几何画板的深度迭代的用法大全
几何画板制作深度迭代的方法探究

对应规则:A→A'。
6、选中参数用加减键调整参数,可得到变化的多边形。
7、对参数创建“动画”。
温馨提示:最好在制作之前将精确度精确到个位。
最后制作的效果图:
二、正方形深度迭代
先看最终效果图,如何制作呢?
制作方法:
1、构造正方形、确定原象:
从左至右画线段AB(A、B即为原象);
双击A点→选中AB→变换→旋转→逆时针旋转90°→得C;
双击C点→选中CA→变换→旋转→逆时针旋转90°→得D;
连续BD。
2、构造初象:
在线段AB上任取一点E(其中一个初象),按顺序选中A、B、E→度量→比→标记比;
双击B→将D按标记比进行缩放得另一初象F。
3、新建参数:n=25;
制作方法:
1、构造下图:
构造线段AB→以B为中心将A顺时针旋转90°得点C→以C为中心将B顺时针旋转90°得点D,连结BC、CD、DA得正方形ABCD。
2、以O为中心,分别将E、F、G、H按1:2的缩放比缩放得E’、F’、G’、H’,连结EE’、FF’、GG’、HH’和E’F’G’H’。
3、新建参数n=2
3、构造初象:
选中DC→按ctrl+M得DC的中点E→顺次选定E、C、D→构造→圆上的弧→在弧上构造点
F,连结DF、CF→隐藏弧。
4、新建参数n=3
5、深度迭代:
选中原象A、B和参数→变换→按住shift键→深度迭代;
对应规则:A对D,B对F;(新添映射)A对F,B对C。
6、设置F的“动画”;
7、系列按钮的创建:
4、深度迭代:选定A、B和n,按如下方式进行深度迭代。(注意:在下图显示中一定要选“最终迭代”)
几何画板培训教程迭代帮助文件

几何画板培训教程迭代帮助文件专用名词:迭代:按一定的迭代规则,从原象到初象的反复映射过程迭代图象:迭代操作产生的象的序列。
迭代图:原象到初象映射有关联的所有对象的集合。
迭代规则:由一个或者多个从原象到初象的映射定义迭代执行方式。
原象:产生迭代序列的初始对象,通常称之“种子”初象:原象通过一系列变换操作而得到的象。
与原象有关联。
迭代深度:迭代执行的次数。
原象点:作为原象的点对象。
应为自由点。
原象值:作为原象的度量值或者计算结果。
应为独立的值。
迭代此命令依照一个预先定义的迭代规则对一系列有关系的几何对象构造迭代图象。
此命令只有当你选定了一些联合的原象点或者原象计算结果时才为可用状态。
原象点必需是独立的点或者路径上的点,而且必需在当前画板中定义了其它点。
原象计算结果必需是参数值或者独立的计算结果,而且必需同时定义计算结果象与几何对象。
创建迭代任何参量用来定义一个迭代必需有几何子点在画板中迭代操作与迭代结构总是伴随着例子创建,同时在点与参数后定义。
用工具与菜单构造由一组独立点或者参数产生(你希望的数学关系)一定数目关联对象(点或者计算值)。
独立对象作为迭代原象或者种子,与之相应的有关联的对象作为迭代图。
然后在变换菜单中执行【迭代】显示初象与原象之间的关系。
迭代对话框同意你指定你想对迭代结构的迭代数。
结果为原象及关联于原象的每个对象的迭代图象的集合。
通常地,假如一个几何点A作为原象用于构造一个关联的点A',则这个迭代的图象或者是迭代的轨道是A',A''等系列点。
在上方左侧的图示三角形ABC与它的中点A'B'C'已经被构造。
在上方右侧的图示,三角形的独立顶点已经在迭代对话框与它们的中点建立了映射,此构造关系被迭代了4次。
结果是一系列点、线段的图象定义的初始结构,作为三角形向中点三角形迭代。
显示选项当你使用迭代对话框时,你能用【显示】中的命令来操纵迭代的显示。
从矩形网格的制作谈几何画板的迭代深度与应用技巧

鄞州区钟公庙中学
从理论上讲,矩形网格可按如下方法制作: 在平面上任意画一个自由点 A,按给定的小矩形边长作矩形 ABCD,选定点 A 和参数 n=6,作带参 数迭代,让 A B,添加迭代 A C,再添加迭代 A D,如图 1 所示,制作完成。
注:几何画板版本不同,迭代的深度也各不相同。
4
图 15
3
图 16
上述 3 个 2 次映象,迭代深度可先预设为 n/3,经过测试当 n=7 时迭代深度还欠 1 次,修正为 round((n+1)/3)后,对于 n≤30 时都正确。 如图 16 所示是当 n=30 时图象,可以看出此时线条已十分稠密,再增加边数时图象变化已不十分明 显。 还有一种一劳永逸的方法是,作参数 n=80, 计算 n-1 和3600 /n,象图 10 哪样先不厌其烦地作出一 组对角线(共 79 条),然后再作单次映象的迭代,这样作出的图象对于 n≤80 都正确,但没有什么技术 含量,图 16 是 n=60 时情形,显然线段稠密,没有什么美感。
图 17
图 18
为了不致太稠密,我们把对角线换成一组平行弦,再作带参数的深度迭代 A B,如图 18 所示。可 得如图 19(平行弦间距相等)、图 20(平行弦间距不相等)所示精美图案。
图 19
Байду номын сангаас
图 20
至此,相信读者已经了解几何画板迭代运算随着映象的增加,电脑的运算量将是急剧增加,以致电 脑可能出现半死机状态,所以我们学会一些降低映象深度的方法和技巧是十分必要的,希望此文能对广 大几何画板爱好者有所帮助。
2
同样方法:当 n=48 时,如图 12 所示。
图 11
几何画板迭代全解

第二章:迭代与分形几何
分形作为现代数学的一个分支,从诞生的那天起,就有着独特的魅力。分形的特点是整体 与部分之间存在某种自相似性, 整体具有多种层次结构。 分形图片具有无可争议的美学感召力, 特别是对于从事分形研究的科学家来说。欣赏分形之美当然也要求具有一定的科学文化知识, 但相对而言,分形美是通俗易懂的。分形就在我们身边,我们身体中的血液循环管道系统、肺 脏气管分岔过程、大脑皮层、消化道小肠绒毛等等都是分形,参天大树、连绵的山脉、奔涌的 河水、漂浮的云朵等等,也都是分形。人们对这些东西太熟悉了,当然熟悉不等于真正理解。 分形的确贴近人们的生活, 因而由分形而来的分形艺术也并不遥远, 普通人也能体验分形之美。 因为分形几何的迭代的原像一般不止一个,而且均为多映射迭代,为了叙述的方便,我们 先作以下两个约定。 1.用(A,B,C)表示有顺序的三点 A、B 和 C。 2.(A,B,C)(D,E,F,),(G,H,I)表示 A 映射到 D,B 映射到 E,C 映射到 F,然后添加映射 A 映射到 G,B 映射到 H,C 映射到 I,以此类推。
例 2.1 Sierpinski 三角形
波兰著名数学家谢尔宾斯基在 1915-1916 年期间, 为实变函数理论构造了几个典型的例子, 这些怪物常称作“谢氏三角” 、 “谢氏地毯” 、 “谢氏海绵” 、 “谢氏墓垛” 。如今,几乎任何一本讲
第 8 页 共 23 页
《几何画板迭代全解》
图 1.1
图 1.2 在几何学中,迭代使一组对象产生一组新的对象。图 1.2 中 A、B、C、D、E、F、G,各点 相距 1cm,那么怎么由 A 点和 B 点得到其它各点呢?我们可以发现其中的规律就是从左到右, 每一个点相当于前面一个点向右平移了 1cm。所以我们以 A 点作为原像,B 点作为初像,迭代一 次得到 B 点,二次为 C 点,以此类推。 所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数,迭代的终点就 是最后的那个像。那么下面我们通过例子来进一步地了解迭代以及相关的概念。 几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代, 后者我们称之为深度迭代。两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通 过修改参数的值来改变迭代深度。我们先通过画圆的正 n 边形这个例子来看一下它们的区别。
利用几何画板深度迭代解决数列问题

利⽤⼏何画板深度迭代解决数列问题已知a∈R,f(x)=ax(1-x),数列{a n}的递推公式是a n+1=f(a n),n∈N*。
求当a和a1取以下特殊值时,lim a n(n→∞),并得到其中的规律。
(1) a=1,a1=0.1; (2) a=1,0<a1<1; (3) a=1.6,a1=0.3;(4) a=2,0<a1<1; (5) a=3,a1=0.5; (6) a=4,a1=0.1;(7) a=0.5,a1=0.1; (8) a=﹣2,a1=0.1; (9) a=1,a1=2;下⾯,我们利⽤⼏何画板探究这个问题:1. 创建参数a=1,a1=0.1,m=100000(m为迭代次数)。
2. 新建函数f(x)=ax(1-x),计算得到f(a1)=0.09。
3. 选中参数a1、m,然后按住<Shift>键,选择“迭代→深度迭代”命令,在迭代数据框中设置a1→f(a1),即可得到数据表(1)。
由此可以推测,a=1,a1=0.1时,lim a n(n→∞)=0。
4. 画任意直线AB和直线上⼀点C,依次选中点A、B、C,选择“测量→⽐”命令,得到AC/AB的⽐值。
编辑参数a1,使其等于这个⽐值。
5. 拖动点C,可以发现a1的值随之⽽改变。
观察表中的数据,可以发现:对所有的0<a1<1,lim a n(n→∞)=0。
由此可以推测,a=1,0<a1<1时,lim a n(n→∞)=0。
6. 取a=1.6,a1=0.3,得到数据表(3),这时lim a n(n→∞)=0.375。
7. 取a=2,拖动点C改变a1的值。
可以发现,对所有的0<a1<1,lim a n(n→∞)=0.5。
8. 改变参数,分别取(5)(6)(7)(8)组对应值,对应的极限值如下:a=3,a1=0.5时,lim a n(n→∞)≈0.66741; a=4,a1=0.1时,lim a n(n→∞)≈0.79635;a=0.5,a1=0.1时,lim a n(n→∞)≈0.00000;a=﹣2,a1=0.1时,lim a n(n→∞)≈﹣0.475569. 取a=1,a1=2,发现lim a n(n→∞)=﹣∞。
(完整word版)几何画板迭代详解之迭代与分形几何

几何画板迭代详解之:迭代与分形几何佛山市南海区石门中学谢辅炬分形的特点是,整体与部分之间存在某种自相似性,整体具有多种层次结构。
分形图片具有无可争议的美学感召力,特别是对于从事分形研究的科学家来说。
欣赏分形之美当然也要求具有一定的科学文化知识,但相对而言,分形美是通俗易懂的.分形就在我们身边,我们身体中的血液循环管道系统、肺脏气管分岔过程、大脑皮层、消化道小肠绒毛等等都是分形,参天大树、连绵的山脉、奔涌的河水、漂浮的云朵等等,也都是分形。
人们对这些东西太熟悉了,当然熟悉不等于真正理解。
分形的确贴近人们的生活,因而由分形而来的分形艺术也并不遥远,普通人也能体验分形之美。
因为分形几何的迭代的原像一般不止一个,而且均为多映射迭代,为了叙述的方便,我们先作以下两个约定。
1.用(A,B,C)表示有顺序的两点A、B和C.2.(A,B,C)(D,E,F,),(G,H,I)表示A映射到D,B映射到D,C映射到F,然后添加映射A映射到G,B映射到H,C映射到I,如此类推。
【Sierpinski三角形】波兰著名数学家谢尔宾斯基在1915-1916年期间,为实变函数理论构造了几个典型的例子,这些怪物常称作“谢氏地毯"、“谢氏三角”、“谢氏海绵”、“谢氏墓垛"。
如今,几乎任何一本讲分形的书都要提到这些例子。
它们不但有趣,而且有助于形象地理解分形。
著名的Sierpinski三角形,它是很有代表性的线性分形,具有严格的自相似特点。
不断连接等边三角形的中点,挖去中间新的小三角形进行分割——-随着分割不断进行Sierpinski三角形总面积趋于零,总长度趋于无穷。
Sierpinski三角形在力学上也有实用价值,Sierpinski 三角形结构节省材料,强度高,例如埃菲尔铁塔的结构与它就很相似。
【步骤】1.在平面上任意画一个三角形ABC,取三边中点为D、E、F,连接DEF.2.新建参数n=33.顺次选择B,C,A三点和参数n,作深度迭代,(B,C,A)(D,F,A)⇒。
在几何画板中运用“迭代”构图的几个问题

在几何画板中运用“迭代”构图的几个问题在几何画板中,以“迭代”方式来构图是构图的重要的手段,特别是一些较为复杂的组合图案更是离不开“迭代”功能的运用;“迭代”构图要弄清以下几个方面问题:1.关于迭代迭代可以理解为是不停的代换的意思,简单点说“迭代”就是一种重复操作,将上一步的参数保持不变,再执行一次的意思. (“参数保持不变”在几何画板中可以形象的理解为图形的旋转角度、平移距离、放缩比例等等保持不变). 迭代分为两种类型:第一种类型是简单迭代:先选中原象(通常是一个点或多个点,亦称原象点) → 然后变换 → 迭代 → 在迭代对话框中选取与原象点相对应的一组或多组映射点(初象点) → 最后按迭代按钮,即可得到固定迭代的图.默认的迭代次数是3次.(后面的图②③④都是简单迭代)第二种类型是深度迭代:按照设定参数确定迭代次数,不用进入迭代菜单,直接控制参数的增减就能控制迭代的深度(次数的多少).①.构造方法:选中选择你要迭代的原象点、新建的参数按钮并按住Shift 键 → 然后点开“变换”菜单下的迭代自然显示为“深度迭代” → 点击打开“深度迭代”的对话框 → 点入对应的初象点 → 迭代.(见下面的截图①) ②.作用:简化重复作图过程,选定参数按钮后操作“+”、“-”号键可以控制作图重复次数的效果.选中参数按钮后按Shift 键,按“+”号增加迭代,选中参数按钮直接按“-”号键减少迭代. 若把参数按钮设置动画可以自动增减.2.原象点的确立.原象:产生迭代序列的初始对象(起点的位置),通常称为“种子”.原象点的确定:第一次迭代的出发点为原象点,取决于绘制基本图形的起始条件,原象点必须是自由的点或自由路径上的点(主要不受其它路径控制的端点!“自由”是个关键词,即使在初始对象上任取在该路径活动的点都不算自由点). 如:正方形ABCD 是由线段AB “变换”(这里是旋转)和“构造”方式得到的,所以线段AB 的端点A B 、可以作为原象点(见组图②);而线段BC CD DA 、、 以因此其端点C D 、是不能作为迭代关系的原象点.又如选定B C 、后,点B 可以作为建立迭代关系的后原象点,而C 点不能作为原象点.即使在初始对象AB 用点的工具任意取一点都不能作为原象点.再次提醒直接用画板工具栏中的“工具”作出的自由的点或自由路径上的点(不受其它路径控制,比如起始线段的端点)才是原象点,而以别的图形为基础新建立的点不能作为原象点.①3.初象点的确立初象 :原象经过一系列变换操作而得到的象(第二个点的位置),与原象是相对概念. 初象点的确定:第二次迭代的出发点为初象点,它是和原象点个数相同且相对应的一组点.对于初象点的确立,不管是“变换”、“构造”还是直接用工具作的点,只要以原象为基础的点都可以作为初象点.比如在正方形ABCD 的的边上任意一处取一个点都可以作为原象点对应的初象点(因为它是以正方形的边为基础),但在正方形ABCD 的边之外的空处随便取一个点就不能作为初象点,抓住关键词“以原象为基础作出来点.”注:通过操作发现作为“原象”线段若已经 “构造”和“变换”的第三点,此时选定原象线段的两个端点同时都可以作为初象点,也就是此时的“原象线段”两个端点具有“原象点”和“初象点”的双重特性.组图②:选定A B 、作为原象点,而边的中点E F 、 作为初象点来迭代构图.组图③:直接用线段工具构造出五边形ABCDE ,以线段FG 为长度依次在边上截取AH EI DJ CK BL ====;此时选定A B C D E 、、、、作为原象点,截取的得到点H I J K L 、、、、 作为初象点进行迭代构图.组图④:以线段AB 绕端点B 逆时针旋转108°得到线段AC ,再以取出连线段的中点E F 、 ,连结EF .以点B A 、为原象点,以A C 、为初象点迭代构图,不但可以构造一个正五边形,还可以把其中点五边形同时构造出来,残缺的边可用键盘“+”键补全.4.初象点是怎样把原象点 “迭代”构图的?②④③利用几何画板的“迭代”功能构图,关键是映射点(初象点)与原象点的“迭代”对应关系,在选择对应的初象点是要注意方向;“迭代”出来的图会显示出初象点把原象点的的特性进行重新操作.下面举例来加以说明:例1.已知线段AB ,以 A 为旋转中心逆时针旋转108°得到AC .⑪.若以点B 为原象点,点C 为初象点,则“迭代”出来的图形体现点C 会按点B 绕点A 逆时针旋转108°的特性重新操作,……,依次类推!.(见截图⑤) ⑫.若以点A 为原象点,点C 为初象点,则点C 会成了下一个旋转中心,……; “迭代”出来的图形,点C 会依次把点A 为旋转中心旋转108°的特性体现出来.(见截图⑥)⑬.若以点B A 、 为原象点,点A C 、分别对应为初象点,则点C 成了下一个旋转中心,则“迭代”出来的图形,会把线段AB 绕着点A 逆时针旋转108°得到AC 的特征在点C 处为旋转中心一一体现出来,后面迭代出来图形依然如此.(见截图⑦,因为默认迭代次数为3次,所以恰好为正五边形.)注:若在线段AB AC 、取点连线,会把“连线”同时进行“迭代”,也就是迭代会“映射”原象点和初象点为基础的整个图形,依次类推!如前面组图④的进行“迭代”操作时同时也把中点连成的线段作了“迭代”构造.例2.如图以初始线段AB 为初始线段构造一Rt ⊿ACB ,在斜边AD 任取一点D ;以A C 、为原象点,分别以D B 、 为初象点,会以边DB 对应边DE AB 所在的Rt ⊿ACB 及其填充色进行“迭代”,但迭代图形依次按DB 所占比例缩小 .(见组图⑧.最右边的图用键盘“+”键增加了迭代次数的,有点近似“勾股螺”图案.)⑤⑥C⑦⑧5.关于“添加新的映射”的问题.映射是高中数学的一个概念,是指按某种规则的两个集合中的集合A 的任何一个元素,在集合B 都有唯一的元素与之对应. 在几何画板中最先的从原象点到初象点可以理解为是第一次映射,初象点就是映射点;因此只要还有新的初象点,那么根据需要就可以继续添加新的的映射.下面我举例说明:例:画勾股树.⑪.画一条线段(见图⑨隐藏了字母标签),并且构造一个矩形,以一边(本例取起始线段的对边)为直径作一个半圆,在半圆上取两点,隐藏半圆和圆心点;进行第一次映射点的添加(操作和前面一样,见迭代对话框和图中标示).⑫.添加新的映射:在图⑨的基础上→ 迭代对话框 → 结构 → 添加新的映射 → 在图中依次点选半圆上的两点入框(见迭代对话框和图⑩标示). ⑬.继续添加新的映射:在图⑩的基础上 → 迭代对话框 → 结构 → 添加新的映射 → 在图中依次点选半圆上的两点入框(见迭代对话框和图⑪中的标示).⑭.点击迭代完成构图.组图⑫的左图是最初成图,中图进行增加迭代次数、点的隐藏、颜色和形状姿态调整等等处理,右图进行颜色填充和色彩变化的处理等.上例可以看作画的三个迭代分支的勾股树.当然“添加新的映射”的次数和映射点对应的位置根据设计图案的需要而定,对应点构成的“基本图案”会在对应的⑨⑩映射点处呈现出来(前提是这些“基本图案”是由原象点为基础作出来的).下面是其它一些迭代构图的效果图:注:昨天在几何画板上画的,比较漂亮!几何画板中的“迭代”构图在制作组合图案和动画制作确实有优势.郑宗平 2017.12.24。
几何画板制作系列之迭代图案

几何画板制作系列之迭代图案一、中点三角形图案.下图是通过三角形的中点三角形迭代而成的图案,制作过程为:任意作△ABC ,构造三边中点得△DEF ,用同样方法得△MNP ,如下图.度量AD 的距离给线段MN 、MP 、NP 作颜色参数着上色彩,然后隐藏线段AB 、BC 、AC 、DE 、DF 、EF ,选择点A 、B 、C 进行迭代(迭代次数先设为1次,构造10次映射),结果为“最终迭代”.隐藏点D 、E 、F 、M 、N 、P ,选择点A 、B 、C 和迭代象,创建自定义工具,名称为“三角形图案”.制作一个水平放置的矩形(可随意改变大小),打开【自定义工具】,选择“三角形图案”,依次点击矩形相邻三个顶点就得到上图.你还可以将这个“三角形图案”放进正方形、菱形、正三角形等里面,如图.二、迭代函数图案.利用函数2221)1()(xx a ax x f +-+=(a 为参数)绘制点进行迭代构图.新建参数(精确到十万分之一)09799.0=a ,00000.1=b ,新建函数2221)1()(xx a ax x f +-+=.在画板任意作一点A ,度量其横坐标A x 和纵坐标A y ,构造两个算式,标签分别设为1x ,1y :)(1A A x f by x +=,)(11x f x y A +-=. 依次选择点1x ,1y ,打开【图表】,选择“绘制点”命令作出点,用1y 这个度量值给这个点作颜色参数着上色彩,设上色后的点为B ,构造A 到B 的迭代,迭代次数取最大值4000,拖动点A 或横轴上的单位点,可以得到不同的图案,如图.如果把参数值改为39861=b,则可以得到下面图案..0a,99800.0=如果把参数值改为45.0=a,-b,则可以得到下面图案.=.095。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何用好几何画板的深度迭代第一章:迭代的概念和操作迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。
通俗的讲就是用自身的结构来描述自身。
最典型的例子就是对阶乘运算可看作一下的定义:!(1)!(1)!(1)(2)!n n n n n n =⨯--=-⨯- 。
递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。
我们先来了解下面这几个最基本的概念。
迭代:按一定的迭代规则,从原象到初象的反复映射过程。
原象:产生迭代序列的初始对象,通常称为“种子”。
初象:原象经过一系列变换操作而得到的象。
与原象是相对概念。
更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。
我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。
以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。
图 1.1 图 1.2在几何学中,迭代使一组对象产生一组新的对象。
图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。
所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。
所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。
那么下面我们通过例子来进一步地了解迭代以及相关的概念。
几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。
两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。
我们先通过画圆的正n 边形这个例子来看一下它们的区别。
【例1】画圆的内接正7边形。
【分析】由正7边形的特征,我们知道,每一个点都相当于前面的点逆时针旋转3607o,抓住这个规律,我们可以用迭代功能来解决。
【步骤】1.新建圆O,在圆O上任取一点A。
2.双击圆心O作为旋转中心。
选中A点,单击菜单【变换】【缩放】,旋转参数选为选择固定角度,然后在框中输入360/7,得到B点。
连接线段AB。
第 2 步第 3 步3.选择A点,单击【变换】【迭代】,点击B点作为初像。
屏幕上显示出迭代的像是正7边形的4条边(因为系统默认非深度迭代的迭代次数是3次)。
4.单击迭代框的【显示】按钮,选择【增加迭代】。
(或者按键盘的‘+’或‘-’)。
增加三次迭代后,我们可以看到一个完整的正7边形。
此时的迭代次数为6次,正7边形制作完成。
第 4 步第 5 步5.单击迭代框的【显示】按钮【最终迭代】,得到的图像仅是最后一条边。
6.点击迭代框【结构】按钮,我们可以设置创建的对象,选择“仅没有点的对象”则迭代的像只有正多边形的各条边,而没有顶点,反之则有。
选择迭代像,我们可以修改他们的属性,比如颜色和粗细等,但是细心的你会发现,线段的迭代像是不能够度量其长度的,当然也就不能取中点之类的操作。
迭代的点是不能够度量他们的横纵坐标,但是我们可以得到迭代的终点,方法是选择迭代的点,然后单击【变换】【终点】,可以发现最后的那个点变成实点了,这个功能在函数映射里面会用到。
上述方法在增加后减少迭代次数时比较麻烦,而且迭代规则限定了,即每次都是旋转同样的角度。
迭代次数和迭代规则能不能用带参数来控制呢?可以的,这就是深度迭代。
【例2】画圆的任意n边形【步骤】1.新建圆O并在圆上任取一点A。
双击圆心O作为旋转中心。
2.新建参数n=7,计算360n o,注意这时要带单位‘度’。
3.选择A点,单击菜单【变换】【旋转】,出现旋转对话框,单击计算结果‘360n o’作为标记角度,得到B点。
连接线段AB。
第 3 步第 4 步4.顺次选择点A和参数n,按住“shift”键不放,单击【变换】【深度迭代I 】,出现迭代对话框。
单击B 点作为初像,屏幕上显示出完整的正7边形。
按【迭代】完成操作。
5. 如何改变参数n 呢?有两种方法,第一种是双击参数n ,然后在对话框中输入值。
第二种是单击参数n ,按键盘的‘+’、‘-’,系统默认变化量为1。
右键单击可以修改变化量的大小。
注意:迭代时,作为迭代深度的参数n 一定要在最后面选择,这是系统的规定。
上面讲的都是迭代在几何方面的应用,下面我们来看看用迭代在画数列图像和数列求和方面的应用。
【例3】求数列12n n a =+(n=1,2......)的图前8项,并在平面上画出散点(,)n n a 。
【分析】由数列的表达式可知,(,)n n a 是直线y=1+0.5x 上面的点。
我们要产生两个数列,一个是作为横坐标的数列1,2,3......,一个是作为纵坐标的满足上述通项公式的数列。
【步骤】1. 新建函数y=1+0.5x 。
2. 新建参数a=1,计算a+1,a+1-1,f(a),f(a+1)。
(计算a+1-1是为了得到f(a)对应的横坐标a 。
因为迭代次数为0的时候,f(a)=1.5,a 的值在迭代数据表中是不会显示出来的。
)3. 新建参数n =7作为迭代深度。
4. 选择a 和n ,做深度迭代,原像是a,初像是a +1。
5. 右键点击数据表,选择‘绘制表中记录’,设置x 列变量为(a+1)-1,y列为f(a)。
坐标系为直角坐标系。
第 5 步 第 6 步6. 点击绘图,得到散点。
这些点是可以度量的。
但是当参数n 改变的时候,这些点不与数据表同步,所以是不会改变的。
【例4】求数列1,3,5,7,9(n=1,2......)的前n 项和。
【分析】公差为d ,假设前n 项和为n S ,111(1)*n n n n S S a S a n d --=+=++-,在平面上描出(n, n S )。
【步骤】1. 新建参数x=1,计算x +1。
2. 新建参数a=1,d=2。
分别表示数列首项和公差。
3. 新建参数s=1,计算s+a+x*d4. 选择x,x+1,s, s+a+x*d,和n 做深度迭代。
绘制数据表,x 列为x +1,y 列为s +a+x*d 。
第 4 步 第 4 步 与此同理那么等比数列的制作也是一样的。
下面我们来看看通项公式不知道的数列怎么画出其图像。
【例4】画出菲波拉契数列12121,1,n n n a a a a a --===+。
【分析】数列的前提条件是121,1a a ==,因为12n n n a a a --=+;所以原像是12,a a ,初像是23,a a 。
【步骤】1. 新建参数f1=0,f2=1,计算f1+f2,把计算结果的标签改为f3。
2. 新建参数a=1,计算a+1,。
计算(a+1)+1(因为迭代0次的时候f3=2,而,所以下标应该是3,而a=1,故计算a+1+1)3. 新建参数n=84. 依次选择f1,f2,a1,a1+1,n,做深度迭代。
第 5 步第 6 步 5. 绘制表中数据,x 列为13a +,y 列为3f 。
6. 画点(0,1),(1,1)两点,作为数列的前两项。
从图像可以看出,数列前面增长的很缓慢,但是到了后面就非常的惊人了。
【小结】在开始下一章“迭代与分行”之前,先复习一下深度迭代的过程是:1.顺次选择原像和参数n。
(注意顺序)2.按住shift不放,单击菜单【变换】【深度迭代】(出现对话框后可以松开shift键)。
3.依次选取初像。
(注意顺序)。
添加映射的方法是按键盘‘Ctrl+A’。
第二章:迭代与分形几何分形的特点是,整体与部分之间存在某种自相似性,整体具有多种层次结构。
分形图片具有无可争议的美学感召力,特别是对于从事分形研究的科学家来说。
欣赏分形之美当然也要求具有一定的科学文化知识,但相对而言,分形美是通俗易懂的。
分形就在我们身边,我们身体中的血液循环管道系统、肺脏气管分岔过程、大脑皮层、消化道小肠绒毛等等都是分形,参天大树、连绵的山脉、奔涌的河水、漂浮的云朵等等,也都是分形。
人们对这些东西太熟悉了,当然熟悉不等于真正理解。
分形的确贴近人们的生活,因而由分形而来的分形艺术也并不遥远,普通人也能体验分形之美。
因为分形几何的迭代的原像一般不止一个,而且均为多映射迭代,为了叙述的方便,我们先作以下两个约定。
1.用(A,B,C)表示有顺序的两点A、B和C。
2.(A,B,C)(D,E,F,),(G,H,I)表示A映射到D,B映射到D,C映射到F,然后添加映射A映射到G,B映射到H,C映射到I,如此类推。
【Sierpinski三角形】波兰著名数学家谢尔宾斯基在1915-1916年期间,为实变函数理论构造了几个典型的例子,这些怪物常称作“谢氏地毯”、“谢氏三角”、“谢氏海绵”、“谢氏墓垛”。
如今,几乎任何一本讲分形的书都要提到这些例子。
它们不但有趣,而且有助于形象地理解分形。
著名的Sierpinski三角形,它是很有代表性的线性分形,具有严格的自相似特点。
不断连接等边三角形的中点,挖去中间新的小三角形进行分割---随着分割不断进行Sierpinski三角形总面积趋于零,总长度趋于无穷。
Sierpinski 三角形在力学上也有实用价值,Sierpinski三角形结构节省材料,强度高,例如埃菲尔铁塔的结构与它就很相似。
【步骤】1.在平面上任意画一个三角形ABC,取三边中点为D、E、F,连接DEF。
2.新建参数n=33.顺次选择B,C,A三点和参数n,作深度迭代,(B,C,A)(D,F,A)⇒。
4.添加新的映射, (B,C,A)(B,E,D)⇒。
第 3 步第 4 步5.继续添加映射。
(B,C,A)(E,C,F)⇒6.改变参数n可观察图形变化。
第 5 步第 6 步【Sierpinski地毯】和Sierpinski地毯相似,只是步骤多了一些。
取正方形将其 9 等分,得到 9 个小正方形,舍去中央的小正方形,保留周围 8 个小正方形。
然后对每个小正方形再 9 等分,并同样舍去中央正方形。
按此规则不断细分与舍去,直至无穷。
谢尔宾斯基地毯的极限图形面积趋于零,小正方形个数与其边的线段数目趋于无穷多,它是一个线集,图形具有严格的自相似性。
【步骤】1.平面上任取线段AB,以线段AB构造正方形ABCD。
2.以A为缩放中心,B、D缩放为1/3,得到E、F;以D为缩放中心,A、C缩放为1/3得到G、H。
同理得到I、J、K、L。
连接各点,将正方形九等分;3.并填充中间的正方形MNOP,度量MNOP的面积,选择改度量结果和填充的正方形,单击【显示】【颜色】【参数】,单击确定。
则该MNOP的颜色随它的面积变化而变化。
第 2 步第 3 步4.新建参数n=4,顺次选择A、B两点和参数n,作深度迭代,(A,B)(G,P);(P,O);(O,J);(F,M);(M,N);(N,K);(A,E);(E,L);(L,B)。