t ∈,21sin cos 2t x x -=, 2221111()1()2222t h t at t a a -=-+-=--++, …………………………… 5分 )(x f 在3[0,]4π内有且只有一个零点等价于()h t 在[0,1){2}内有且只有一个零点,)2,1[无零点.因为1≥a , ………………………………………………………………6分 ∴()h t 在[0,1)内为增函数,①若()h t 在[0,1)内有且只有一个零点,)2,1[无零点,故只需10(1)01(0)0020302a h h h ⎧⎪->⎧>⎪⎪-⎪≤⇒≤⎨⎨⎪⎪>⎩->得423>a ;…………10分 ②若2为()h t 的零点,)2,1[内无零点,则0232=-a ,得423=a ,经检验,423=a 不符合题意. 综上,423>a .…………12分。

1.2017-2018学年高中数学(人教版,必修2)阶段质量检测(四)

1.2017-2018学年高中数学(人教版,必修2)阶段质量检测(四)

阶段质量检测(四)(A 卷 学业水平达标) (时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.直线l :y =k ⎝⎛⎭⎫x +12与圆C :x 2+y 2=1的位置关系为( ) A .相交或相切 B .相交或相离 C .相切 D .相交答案:D2.已知圆x 2+y 2+Dx +Ey =0的圆心在直线x +y =1上,则D 与E 的关系是( ) A .D +E =2 B .D +E =1 C .D +E =-1 D .D +E =-2 答案:D3.若圆C :x 2+y 2-2(m -1)x +2(m -1)y +2m 2-6m +4=0过坐标原点,则实数m 的值为( )A .2或1B .-2或-1C .2D .1 答案:C4.以正方体ABCD -A 1B 1C 1D 1的棱AB ,AD ,AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )A.⎝⎛⎭⎫12,1,1 B.⎝⎛⎭⎫1,12,1 C.⎝⎛⎭⎫1,1,12 D.⎝⎛⎭⎫12,12,1 答案:C5.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切 答案:B6.自点A (-1,4)作圆(x -2)2+(y -3)2=1的切线,则切线长为( ) A. 5 B .3 C.10 D .5 答案:B7.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m 等于( ) A.3或- 3 B .-3或3 3 C .-33或 3 D .-33或3 3答案:C8.圆心在x 轴上,半径长为 2,且过点(-2,1)的圆的方程为( ) A .(x +1)2+y 2=2 B .x 2+(y +2)2=2 C .(x +3)2+y 2=2D .(x +1)2+y 2=2或(x +3)2+y 2=2 答案:D9.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43答案:B10.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ) A .-1或 3 B .1或3 C .-2或6 D .0或4 答案:D二、填空题(共4小题,每小题5分,共20分)11.在如图所示的长方体ABCD -A 1B 1C 1D 1中,已知A 1(a,0,c ),C (0,b,0),则点B 1的坐标为________.答案:(a ,b ,c )12.(北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________. 答案:2 213.设点A 为圆(x -2)2+(y -2)2=1上一动点,则A 到直线x -y -5=0的最大距离为________.答案:522+114.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.答案:x 2+y 2=4(x ≠±2)三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)已知两圆C 1:x 2+y 2-2x -6y -1=0和C 2:x 2+y 2-10x -12y +45=0.(1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解: (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11,圆C 2的圆心C 2(5,6),半径r 2=4, 两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和C 2相交. (2)圆C 1和圆C 2的方程左、右分别相减, 得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0. 圆心C 2(5,6)到直线4x +3y -23=0的距离 d =|20+18-23|16+9=3,故公共弦长为216-9=27.16.(本小题满分12分)正方形ABCD 和正方形ABEF 的边长都是1,并且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N 在BF 上移动.若|CM |=|BN |=a (0<a <2).(1)求MN 的长度;(2)当a 为何值时,MN 的长度最短.解:因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB ,所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,BA ,BE ,BC 所在直线分别为x 轴、y 轴和z 轴,建立如图所示的空间直角坐标系.因为|BC |=1,|CM |=a ,点M 在坐标平面xBz 上且在正方形ABCD 的对角线AC 上, 所以点M⎝⎛⎭⎫22a ,0,1-22a .因为点N 在坐标平面xBy 上且在正方形ABEF 的对角线BF 上,|BN |=a ,所以点N⎝⎛⎭⎫22a ,22a ,0.(1)由空间两点间的距离公式,得 |MN |=⎝⎛⎭⎫22a -22a 2+⎝⎛⎭⎫0-22a 2+⎝⎛⎭⎫1-22a -02=a 2-2a +1,即MN 的长度为a 2-2a +1.(2)由(1)得|MN |=a 2-2a +1=⎝⎛⎭⎫a -222+12,当a =22(满足0<a <2)时,⎝⎛⎭⎫a -222+12取得最小值22,即MN 的长度最短,最短为22.17.(本小题满分12分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A (6,-2),设圆的半径长为r ,则C (0,-r ),即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10,所以圆的方程为x 2+(y +10)2=100.当水面下降1米后,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得2x 0=251,即当水面下降1米后,水面宽251米.18.(本小题满分12分)已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,试求点P 的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程.解:(1)设P (2m ,m ),由题可知MP =2,所以(2m )2+(m -2)2=4,解得m =0或m =45,故所求点P 的坐标为P (0,0)或P ⎝⎛⎭⎫85,45.(2)由题意易知k 存在,设直线CD 的方程为y -1=k (x -2),由题知圆心M 到直线CD 的距离为22,所以22=|-2k -1|1+k 2,解得k =-1或k =-17,故所求直线CD 的方程为:x +y-3=0或x +7y -9=0.19.(本小题满分12分)已知以点C 为圆心的圆经过点A (-1,0)和B (3,4),且圆心在直线x +3y -15=0上.设点P 在圆C 上,求△PAB 的面积的最大值.解:∵线段AB 的中点为(1,2),直线AB 的斜率为1,∴线段AB 的垂直平分线的方程为y -2=-(x -1),即y =-x +3.联立⎩⎪⎨⎪⎧ y =-x +3,x +3y -15=0,解得⎩⎪⎨⎪⎧x =-3,y =6,即圆心C 为(-3,6), 则半径r =(-3+1)2+62=2 10. 又|AB |=(3+1)2+42=42,∴圆心C 到AB 的距离d =(2 10)2-(22)2=42,∴点P 到AB 的距离的最大值为d +r =42+2 10, ∴△PAB 的面积的最大值为12×42×(42+2 10)=16+8 5.20.(本小题满分12分)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解:(1)∵x 2+y 2-2x -4y +m =0, ∴D =-2,E =-4,F =m , 由D 2+E 2-4F =20-4m >0,可得m <5.故m 的取值范围为(-∞,5).(2)联立方程组⎩⎪⎨⎪⎧x +2y -4=0,x 2+y 2-2x -4y +m =0,消去x 得5y 2-16y +8+m =0. 设M (x 1,y 1),N (x 2,y 2), ∴y 1+y 2=165,y 1y 2=8+m 5.∵OM ⊥ON , ∴x 1x 2+y 1y 2=0, ∴5y 1y 2-8(y 1+y 2)+16=0. ∴m =85.(3)设圆心为(a ,b ),则 a =x 1+x 22=45,b =y 1+y 22=85,半径r =|MN |2=455.∴圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165.(B 卷 能力素养提升) (时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大面积是( )A.32π B.34π C .3πD .不存在解析:选B 将方程化为标准方程为⎝⎛⎭⎫x +122+⎝⎛⎭⎪⎫y +m -122=-m 2-2m +24, ∴半径r =12-m 2-2m +2=12-(m +1)2+3.要使圆的面积最大,应使半径最大,当m =-1时,r max =32,∴最大面积为πr 2max =34π. 2.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( ) A .(x -2)2+y 2=13 B .(x +2)2+y 2=17 C .(x +1)2+y 2=40D .(x -1)2+y 2=20解析:选D 设圆心坐标为C (a,0),则AC =BC ,即(a -5)2+22=(a +1)2+42,解得a =1,所以半径r =(1+1)2+42=20=25,所以圆C 的方程是(x -1)2+y 2=20.3.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.4.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C .相交但直线不过圆心D .相交且直线过圆心解析:选C 圆心C (0,0)到直线kx -y +1=0的距离为d =1k 2+1<2,∴直线与圆相交,且圆心C (0,0)不在该直线上.5.与直线2x -y +1=0平行且与圆x 2+y 2=5相切的直线的方程是( )A .2x -y +5=0B .2x -y -5=0C .2x +y +5=0或2x +y -5=0D .2x -y +5=0或2x -y -5=0解析:选D 设所求的直线方程为2x -y +C =0,则圆心(0,0)到该直线的距离d =|C |5=5,得C =±5.∴所求直线的方程为2x -y ±5=0.6.过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,O 为坐标原点,则△OAB 的外接圆方程是( )A .(x -2)2+(y -1)2=5B .(x -4)2+(y -2)2=20C .(x +2)2+(y +1)2=5D .(x +4)2+(y +2)2=20解析:选A 由圆x 2+y 2=4,得到圆心O 坐标为(0,0),∴△OAB 的外接圆为四边形OAPB 的外接圆,又P (4,2),∴外接圆的直径为|OP |=42+22=25,半径为5外接圆的圆心为线段OP 的中点是(2,1),所以△OAB 的外接圆方程是(x -2)2+(y -1)2=5.7.直线y =x +b 与曲线x =1-y 2有且仅有一个公共点,则b 的取值范围是( ) A .|b |=2 B .-1<b ≤1或b =- 2 C .-1≤b ≤1 D .非A ,B ,C 的结论解析:选B 作出曲线x =1-y 2和直线y =x +b ,利用图形直观考查它们的关系,寻找解决问题的办法.将曲线x =1-y 2变为x 2+y 2=1(x ≥0).当直线y =x +b 与曲线x 2+y 2=1相切时,则满足|0-0-b |2=1,|b |=2,b =±2.观察图象,可得当b =-2或-1<b ≤1时,直线与曲线x =1-y 2有且仅有一个公共点.8.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:选B 因为圆心在直线x +y =0上,所以设圆心坐标为(a ,-a )(此时排除C 、D),因为圆C 与直线x -y =0及x -y -4=0都相切,所以|a +a |2=|a +a -4|2,解得a =1,r=|a +a |2=2,所以圆C 的方程为(x -1)2+(y +1)2=2.9.已知A (-2,0),B (0,2),点M 是圆x 2+y 2-2x =0上的动点,则点M 到直线AB 的最大距离是( )A.322-1B.322C.322+1D .2 2解析:选C 可知圆的圆心坐标为(1,0),半径为1,直线AB :-x 2+y2=1,即x -y +2=0,则圆心到直线的距离为d =|1-0+2|2=32 2.∴点M 到直线AB 的最大距离是d +r =322+1.10.实数x ,y 满足x 2+y 2-6x -6y +12=0,则yx 的最大值为( ) A .3 2 B .3+2 2 C .2+ 2D. 6解析:选B 实数x ,y 满足x 2+y 2-6x -6y +12=0,所以点(x ,y )在以(3,3)为圆心,6为半径的圆上,则yx 为圆上的点与原点连线的直线的斜率,设过原点的直线方程为y =kx ,则直线与圆相切时|3k -3|k 2+1=6,解得k =3±22,所以yx的最大值为3+22,选B.二、填空题(共4小题,每小题5分,共20分)11.空间直角坐标系中,点A (-2,1,3)关于x 轴的对称点为点B ,又已知C (x,0,-2),且|BC |=32,则x 的值为________.解析:易知B (-2,-1,-3),|BC |=(x +2)2+1+1=32,解得x =2或-6.答案:2或-612.圆心在直线 x -2y =0上的圆 C 与 y 轴的正半轴相切,圆 C 截x 轴所得弦的长为23,则圆C 的标准方程为__________________________________________.解析:依题意,设圆心的坐标为(2b ,b )(其中b >0),则圆C 的半径为2b ,圆心到x 轴的距离为b ,所以24b 2-b 2=23,b >0,解得b =1,故所求圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=413.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,且OP ⊥OQ (O 为坐标原点),则圆的方程为________.解析:法一:设P (x 1,y 1),Q (x 2.y 2),由⎩⎪⎨⎪⎧x 2+y 2+x -6y +m =0,x +2y -3=0,得5x 2+10x +4m -27=0, 所以x 1+x 2=-2,x 1x 2=4m -275,又y 1y 2=12(-x 1+3)×12(-x 2+3)=14[x 1x 2-3(x 1+x 2)+9]=m +125,因为OP ⊥OQ ,所以OP ―→·OQ ―→=x 1x 2+y 1y 2=5m -155=0,解得m =3,则所求圆的方程为x 2+y 2+x -6y +3=0.法二:据题意设以PQ 为直径的圆的方程为x 2+y 2+x -6y +m +λ(x +2y -3)=0, 即x 2+y 2+(1+λ)x +(2λ-6)y +m -3λ=0.因为OP ⊥OQ ,所以点O (0,0)在以PQ 为直径的圆上,则m -3λ=0,①设圆心为C ,则其坐标为⎝ ⎛⎭⎪⎫-1+λ2,3-λ,由点⎝ ⎛⎭⎪⎫-1+λ2,3-λ在直线x +2y -3=0上,得-1+λ2+2(3-λ)-3=0,解得λ=1,由①得m =3,则所求圆的方程为x 2+y 2+x -6y +3=0.答案:x 2+y 2+x -6y +3=014.已知点P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.解析:可知C (1,1),半径r =1,S 四边形PACB =2S △PAC ,则要使四边形PACB 的面积最小,只需使Rt △PAC 的面积最小,观察Rt △PAC ,直角边AC =r =1,所以要使△PAC 的面积最小,只需斜边PC 最短,而当PC 垂直于直线3x +4y +8=0时,PC 最短,为|3×1+4×1+8|32+42=3,这时|PA |=|PC |2-|AC |2=2 2.所以四边形PACB 面积的最小值为2×12×22×1=2 2.答案:2 2三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程.解:法一:由题意可设所求圆的方程为:(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的标准方程,寻找三个方程构成方程组求解. 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ), 由|CA |=|CB |,CA ⊥l ,得⎩⎪⎨⎪⎧ (3-a )2+(6-b )2=r 2,(5-a )2+(2-b )2=r 2,b -6a -3×43=-1,解得⎩⎨⎧a =5,b =92,r 2=254,所以圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 法三:设圆的一般方程求解.设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C , 由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.16.(本小题满分12分)已知圆C :(x -3)2+(y -4)2=4,(1)若直线l 1过定点A (1,0),且与圆C 相切,求l 1的方程;(2)若圆D 的半径为3,圆心在直线l 2:x +y -2=0上,且与圆C 外切,求圆D 的方程. 解:(1)①若直线l 1的斜率不存在,即直线是x =1,符合题意. ②若直线l 1斜率存在,设直线l 1为y =k (x -1), 即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即|3k -4-k |k 2+1=2,解之得k =34.所求直线方程是x =1,3x -4y -3=0. (2)依题意设D (a,2-a ),又已知圆C 的圆心C (3,4),r =2, 由两圆外切,可知CD =5 ∴可知(a -3)2+(2-a -4)2=5,解得a =3,或a =-2, ∴D (3,-1)或D (-2,4),∴所求圆的方程为(x -3)2+(y +1)2=9或(x +2)2+(y -4)2=9.17.(本小题满分12分)已知△ABC 三个顶点坐标分别为:A (1,0),B (1,4),C (3,2),直线l 经过点(0,4).(1)求△ABC 外接圆⊙M 的方程;(2)若直线l 与⊙M 相切,求直线l 的方程;(3)若直线l 与⊙M 相交于A ,B 两点,且AB =23,求直线l 的方程. 解:(1)法一:设⊙M 的方程为x 2+y 2+Dx +Ey +F =0, 则由题意得⎩⎪⎨⎪⎧1+D +F =0,17+D +4E +F =0,13+3D +2E +F =0,解得⎩⎪⎨⎪⎧D =-2,E =-4,F =1∴⊙M 的方程为x 2+y 2-2x -4y +1=0,或(x -1)2+(y -2)2=4.法二:∵A (1,0),B (1,4)的横坐标相同,故可设M (m,2), 由MA 2=MC 2得(m -1)2+4=(m -3)2,解得m =1,∴⊙M 的方程为(x -1)2+(y -2)2=4,或x 2+y 2-2x -4y +1=0.(2)当直线l 与x 轴垂直时,显然不合题意,因而直线l 的斜率存在,设l :y =kx +4, 由题意知|k -2+4|k 2+1=2,解得k =0或k =43,故直线l 的方程为y =4或4x -3y +12=0.(3)当直线l 与x 轴垂直时,l 方程为x =0,它截⊙M 得弦长恰为23; 当直线l 的斜率存在时,设l :y =kx +4,圆心到直线y =kx +4的距离为|k +2|k 2+1, 由勾股定理得⎝ ⎛⎭⎪⎪⎫|k +2|k 2+12+⎝⎛⎭⎫2322=4,解得k =-34, 故直线l 的方程为x =0或3x +4y -16=0.18.(本小题满分12分)已知直线l 与圆C :x 2+y 2+2x -4y +a =0相交于A ,B 两点,弦AB 的中点为M (0,1),(1)求实数a 的取值范围以及直线l 的方程;(2)若圆C 上存在四个点到直线l 的距离为2,求实数a 的取值范围;(3)已知N (0,-3),若圆C 上存在两个不同的点P ,使PM =3PN ,求实数a 的取值范围.解:(1)圆C :(x +1)2+(y -2)2=5-a ,C (-1,2),r =5-a (a <5),据题意:CM =2<5-a⇒a <3,即实数a 的取值范围为(-∞,3).因为CM ⊥AB ⇒k CM ·k AB =-1,k CM =-1⇒k AB =1, 所以直线l 的方程为x -y +1=0.(2)与直线l 平行且距离为2的直线为l 1:x -y +3=0过圆心,有两个交点, l 2:x -y -1=0与圆相交,⇒22<5-a ⇒a <-3.故实数a 的取值范围为(-∞,-3).(3)设P (x ,y ),PM =3PN ⇒x 2+(y +5)2=12, 据题意:两个圆相交:|5-a -23|<52<5-a +23⇒-57-206<a <206-57,且206-57<3,所以-57-206<a <206-57. 故实数a 的取值范围为(-57-206,206-57).19.(本小题满分12分)若圆C :x 2+y 2+8x -4y =0与以原点为圆心的某圆关于直线y =kx +b 对称.(1)求k ,b 的值;(2)若这时两圆的交点为A ,B ,求∠ACB 的度数. 解:(1)将圆C 的方程化为标准方程,为 (x +4)2+(y -2)2=20.∴圆心为(-4,2),半径r =2 5.圆C 关于直线y =kx +b 对称的圆的圆心为(0,0), 半径为2 5.∴⎩⎨⎧1=-2k +b ,2-4·k =-1,解得⎩⎪⎨⎪⎧k =2,b =5.(2)显然直线AB 的方程就是y =2x +5,即2x -y +5=0. 设AB 的中点为D ,则|CD |=55= 5. ∵r =25, ∴|AD |=20-5=15,在Rt △CDA 中,sin ∠DCA =|AD |r =32,∴∠DCA =60°.故∠ACB =2∠DCA =120°.20.(本小题满分12分)已知⊙C 经过点A (2,4)、B (3,5)两点,且圆心C 在直线2x -y -2=0上.(1)求⊙C 的方程;(2)若直线y =kx +3与⊙C 总有公共点,求实数k 的取值范围.解:(1)法一:设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧ 22+42+2D +4E +F =0,32+52+3D +5E +F =0,2⎝⎛⎭⎫-D 2- ⎝⎛⎭⎫-E 2-2=0,⇒⎝⎛D =-6,E =-8,F =24,所以⊙C 方程为x 2+y 2-6x -8y +24=0. 法二:由于AB 的中点为D ⎝⎛⎭⎫52,92,k AB =1, 则线段AB 的垂直平分线方程为y =-x +7,而圆心C 必为直线y =-x +7与直线2x -y -2=0的交点,由⎩⎪⎨⎪⎧ y =-x +7,2x -y -2=0,解得⎩⎪⎨⎪⎧x =3,y =4,即圆心C (3,4), 又半径为|CA |=(2-3)2+(4-4)2=1,故⊙C 的方程为(x -3)2+(y -4)2=1.(2)法一:因为直线y =kx +3与⊙C 总有公共点, 则圆心C (3,4)到直线y =kx +3的距离不超过圆的半径, 即|3k -4+3|1+k2≤1,将其变形得4k 2-3k ≤0,解得0≤k ≤34.法二:由⎩⎪⎨⎪⎧(x -3)2+(y -4)2=1y =kx +3⇒(1+k 2)x 2-(6+2k )x +9=0. 因为直线y =kx +3与⊙C 总有公共点,则 Δ=(6+2k )2-36(1+k 2)≥0, 解得0≤k ≤34.故k 的取值范围是⎣⎡⎦⎤0,34.。

2017_2018学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程学案含解析新人教A版选修

2017_2018学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程学案含解析新人教A版选修

2.圆的参数方程圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ(0≤θ<2π).圆(数方程.根据圆的特点,结合参数方程概念求解. 如图所示,设圆心为O ′,连接O ′M , ∵O ′为圆心, ∴∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(φ为参数)(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.(φ为参数)(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数,0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则 ⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数).这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.若 (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.求原点到曲线C :⎩⎪⎨⎪⎧x =3+2sin θ,y =-2+2cos θ(θ为参数)的最短距离.解:原点到曲线C 的距离为:x -0 2+ y -0 2= 3+2sin θ 2+ -2+2cos θ 2=17+4 3s in θ-2cos θ =17+413⎝⎛⎭⎪⎫313sin θ-213cos θ= 17+413sin θ+φ≥17-413= 13-2 2=13-2. ∴原点到曲线C 的最短距离为13-2.4.已知圆C :⎩⎪⎨⎪⎧ x =cos θ,y =-1+sin θ(θ为参数)与直线x +y +a =0有公共点,求实数a的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1,∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+2,即a 的取值范围是. 法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+2,即a 的取值范围是.课时跟踪检测(八)一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D 将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:选C 将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r , 故直线与圆相交,有两个公共点.3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:选D 圆心坐标为(0,0),半径为2,显然直线不过圆心, 又圆心到直线距离d =95<2,故选D.4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入,得 (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ). ∴最大值为36. 二、填空题5.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ(φ为参数)表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆6.已知圆C的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ=1,则直线l 与圆C 的交点的直角坐标为________.解析:由极坐标系与直角坐标系互化关系可知,直线l 的直角坐标方程为x =1. 由圆C 的参数方程可得x 2+(y -1)2=1, 由⎩⎪⎨⎪⎧x =1,x 2+ y -1 2=1得直线l 与圆C 的交点坐标为(1,1). 答案:(1,1)7.(广东高考)已知曲线C 的极坐标方程为 ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:由极坐标方程与直角坐标方程互化公式可得,曲线C 的直角坐标方程为(x -1)2+y 2=1,故曲线C 对应的参数方程可写为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)三、解答题8.P 是以原点为圆心,半径r =2的圆上的任意一点,Q (6,0),M 是PQ 中点. (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程.解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数).(2)设M (x ,y ),P (2cos θ,2sin θ), ∵Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ(θ为参数).9.设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θ cos θ+sin θ =cos 2θ+cos θsin θ,y 1=sin θ cos θ+sin θ =sin θcos θ+sin 2θ,∴⎩⎪⎨⎪⎧x 1+y 1=1+sin 2θ,x 1y 1=12sin 2θ+12sin 22θ.将sin 2θ=x 1+y 1-1代入另一个方程, 整理,得⎝⎛⎭⎪⎫x 1-122+⎝ ⎛⎭⎪⎫y 1-122=12.∴所求轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,以22为半径的圆.10.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3 x -1 ,x 2+y 2=1,解得C 1与C 2的交点坐标为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝⎛⎭⎪⎫14,0,半径为14的圆.。

高中数学专题02频率分布直方图及其应用分项汇编含解析新人教A版必修3

高中数学专题02频率分布直方图及其应用分项汇编含解析新人教A版必修3

专题 02频次散布直方图及其应用一、选择题1.【 2017-2018 年北京市国都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样检查, 画出以下频次散布直方图. 依据直方图预计在此路段上汽车行驶速度的众数和行驶速度超出80km/ h的概率A. 75,0.25B. 80,0.35C. 77.5,0.25D. 77.5,0.35【答案】 D应选D.2.【人教 B 版高中数学必修三同步测试】依据某水文观察点的历史统计数据, 获得某条河流水位的频次散布直方图(如图), 从图中能够看出, 该水文观察点均匀起码100 年才碰到一次的洪水的最低水位是()A. 48mB. 49mC. 50mD. 51m【答案】 C频次【分析】由频次散布直方图知水位为50 m的为0.005 2 0.01 ,即水文观察点均匀起码一百年才遇组距到一次的洪水的最低水位是50 m.本题选择 C选项.3.【福建省三明市 A 片区高中结盟校2017-2018 学年高二上学期阶段性考试】为认识某地域名高三男生的身体发育状况,抽查了该地域名年纪为~岁的高三男生体重() ,获得频次散布直方图如图. 依据图示,预计该地域高三男生中体重在kg 的学生人数是()A.B.C.D.【答案】 C点睛:本题主要考察了频次散布直方图在实质问题中的应用,属于中低档题型,也是常考考点. 在解决此类问题中,充足利用频次散布直方图的纵坐标的实质意义,其纵坐标值为:频次/ 组距,由此各组数据的频次=其纵坐标组距,各组频数=频次×整体,进而可预计出所求数据段的频数(即人数).4.【广东省中山一中、仲元中学等七校2017-2018 学年高二 3 月联考】某商场在国庆黄金周的促销活动中,对 10 月 1 日 9 时至 14 时的销售额进行统计,其频次散布直方图以下图.已知9 时至 10 时的销售额为 3 万元,则9 时至 14 时的销售总数为A. 10 万元B. 12 万元C. 15 万元D. 30 万元【答案】 D【分析】 9 时至 10 时的销售额频次为0.1 ,所以所有销售总数为万元,应选 D.5.【四川省成都外国语学校2017-2018 学年高二上学期期末考试】容量为100的样本,其数据散布在2,18 ,将样本数据分为 4 组:2,6 ,6,10 ,10,14 ,14,18 ,获得频次散布直方图以下图. 则以下说法不正确的选项是A. 样本数据散布在6,10 的频次为0.32B. 样本数据散布在10,14 的频数为40.样本数据散布在2,10的频数为40 . 10%散布在10,14C D 预计整体数据大概有【答案】 DD不正确.应选 .D6.【四川省雅安市 2017-2018 学年高二上学期期末考试】某高校进行自主招生,先从报名者中挑选出400 人参加笔试,再按笔试成绩择精选出100 人参加面试,现随机检查了24 名笔试者的成绩,以下表所示:据此预计同意参加面试的分数线大概是()A. 75B. 80C. 85D. 90【答案】 B应选 B7.【四川省成都市2017-2018 学年高二上学期期末调研考试】容量为100 的样本,其数据散布在2,18 ,将样本数据分为 4 组:2,6 , 6,10 , 10,14 , 14,18 ,获得频次散布直方图以下图,则以下说法不正确的是()A. 样本数据散布在6,10 的频次为 0.32B. 样本数据散布在10,14 的频数为 40.样本数据散布在2,10的频数为40.预计整体数据大概有10% 10,14C D 散布在【答案】 D【分析】整体数据散布在10,14 的概率为0.1 40%0.02 0.08 0.1 0.05应选 D8.【广西南宁市第二中学(曲靖一中、柳州高中)2017-2018 学年高二上学期末期考试】2014 年 5 月,国家统计局宣布了《 2013 年农民工监测检查报告》,报告显示:我国农民工收入连续迅速增添.某地域农民工人均月收入增添率如图1,并将人均月收入绘制成如图 2 的不完好的条形统计图.依据以上统计图来判断以下说法错误的选项是()A. 2013年农民工人均月收入的增添率是.B. 2011年农民工人均月收入是元.C. 小明看了统计图后说:“农民工2012 年的人均月收入比2011 年的少了”.D. 2009年到2013年这五年中2013 年农民工人均月收入最高.【答案】 C9.【四川省遂宁市2017-2018 学年高二上学期期末考试】供电部门对某社区位居民2017年12月份人均用电状况进行统计后,按人均用电量分为,,,,,,,,,五组,整理获得以下的频次散布直方图,则以下说法错误的选项是A. 月份人均用电量人数最多的一组有人B. 月份人均用电量不低于度的有人C. 月份人均用电量为度D. 在这位居民中任选位辅助收费,选到的居民用电量在,一组的概率为【答案】 C点睛:统计中利用频次散布直方图计算样本均值时,可利用组中值进行计算.10.【内蒙古赤峰市宁城县2017-2018 学年高二上学期期末考试】有关部门从甲、乙两个城市所有的自动售货机是随机抽取了16 台,记录上午8: 00~11: 00 间各自的销售状况(单位:元),用茎叶图表示:设甲、乙的均匀数分别为x1 , x2,标准差分别为s1 , s2,则()A.x1 x2 ,s1Bx1 x2,s1 s2s2.C. x x , D x x ,s1 s2. 2 s1 s21 2 1【答案】 D【分析】依据公式获得1 8 6 5 20 14 36 22 25 27 60 41 43 307x1 =16 16x2 1 10 12 18 20 22 46 27 31 32 68 38 42 43 48 47716 16故 x1 x2,再将以上均值代入方差的公式获得s1s2 . 或许察看茎叶图,获得乙的数据更集中一些,故得到s1s2 .故答案为: D.11.【陕西省黄陵中学2017-2018 学年高二(要点班)上学期期末考试】某篮球运动员在一个赛季的40 场比赛中的得分的茎叶图如右以下图所示:则中位数与众数分别为()A.3与3B.23与23C.3与23D.23与3【答案】 B点睛:茎叶图的问题需注意:(1) “叶”的地点只有一个数字,而“茎”的地点的数字位数一般不需要一致;(2)重复出现的数据要重复记录,不可以遗漏,特别是“叶”的地点的数据.12.【内蒙古鄂尔多斯市第一中学2017-2018 学年高二上学期第三次月考】如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图( 此中m为数字 0~9 中的一个 ) ,去掉一个最高分和一个最低分后,甲、乙两名选手得分的均匀数分别为a1、a2,则 a1、a2的大小关系是()A.a1= a2B. a1>a2C.a2>a1D.没法确立【答案】 C85 84 85 85 81 a15 84【分析】由茎叶图,得甲、乙两名选手得分的均匀数分别为,84 84 86 84 87 a25 85a1;应选 C.,即a2填空题13.【吉林省辽源市田家炳高级中学2017-2018 学年高二放学期 3 月月考】上方右图是一个容量为200 的样本的频次散布直方图,请依据图形中的数据填空:(1) 样本数据落在范围[5 , 9 )的可能性为 __________;(2)样本数据落在范围 [9 , 13 )的频数为 __________ .【答案】 0.32 72点睛:本题主要考察的知识点是频次散布直方图的意义以及应用图形解题的能力,属于基础题. 对于 1 根频次组距2组距频次样本容量即可求出结果 .据频次即可求出结果,对于依据频数14.【山西省临汾第一中学等五校2017-2018 学年高二上学期期末联考】当前北方空气污染愈来愈严重,某大学组织学生参加环保知识比赛,从参加学生中抽取40 名,将其成绩(均为整数)整理后画出的频次散布直方图如图,若从成绩是 80 分以上(包含80 分)的学生中选两人,则他们在同一分数段的概率为_______. 【答案】∵前三组的积累频次为:0.10+0.15+0.25=0.50,故此次环保知识比赛成绩的中位数为70;成绩在 [80 , 90)段的人数有10×0.010 ×40=4 人,成绩在 [90 , 100] 段的人数有10×0.005 ×40=2 人,15 种不一样的基本领件,从成绩是 80 分以上(包含 80 分)的学生中任选两人共有此中他们在同一分数段的基本领件有: 7,故他们在同一分数段的概率为故答案为 :.15.【黑龙江省大庆中学2017-2018 学年高二上学期期末考试】某高校在今年的自主招生考试成绩中随机抽取 100 名考生的笔试成绩,分为 5 组制出频次散布直方图以下图.则 a __________,d__________.【答案】30 0.2点睛:利用频次散布直方图求众数、中位数与均匀数时,易犯错,应注意划分这三者.在频次散布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左侧和右侧的小长方形的面积和是相等的;(3) 均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.16.【辽宁省六校协作体 2017-2018 学年高二上学期期初联考】从某小学随机抽取100 名同学,将他们的身高(单位:厘米)数据绘制成频次散布直方图(如图).若要从身高在 [ 120 , 130), [130 , 140) , [140 , 150] 三组内的学生中,用分层抽样的方法选用18 人参加一项活动,则从身高在[140 , 150] 内的学生中选取的人数应为【答案】 3 人【分析】试题剖析:∵直方图中各个矩形的面积之和为1,∴10×( 0.005+0.035+ a+0.02+0.01 )=1,解得 a=0.03.由直方图可知三个地区内的学生总数为100×10×( 0.03+0.02+0.01 ) =60 人.此中身高在 [140 , 150] 内的学生人数为10 人,所以身高在 [140 , 150] 范围内抽取的学生人数为人.考点:频次散布直方图.评论:本题考察频次散布直方图的有关知识.直方图中的各个矩形的面积代表了频次,所以各个矩形面积之和为 1.同时也考察了分层抽样的特色,即每个层次中抽取的个体的概率都是相等的.解答题17.【2017-2018 学年人教A版数学必修三同步测试】我校正高二600 名学生进行了一次知识测试, 并从中抽取了部分学生的成绩( 满分 100 分 ) 作为样本 , 绘制了下边还没有达成的频次散布表和频次散布直方图.分组频数频次[50,60) 2 0. 04[60,70) 8 0. 16[70,80) 10[80,90)[90,100] 14 0. 28共计1. 00(1)填写频次散布表中的空格 , 补全频次散布直方图 , 并标出每个小矩形对应的纵轴数据;(2)请你估量该年级学生成绩的中位数;(3) 假如用分层抽样的方法从样安分数在[60,70)和[80,90)的人中共抽取 6 人 , 再从 6 人中选 2 人 , 求 2 人分数都在 [80,90)的概率.2【答案】 (1) 答案看法析; (2)83.125;(3)5【分析】试题剖析:试题分析:(1)填写频次散布表中的空格 , 以下表 :分组频数频次[50,60)20.04[60,70)80.16[70,80)100.2[80,90)160. 32[90,100]140. 28共计50 1. 00补全频次散布直方图,以以下图 :(2) 设中位数为x,依题意得0. 04+0. 16+0. 2+0. 032×( x- 80) =0. 5,解得 x=83. 125,所以中位数约为83. 125.(3) 由题意知样安分数在[60,70) 有 8 人, 样安分数在[80,90) 有 16人,用分层抽样的方法从样安分数在[60,70) 和 [80,90) 的人中共抽取 6 人 ,则抽取的分数在 [60,70) 和 [80,90) 的人数分别为2人和 4人.记分数在 [60,70) 的为 a , a ,在[80,90) 的为 b , b , b , b .1 2 1 2 3 4从已抽取的 6 人中任选两人的所有可能结果有15 种, 分别为{ a , a },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ b , b },{ b , b },{ b , b },{ b , b },{1 2 1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 1 2 1 3 1 4 2 3b2, b4},{ b3, b4},设“2 人分数都在 [80,90) ”为事件A,则事件 A 包含{ b , b },{ b , b },{ b , b },{ b , b },{ b , b },{ b 6 2, b } 共 6 种 , 所以 P( A)= .1 2 1 3 1 4 2 3 2 4 3 4155点睛:利用频次散布直方图求众数、中位数和均匀数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左侧和右侧的小长方形的面积和是相等的;③均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18.【内蒙古自治区北方重工业公司有限公司第三中学2017-2018 学年高二 3 月月考】节能减排以来,兰州市 100 户居民的月均匀用电量单位:度,以,,,,,,,,,,,,,分组的频率散布直方图如图.求直方图中x 的值;求月均匀用电量的众数和中位数;预计用电量落在,中的概率是多少?【答案】(1)5;( 2)众数为,中位数为224;( 3).月均匀用电量在,中的概率是.试题分析:的频次之和为,的频次之和为,∴中位数在内,设中位数为y,则解得,故中位数为224.由频次散布直方图可知,月均匀用电量在中的概率是.点睛:利用频次散布直方图预计样本的数字特色(1)中位数:在频次散布直方图中,中位数左侧和右侧的直方图的面积相等,由此能够预计中位数值.(2)均匀数:均匀数的预计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.(3)众数:最高的矩形的中点的横坐标.19.【河南师范大学隶属中学2017-2018 学年高二 4 月月考】某要点中学100 位学生在市统考取的理科综合分数,以160,180 ,180,200 ,200,220 ,220,240 ,240,260 ,260,280 ,280,300分组的频次散布直方图如图.( 1)求直方图中 x 的值;( 2)求理科综合分数的众数和中位数;( 3)在理科综合分数为220,240 , 240,260 , 260,280 , 280,300 的四组学生中,用分层抽样的方法抽取 11 名学生,则理科综合分数在220,240 的学生中应抽取多少人?【答案】 (1)0.0075(2)230 , 224 ( 3) 5 人【分析】试题剖析: ( 1)依据直方图求出 x 的值即可;( 2)依据直方图求出众数,设中位数为,获得对于 a 的方程,解出即可;a( 3)分别求出 [220 , 240), [240 ,260), [260 ,280), [280 , 300] 的用户数,依据分层抽样求出知足条件的概率即可.220 240( 2)理科综合分数的众数是230 ,2∵ 0.0020.0095 0.011 20 0.45 0.5,∴理科综合分数的中位数在 220,240 内,设中位数为a ,则 0.0020.0095 0.011 20 0.0125 a 2200.5,解得a 224,即中位数为 224 .( 3)理科综合分数在220,240的学生有 0.0125 20 100 25 (位),同理可求理科综合分数为240,260 ,260,280 ,280,300 的用户分别有15位、10位、5位,11 1故抽取比为2515 10 5 5 ,25 1 5∴从理科综合分数在220,240 的学生中应抽取 5 人.点睛:利用频次散布直方图求众数、中位数与均匀数时,易犯错,应注意划分这三者.在频次散布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左侧和右侧的小长方形的面积和是相等的;(3)均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【河北省阜城中学 2017-2018 学年高二上学期期末考试】某校高一年级某次数学比赛随机抽取100 名学生的成绩,分组为 [50 , 60), [60 , 70), [70 , 80), [80 , 90), [90 , 100] ,统计后获得频次散布直方图以下图:( 1)试预计这组样本数据的众数和中位数(结果精准到0.1 );( 2)年级决定在成绩[70 , 100] 顶用分层抽样抽取 6 人构成一个调研小组,对高一年级学生课外学习数学的状况做一个检查,则在[70 , 80), [80 , 90), [90 , 100] 这三组分别抽取了多少人?( 3)此刻要从( 2)中抽取的 6 人中选出正副 2 个小组长,求成绩在[80 , 90)中起码有 1 人入选为正、副小组长的概率.【答案】(1) 65, 73.3 ;( 2) 3, 2, 1;( 3)【分析】试题剖析:( 1)由频次散布直方图中面积最大的矩形中点可得众数、左右边积各为0.5的分界处为中位数.( 2)先求出成绩为[70 ,80)、[80 ,90)、[90 ,100] 这三组的频次,由此能求出[70 ,80)、[80 , 90)、[90 ,100] 这三组抽取的人数.( 3)由( 2)知成绩在[70 , 80)有 3 人,分别记为a, b, c;成绩在[80 , 90)有 2 人,分别记为d,e;成绩在 [90 , 100] 有1 人,记为 f .由此利用列举法能求出成绩在[80 ,90)中起码有 1 人入选为正、副小组长的概率.( 2)成绩为 [70 , 80)、 [80 , 90)、 [90 , 100] 这三组的频次分别为0.3 ,0.2 , 0.1 ,∴ [70 , 80)、 [80 ,90)、 [90 , 100] 这三组抽取的人数分别为 3 人,2 人,1人.( 3)由(2)知成绩在[70 , 80)有 3 人,分别记为 a,b, c;成绩在 [80 , 90)有 2 人,分别记为d, e;成绩在[90,100]有1 人,记为f.∴从( 2)中抽取的 6 人中选出正副 2 个小组长包含的基本领件有种,分别为:ab, ba, ac, ca, ad,da, ae, ea, af , fa , bc, cb, bd, db, be, eb, bf , fb , cd, dc, ce, ec,cf ,fc , de, ed, d f , fd ,ef , fe ,记“成绩在 [80 , 90)中起码有 1 人入选为正、副小组长”为事件Q,则事件 Q包含的基本领件有18 种,∴成绩在[80 , 90)中起码有 1 人入选为正、副小组长的概率P(Q)= .点睛:利用频次散布直方图求众数、中位数与均匀数时,易犯错,应注意划分这三者.在频次散布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左侧和右侧的小长方形的面积和是相等的;(3)均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.【黑龙江省哈尔滨市第六中学2017-2018 学年高二 3 月月考】从某学校高三年级共800 名男生中随机抽取 50 名丈量身高,丈量发现被测学生身高所有介于155cm和 195cm之间,将丈量结果按以下方式分红八组:第一组 [155,160);第二组[160,165)、、第八组[190,195],以下图是按上述分组方法获得的频次散布直方图的一部分,已知第一组与第八组人数同样,第六组、第七组、第八组人数挨次构成等差数列.( 1)预计这所学校高三年级全体男生身高180cm以上 ( 含 180cm) 的人数;(2)求第六组、第七组的频次并增补完好频次散布直方图(如需增添刻度请在纵轴上标志出数据,并用直尺作图);(3)由直方图预计男生身高的中位数.【答案】(1);(2)详看法析;(3).试题分析: (1) 由直方图,前五组频次为(0.008 + 0.016 + 0.04 + 0.04 +0.06) ×5= 0.82 ,后三组频次为 1 -0.82 = 0.18.这所学校高三男生身高在180cm以上 ( 含 180cm) 的人数为800×0.18 = 144 人.(2)由频次散布直方图得第八组频次为 0.008 ×5= 0.04 ,人数为 0.04 ×50= 2 人,设第六组人数为 m,则第七组人数为0.18×50-2- m=7- m,又 m+2=2(7- m),所以m=4,即第六组人数为 4 人,第七组人数为 3 人,频次分别为0.08,0.06. 频次除以组距分别等于0.016,0.012,见图.( 3)设中位数为,由频次为22.【广东省中山一中、仲元中学等七校,所以2017-2018 学年高二,3 月联考】某公司职工,解得=174.5500 人参加“学雷锋”志愿活动,按年纪分组:第 1 组 [25 ,30) ,第[45 , 50] ,获得的频次散布直方图以下图.2 组[30 ,35) ,第3 组[35 ,40) ,第4 组[40 , 45) ,第5 组(1) 上表是年纪的频数散布表,求正整数的值;(2) 此刻要从年纪较小的第1,2,3 组顶用分层抽样的方法抽取 6 人,年纪在第1,2,3 组的人数分别是多少?(3) 在 (2) 的前提下,从这 6 人中随机抽取 2 人参加社区宣传沟通活动,求起码有 1 人年纪在第 3 组的概率.【答案】(1) ; (2) 第 1, 2, 3 组分别抽取 1 人,1人,4 人;(3) .【分析】试题剖析:( 1)) 由题设可知,2, 3 组的比率关系为 1:1:4 ,则分别抽取,1 人, 1人, 4 人;( 3)设第 1 组的 1 位同学为;( 2)由第1,,第 2组的 1位同学为,第3组的 4 位同学为,由穷举法,求得起码有 1 人年纪在第 3 组的概率为.(3) 设第 1 组的 1 位同学为,第2组的1位同学为,第3组的4位同学为,则从6位同学中抽两位同学有:共种可能.此中 2 人年纪都不在第 3 组的有:共 1 种可能,所以起码有 1 人年纪在第 3 组的概率为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章统计(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A.09,14,19,24 B.16,28,40,52C.10,16,22,28 D.08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为( ) A.193 B.192C.191 D.190解析:选B 1 000×n200+1 200+1 000=80,求得n=192.4.某商品的销售量y(件)与销售价格x(元/件)存在线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y^=-10x+200,则下列结论正确的是( )A.y与x具有正的线性相关关系B.若r表示变量y与x之间的线性相关系数,则r=-10C.当销售价格为10元时,销售量为100件D.当销售价格为10元时,销售量在100件左右解析:选D y与x具有负的线性相关关系,所以A项错误;当销售价格为10元时,销售量在100件左右,因此C错误,D正确;B项中-10是回归直线方程的斜率.(A卷学业水平达标)5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n(y 1+y 2+…+y n )+⎝⎛⎭⎪⎫1+1+ (1)=2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8.二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57,∴s 2甲<s 2乙,故甲车间产品比较稳定.16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:由分组[10,15)的频数是10,频率是0.25, 知10M=0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=--+--+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2.即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5. 由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.。

相关文档
最新文档