QAM调制解调原理
电路基础原理数字信号的调制与解调

电路基础原理数字信号的调制与解调数字信号的调制与解调是电路基础原理中的重要概念。
调制是将数字信号转化为模拟信号的过程,解调则是将模拟信号还原为数字信号的过程。
本文将介绍数字信号的调制与解调原理及其应用。
一、调制的基本原理调制是为了将数字信号传输到远距离时,能够克服传输噪声、提高信号质量而进行的一种技术。
数字信号经过调制后,会转化为模拟信号,其特点是连续的波形。
1.频移键控调制(FSK)FSK是一种基本的数字信号调制方式,它通过改变信号的频率来表示不同的数字。
在FSK中,使用两个频率来分别代表二进制的0和1。
2.相移键控调制(PSK)PSK是一种通过改变信号的相位来表示不同的数字的调制方式。
在PSK中,使用不同的相位来表示二进制的0和1。
3.正交幅度调制(QAM)QAM是一种通过改变信号的振幅和相位来表示不同的数字的调制方式。
在QAM中,通过改变信号的振幅和相位的组合来表示多个二进制数字。
二、解调的基本原理解调是将模拟信号还原为数字信号的过程,其目的是还原接收到的信号,以便后续的数字信号处理。
1.频移解调频移解调是将经过FSK调制的信号还原回数字信号的过程。
解调器需要检测接收到的信号的频率,并根据频率的不同判断出二进制的0和1。
2.相移解调相移解调是将经过PSK调制的信号还原为数字信号的过程。
解调器需要检测接收到信号的相位,并根据相位的变化来判断出二进制的0和1。
3.幅度解调幅度解调是将经过QAM调制的信号还原为数字信号的过程。
解调器需要测量接收到信号的振幅和相位,并根据这些信息来判断出二进制的0和1。
三、调制与解调的应用调制与解调技术广泛应用于通信领域,特别是在无线通信中。
1.无线电广播无线电广播使用调制技术将音频信号转化为无线电信号,并通过无线电波传输到接收器中,然后通过解调技术将无线电信号还原为音频信号。
2.移动通信移动通信中的调制与解调技术被用于将数字信号通过无线电信道传输,以实现声音、图像和数据的无线传输。
基于MATLAB的QAM调制解调实现

基于MATLAB的QAM调制解调实现学生姓名:张平凡指导老师:吴志敏摘要: 此次课程设计的主要内容为利用MATLAB集成环境下的M文件,编写程序来实现QAM的调制解调,,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。
通过此次课设,我加深了关于正交调幅方面的理论知识,加强了MATLAB软件的操作能力,对以后的实验操作打下了基础。
此次课程设计,旨在提高自己的MATLAB软件编程能力,自学能力,对资料的收集.理解以及总结的能力。
在此次课程设计中,我依托MATLAB为平台,编程实现QAM 调制解调的实现,并将相关图形绘制出来,进一步巩固了对课本知识的理解。
关键词: MATLAB; 正交振幅调制; 频谱利用率; 调制与解调;1. 引言在现代通信中,提高频谱利用率一直是人们关注的焦点之一。
近年来,随着通信业务需求的迅速增长,寻找频谱利用率高的数字调制方式已成为数字通信系统设计、研究的主要目标之一。
为了提高其性能,人们对这些数字调制体制不断加以改进提出了多种新的调制解调机体。
这些新的调制解调体制,各有所长分别在不同的方面有其优势。
正交振幅调制QAM(Quadrature Amplitude Modulation)就是一种频谱利用率很高的调制方式,正交振幅调制是二进制的PSK、四进制的QPSK调制的进一步推广,通过相位和振幅的联合控制,可以得到更高频谱效率的调制方式,从而可在限定的频带内传输更高速率的数据【1】。
通信原理通信工程的一门重要的专业课,调制与解调又是通信的精髓,调制就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号,QAM(正交振幅调制)是一种振幅和相位联合键控,在MPSK体制中,随着M 的增大,相位相邻相位的距离逐渐缩小,使噪声容限随之减小,使误码率难于保证,为了改善在M大的噪声容限,发展出了QAM体制【2】。
单载波qam参数-概述说明以及解释

单载波qam参数-概述说明以及解释1.引言1.1 概述概述单载波QAM(Quadrature Amplitude Modulation)是一种常见的数字调制技术,被广泛应用于无线通信系统中。
它通过调节载波的振幅和相位来传输数字信息,具有高效利用频谱资源、提高传输速率的优点。
在无线通信领域,单载波QAM的参数选择对系统的性能有重要影响。
本文将从单载波QAM的基本概念、参数选择和性能分析三个方面对其进行深入探讨。
首先,我们将介绍单载波QAM的基本概念,包括其调制原理、调制方式和调制解调过程。
然后,我们将重点讨论单载波QAM 的参数选择,包括载波数目、调制阶数和调制误差等。
通过合理选择参数,可以提高系统的容量、抗干扰性能和误码率性能。
最后,我们将进行单载波QAM的性能分析,包括码率误差性能、功率效率和带宽效率等方面的评估。
本文的目的是系统地介绍单载波QAM的参数选择和性能分析方法,为研究人员和工程师在无线通信系统设计中提供参考。
在结论部分,我们将对文章进行总结,并给出对单载波QAM参数选择的建议,同时展望未来的研究方向。
通过深入了解单载波QAM的相关知识,我们可以更好地应用该技术,提高系统的性能和可靠性。
文章结构部分的内容如下:1.2 文章结构本文将按照以下结构介绍单载波QAM的相关内容:第一部分为引言部分,主要对单载波QAM的概述进行简要介绍,并阐述文章的目的。
第二部分为正文部分,分为三个小节进行阐述:2.1 单载波QAM的基本概念:该部分将介绍单载波QAM的基础概念,涵盖其定义、特点以及基本原理等方面内容。
2.2 单载波QAM的参数选择:该部分将讨论单载波QAM的参数选择问题,包括调制阶数的选择、载波间隔的确定以及功率分配策略等方面内容。
2.3 单载波QAM的性能分析:该部分将对单载波QAM的性能进行详细分析,包括误码率性能、带宽效率以及抗噪声等方面内容。
第三部分为结论部分,主要总结本文的研究内容,给出对单载波QAM 的参数选择的建议,并展望了未来研究的发展方向。
QAM讲解

并串子系统
说明:并串子系统与前面的串并子系统相对应, 说明:并串子系统与前面的串并子系统相对应, 是前面串并过程的逆过程。 是前面串并过程的逆过程。4916PN序列频率为 序列频率为 250Hz,而后面的 序列4913频率为 ,而后面的PN序列 序列 频率为 500Hz,因此在4913的一个时钟内,4916有 ,因此在 的一个时钟内, 有 的一个时钟内 两个周期,控制电路连续运行两次,将经过与门, 两个周期,控制电路连续运行两次,将经过与门, 或门, 触发器运算后的数据有序地输出 触发器运算后的数据有序地输出, 或门,D触发器运算后的数据有序地输出,并使 整个过程输出的频率为500Hz。在这个实验中, 整个过程输出的频率为 。在这个实验中, 并串转换经历两次,将输入的250Hz变换成信 并串转换经历两次,将输入的 变换成信 源的1000Hz。 源的 。
上图为信源模块输出(黄色) 上图为信源模块输出(黄色)和最后并串转 换后(绿色)输出,可以发现两者除了幅度不同, 换后(绿色)输出,可以发现两者除了幅度不同, 图形是相同的,只是有一个延迟, 图形是相同的,只是有一个延迟,说明整个过程 是正确的。而如果要得到和信源完全一样的图形, 是正确的。而如果要得到和信源完全一样的图形, 只要在最后部分加一个增益放大模块和一个延迟 器件,选择合适参数即可得到和信源一眼的图形。 器件,选择合适参数即可得到和信源一眼的图形。
16QAM调制解调图 调制解调图
16QAM系统全图 系统全图
总模块说明:信源为PN序列,有两种电平信号, 总模块说明:信源为PN序列,有两种电平信号,经 PN序列 过串并转换后,进入二四进制转换模块, 过串并转换后,进入二四进制转换模块,该模块是把 二电平的信源信号变成4电平信号,即将0 交替组合, 二电平的信源信号变成4电平信号,即将0,1交替组合, 变成00,11,01,10,各个数据代表不同的幅度, 00,11,01,10,各个数据代表不同的幅度 变成00,11,01,10,各个数据代表不同的幅度,因为是 处理串并转换后的信号,所以要处理I路和Q 处理串并转换后的信号,所以要处理I路和Q路两路信 此时频率为信源频率的1/4 1/4。 号,此时频率为信源频率的1/4。随后的输出与载波相 进行调制,完成后将两路信号对应位置相加, 乘,进行调制,完成后将两路信号对应位置相加,经 过有高斯噪声的信道,进入接收端。 过有高斯噪声的信道,进入接收端。通过锁相环得到 载波信号,与接收到的信号进行相乘,完成解调过程。 载波信号,与接收到的信号进行相乘,完成解调过程。 再将得到的波形经过线性低通滤波器(频率设为300Hz 300Hz, 再将得到的波形经过线性低通滤波器(频率设为300Hz, 大于250Hz),进行滤波 随后将波形幅度放大2 250Hz),进行滤波, 大于250Hz),进行滤波,随后将波形幅度放大2倍, 进入四二进制转换,再进入整流模块, 进入四二进制转换,再进入整流模块,后进入并串转 随后将两路信号相加,得到总的信号, 换,随后将两路信号相加,得到总的信号,随后将信 号再次进行并串转换,得到最后的波形。 号再次进行并串转换,得到最后的波形。
第2讲 调制与解调

图3-45 GMSK信号的功率谱密度
表3-2给出了作为BbTb函数的GMSK 信号中包含给定功率百分比的射频带宽。
表3-2
Bb T b 0.2 0.25 0.5 ∞
GMSK信号中包含给定功率百分比的射频带宽
90% 0.52Rb 0.57Rb 0.69Rb 0.78Rb 99% 0.79Rb 0.86Rb 1.04Rb 1.20Rb 99.9% 0.99Rb 1.09Rb 1.33Rb 2.76Rb 99.99% 1.22Rb 1.37Rb 2.08Rb 6.00Rb
最小频差(最大频偏):
当ak 1 当ak 1
(k 1)Ts t kTs
1 f f 2 f 1 2Ts
即最小频差等于码元速率的一半 设1/Ts=fs,则调频指数
h
f 1 1 Ts f s 2Ts 2
h=0.5时,满足在码元交替点相位连续的条件,也是频移键控为保证良 好的误码率性能所允许的最小调制指数,且此时波形的相关系数为 0.5, 待传送的两个信号是正交的。
图3-22 MQAM信号相干解调原理图
3.1.3 数字频率调制
一、 二进制频移键控
用二进制数字基带信号去控制载波 频率称为二进制频移键控(2FSK)。
如图3-25所示,设输入到调制器的比 n ∞~ ∞ 。 特流为{ a n },an 1, 2FSK的输出信号形式为
图3-25 2FSK信号的产生
图3-35 MSK信号调制器原理框图
MSK信号属于数字频率调制信号,因 此一般可以采用鉴频器方式进行解调,其 原理图如图3-38所示。
图3-38 MSK鉴频器解调原理框图
相干解调的框图如图3-39所示。
图3-39 MSK信号相干解调器原理框图
QAM调制解调的仿真实现报告-

一、设计任务任务:使用 MATLAB 软件,实现对 QAM 系统调制与解调过程的仿真,并分析系统的可靠性。
二、实验内容(1)对原始信号分别进行 4QAM 和 16QAM 调制,画出星座图;(2)采用高斯信道传输信号,画出信噪比为 13dB 时,4QAM 和 16QAM 的接收信号星座图;(3)画出两种调制方式的眼图;(4)解调接收信号,分别绘制 4QAM 和 16QAM 的误码率曲线图,并与理论值进行对比;(5)提交详细的设计报告和实验报告。
三、设计原理QAM 调制原理:QAM 调制是把 2ASK 和 2PSK 两种调制技术结合起来的一种调制技术,使得带宽得到双倍扩展。
QAM 调制技术用两路独立的基带信号对频率相同、相位正交的两个载波进行抑制载波双边带调幅,并将已调信号加在一起进行传输。
nQAM 代表 n 个状态的正交调幅,一般有二进制(4QAM)、四进制(16QAM)、八进制(64QAM)。
我们要得到多进制的 QAM 信号,需将二进制信号转换为 m 电平的多进制信号,然后进行正交调制,最后相加输出。
正交调制及相干解调原理框图如下:QAM 调制说明:MQAM 可以用正交调制的方法产生,本仿真中分别取 M=16 和 4。
M=16 时,进行的是幅度和相位相结合的 16 个信号点的调制。
M=4 时,进行的是幅度和相位相结合的 4 个信号点的调制。
为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。
为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。
四、实验步骤:(1)我们整个代码编写为 MQAM 格式,在刚开始时,会询问选择 4QAM 还16QAM,然后开始运行。
(2)首先生成一个随机且长度为 n*k 的二进制比特流。
(3)在 MATLAB 中 16QAM 调制器要求输入的信号为 0~M-1 这 1M 个值,所以需要用函数 reshape 和 bi2de 将二进制的比特流转换为对应的十进制这 M 个值。
正交振幅调制(QAM)-与非网

目录
• 正交振幅调制(QAM)简介 • 非对称数字用户线(ADSL)与QAM • 正交频分复用(OFDM)与QAM
目录
• QAM调制技术的发展趋势 • QAM调制技术在5G网络中的应用
01
正交振幅调制(QAM)简 介
QAM的定义与原理
定义
正交振幅调制(QAM)是一种数字调 制方式,通过改变载波信号的振幅和 相位来传输信息。
04
QAM调制技术的发展趋 势
高阶QAM调制技术
01
16QAM
64QAM
02
03
256QAM
将信号划分为16个不同的符号, 提高了频谱效率和数据传输速率。
将信号划分为64个不同的符号, 进一步提高了频谱效率和数据传 输速率。
将信号划分为256个不同的符号, 是目前高阶QAM的最高阶数, 频谱效率和数据传输速率极高。
偏振复用QAM调制技术
偏振复用
通过将信号在两个正交的偏振方向上传输,提高了信 号的传输容量和抗干扰能力。
QPSK偏振复用
将QPSK调制与偏振复用相结合,提高了频谱效率和 数据传输速率。
16QAM偏振复用
将16QAM调制与偏振复用相结合,进一步提高了频 谱效率和数据传输速率。
频谱效率与功率效率的平衡
优点
OFDM具有抗多径干扰、频谱利用率高、高速数据传输等 优点,广泛应用于无线通信和有线电视网络等领域。
工作原理
OFDM通过将高速数据流串并变换成多个低速子数据流, 在多个正交子载波上进行调制,各子载波可以独立调制, 提高了频谱利用率。
OFDM中的QAM调制原理
定义
正交振幅调制(QAM)是一种数字调制方式,通过改变载波的 振幅和相位来传输信息。在OFDM中,QAM常用于调制子载波。
:正交幅度调制信号(QAM)调制解调系统的性能分析

摘要正交幅度调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛使用。
由于信道资源越来越紧张,许多数据传输场合二进制数字调制已无法满足需要。
为了在有限信道带宽中高速率地传输数据,可以采用多进制(M进制,M>2)调制方式,MPSK则是经常使用的调制方式,由于MPSK的信号点分布在圆周上,没有最充分地利用信号平面,随着M值的增大,信号最小距离急剧减小,影响了信号的抗干扰能力。
MQAM称为多进制正交幅度调制,它是一种信号幅度与相位结合的数字调制方式,信号点不是限制在圆周上,而是均匀地分布在信号平面上,是一种最小信号距离最大化原则的典型运用,从而使得在同样M值和信号功率条件下,具有比MPSK更高的抗干扰能力。
关键词:QAM 调制解调星座图误码率目录摘要 ................................................................................................................ 错误!未定义书签。
前言 ................................................................................................................ 错误!未定义书签。
一基本原理 .................................................................................................. 错误!未定义书签。
1.1硬件方面 ......................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作总结
——基于MATLAB/SIMULINK的64QAM
正交振幅调制QAM:
正交振幅调制是用两个独立的基带数字信号对两个相互正交的同频载波进行抑制载波的双边带调制。
采用多进制正交振幅调制可以提高频谱利用率,即MQAM(M>2)。
MQAM信号表示式可以写成:
这里Ai和Bj表示振幅:
=i
A
±
)1
2(-
i
=j
B
±
)1
2(-
j
其中i,j=1,2,...L。
当L=4时即为64QAM。
信号矢量端点的分布图称为星座图,64QAM的星座图如下:
QAM调制解调原理:
Q A M 阶次的选择,取决于传输信道的质量。
传输信道的质量越好,干扰越小,可用的阶次就越大。
正交幅度调制根据电平的幅度和相位,分为16/32/64/128/256QAM,阶数越高,其传输效率越高。
但是,也并不能无限制地通过增加电平级数来增加传输码率,因为随着电平数的增加,电平间的间隔减少,噪声容限减小,同样噪声条件下,会导致误码增加;在时间轴上也会如此,各相位间隔减小、码间干扰增加,抖动和定时问题都会使接收效果变差。