由三视图还原对应几何体的一个有效方法

合集下载

由三视图还原立体图形-PPT课件

由三视图还原立体图形-PPT课件
由三视图还原立体图形
例1:根据三视图中主视图、俯视图和左视图, 说出立体图形的名称。
隐藏主视图 隐藏俯视图
隐藏左视图
隐藏圆柱
隐藏三棱柱
隐藏长方体
三视图
隐藏主视图 隐藏点
隐藏左视图
隐藏俯视图
隐藏圆锥
隐藏三棱锥
三视图
圆柱无中轴
三视图
隐藏几何体
三视图
隐藏几何体
三视图
隐藏几何体 显示对象
H
例2:根据物体的三视图,描述物体的形状.
移动点 移动点 还原系列2个动作
三视图
移动点 移动点 线段系列2个动作
隐藏对象
移动隐藏几何体
三视图
隐藏对象
A
B
C
三视图
A
B
C
隐藏几何体
显示对象
三视图
隐藏几何体
根据下面的三视图,说出这个几何体是由几个正方体怎么组合而成的.
建筑物的形状
某建筑物模型的三视图如图所示,请你描述建造的建筑物是什么样 子的?共有几层?模型一共需要多少个小正方体?
反馈练习
隐藏对象
显示点 移动点 移动点 系列2个动作

(经典)高考数学三视图还原方法归纳

(经典)高考数学三视图还原方法归纳

高考数学三视图还原方法归纳方法一 :还原三步曲核心内容:三视图的长度特征——“长对齐,宽相等,高平齐” ,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。

还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。

方法展示( 1)将如图所示的三视图还原成几何体。

还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点 A、 B、 C、 D 处不可能有垂直拉升的线条,而在 E 处必有垂直拉升的线条 ES,由正视图和侧视图中高度,确定点 S 的位置;如图③将点 S 与点 ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题 1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3。

解答:(24)例题 2:一个多面体的三视图如图所示,则该多面体的表面积为()答案: 21+ 3 计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M 、N 处不可能有垂直拉升的线条,而在点 A、B、C、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点 G,G' , B' , D ' , E ' , F '地位置如图;第三步:由三视图中线条的虚实,将点G 与点 E、F 分别连接,将G'与点E'、F'分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。

例题 3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:( 1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点 A、B、 C 出不可能有垂直向前拉升的线条,而在 M 出必有垂直向前拉升的线条 MD,由俯视图和侧视图中长度,确定点 D 的位置如图:( 3)将点 D 与 A、B、 C 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:解:置于棱长为 4 个单位的正方体中研究,该几何体为四面体 D—ABC,且 AB=BC=4, AC=42 ,DB=DC=2 5 ,可得 DA=6.故最长的棱长为 6.方法 2若由左视图引发,具体步骤如下:( 1)依据左视图,在长方体右侧面初绘BCD如图:( 2)依据正视图和俯视图中显示的垂直关系,判断出在节点 C、D 处不可能有垂直向前拉升的线条,而( 3)将点 A 与点 B、 C、 D 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法 3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。

2019专题 通过三视图找几何体原图的方法 Word版含解析

2019专题 通过三视图找几何体原图的方法 Word版含解析

2019专题通过三视图找几何体原图的方法方法一:直接法【例1】【2017课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A. 90πB.63πC.42πD.36π【点评】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.由三视图还原几何体的方法:方法二:拼凑法【例2】【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 60B.30C.20D.10解题步骤:第一步:画出正视图,第二步:平移俯视图到恰当的位置(长对正,高平齐),使它和正视图在一起,第三步:把侧视图顺时针旋转090再平移到恰当的位置(高平齐,宽相等),使它和正视图、俯视图在一起,第四步:调整它们的位置,找到顶点,找到原图.【点评】利用拼凑法找原图时,关键是第四步,结合三视图从那些顶点里找到原几何体的顶点. 这需要有空间观察力和分析能力.【例3】【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.32B.23C.22D.2【解析】如下图所示,按照拼凑法得到三视图对应的原图是图中的四棱锥P ABCD -.该四棱锥的最长棱的长度为PC ,22222222(22)223PA PC =+==+=,故选B.方法三:模型法:三视图不容易观察出原图时使用.第一步:画出一个长方体或正方体或其他几何体;第二步:补点;第三步:结合三视图排除某些点;第四步:确定那些排除的点附近的点是否是几何体的顶点;第五步:结合实线虚线和确定的点找到几何体的顶点,从而找到符合三视图的原图. ①三视图基础【例4】. 某几何体的三视图如图所示,该几何体的体积为( )A. 16πB. 228π+C. 12πD. 14π 【答案】D【例5】 如图所示, 某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是283π, 则它的表面积是( )A. 17πB. 18πC. 20πD. 28π 【答案】A【解析】由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图: 可得: 37428,2833R R ππ⨯==它的表面积是: 22734221784πππ⨯⋅+⨯⋅=【例6】. 如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为( )A. 3:1B. 2:1C. 1:1D. 1:2②组合体的三视图问题【例7】.某几何体的三视图如图所示,则其表面积为( )A.172π B. 9π C. 192πD. 10π 【解析】由三视图可知几何体为圆柱与14球的组合体。

三视图还原几何体的方法

三视图还原几何体的方法

三视图还原——xyz 定位法一、首先要掌握简单几何体的三视图。

正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么要熟悉掌握。

二、掌握简单组合体的组合形式。

简单组合体主要有拼接和挖去两种形式。

三、三视图之间的关系。

几何体的长:正视图、俯视图的长;几何体的宽:俯视图的高、侧视图的长;几何体的高:正视图、侧视图的高。

(口诀:主俯定长,俯左定宽,主左定高)(下面)左视左侧(后面)正视左侧(左面)正视右侧(右面)左视右侧(前面)(下面)四、清楚三视图各个线段说表示几何体位置,如上图所表示。

五、由三视图画出直观图的步骤和思考方法。

1、组合类题型,往往很简单,基本可以通过简单想象直接还原;2、有两个视角为三角形,为椎体特征。

选择底面还原(求体积可不用还原);3、凡是想不出来的,可用xyz 坐标定位法还原。

前面俯视左侧(左面)【类型一】:(三线交汇)例2:【类型二】:例3:连接这五个点的四棱锥,不满足俯视图。

而顶点又必须在这五点交点中,所以当点数超过4个,可能不需要全部连接,则这些点有所取舍。

第一法:俯视图看到的面不可以为上面四个点构成的整个四边形,而是中间有一条折痕,故只能说左半边三角形乡下折。

即舍弃前面左上方的点。

故得,第二:唯一法:正视图看,已标记下面的点必不可少;从俯视图看,上面有3个点必不可少;故只能舍弃前面左上方的点。

第三:口诀:实线两端的点保留,虚线两端的点待定。

从俯视图一看,便知道答案了。

取舍关键:墙角点是取舍的备选。

练习【类型三】:(八点齐飞,直观图不唯一)例4此题八点齐飞,通过类型二中的第三取舍法,我们很容易就能还原出来。

答案:然而,我们发现这个三视图也可以看成,是上图中的三棱锥与另外一个三棱锥组合而成。

如下图所示:M为顶点的三棱锥(四种)与上图的组合。

同理,还有其他两种形式,此处就不一一画图了。

由此得出,上题中的三视图至少有5种不同的直观图。

【三视图题目几点技巧】1,部分椎体求体积,直接用公式(可以不还原)2,斜二测画法与原图面积比例为定值(可以不还原)3,三视图中,和视线垂直的线段,长度不变。

太原高考数学王康民老师怎样把三视图又快又准还原成几何体

太原高考数学王康民老师怎样把三视图又快又准还原成几何体

高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。

一个方法教你搞定所有三视图

一个方法教你搞定所有三视图

⼀个⽅法教你搞定所有三视图例题:分析本题考察是是根据三视图求⼏何体的表⾯积,⼏何体的表⾯积,同学们都知道,关键是还原出⼏何体,把每个⾯的⾯积求出来再相加即可,但这题的关键是,如何还原?还原出的三棱锥是什么样的呢?我想象不出来!所以,题⽬也就解不出来!接下来,⽼师带同学们⼀起回顾⼀下,如何通过三视图还原⼏何体!回顾>>>>1、三视图是怎么来的?三视图可以看作是观测者从上⾯、左⾯、正⾯三个不同⾓度观察同⼀个空间⼏何体⽽画出的图形。

>>>>2、三视图的性质:主俯⼀样长,主左⼀样⾼,俯左⼀样宽,或者也可以说是长对正,⾼平齐,宽相等,这三句话是什么意思呢?跟⽼师⼀起看⼀下下⾯的图形。

>>>>3、如何还原直观图?⼀般情况下,我们⾼中阶段的三视图是⽐较简单的,⼤多数通过对长⽅体或者正⽅体进⾏切割⽽成,或者是圆锥(或圆柱)与长⽅体(或正⽅体)的组合,所以,同学们要对我们学过的最基本的⼏何体的三视图熟练掌握,例如,三棱锥,三棱柱,圆柱,圆锥,四棱锥,四棱柱等。

⽼师通过对近三年⾼考题及模拟题的统计,发现有这么⼀个规律:(1)如果三视图中有两个或三个三⾓形,那么这个⼏何体⼀定是棱锥;(这种考的是最多的)(2)如果三视图中有⼀个圆,那么这个⼏何体可能是圆柱或圆锥,另外两个图要是三⾓形,那⼀定是圆锥,如果是长⽅形,那⼀定是圆柱;(3)如果三视图中只有⼀个三⾓形,那么这个⼏何体很有可能是三棱柱,此时要注意株的摆放形式,有可能是放倒的三棱柱!当然,上⾯⽼师说的是⼀些⽐较简单的,如果碰上⿇烦的,我根本就看不出来的,更甭提还原了,怎么办呢?⽼师推荐⼀个⽅法:嵌套法。

嵌套法,指的是根据三视图,把三个视图嵌套到长⽅体或者正⽅体中,然后再把多余的线擦掉,即能画出所要求的⼏何体。

⼀般情况下,我们只需要在长⽅体(正⽅体)中找到这个⼏何体的顶点即可。

这么说,同学们可能不是特别明⽩,下⾯⽼师通过今天的例题,给⼤家解析清楚⼀点。

三视图还原几何体常见类型的解题方法突破

三视图还原几何体常见类型的解题方法突破

三视图还原几何体常见类型的解题方法突破摘要:三视图作为高考中常考重点内容,其核心在于三视图还原几何体的直观图,便于学生更好的理解和突破此类型题,本文归纳和总结常见类型的三种解题方法:先猜后证,切割法和标数定点法。

其中标数定点法能够更容易让学生理解和掌握,让学生解题有法,有迹可循。

同时培养学生的空间想象力和逻辑思维能力,决胜高考。

关键词:三视图几何体切割法标数定点法空间想象力在近几年的高考中,三视图作为一个必考的考点,常见题型不外乎利用三视图求直观图的体积或表面积问题,其核心在于由三视图还原直观图(几何体),而这也恰恰是我们学生解决这类题型的困难之处。

因此,由三视图还原出几何体是我们这块内容的教学重难点,如何让学生更好的理解三视图,掌握简便易懂的还原方法和技巧,一直是我们教师致力研究的内容。

本文将对三视图还原几何体的常见方法进行归纳和总结,以便学生能够“知其型,思其法,掌其巧”,让学生在解答这类型问题时有迹可循,同时为学生培养空间想象力和逻辑思维能力打下坚实的基础。

1、由三视图还原简单组合几何体简单组合体主要是通过两种形式得到,一是由简单几何体拼接而成;二是由简单几何体截取或挖去一部分而成。

因此,简单组合体的三视图通常都是显得多样化、不规则。

其实此类三视图题型也是相对来说是比较容易还原几何体的。

常用的类型与方法:(1)三视图为多个多边形或圆(半圆)组合而成的,通常都是拼接类简单组合体。

我们可以采用先猜想,后验证的方法解决,只要熟悉生活中常见的空间几何体,例如圆柱、圆锥、正方体、长方体、球等,通过简单的空间想象力即可解决;(2)三视图为四边形内有虚实线,通常都是截取或挖去一部分的简单组合体。

这种类型题,通常采用“切割法”还原直观图。

其核心在于寻找切痕,“实线”定正面(即为前、上、左面),“虚线”定背面;关键在于确定切面,即三条相交的切痕形成的平面;最后还需检验。

例1:一个几何体的三视图如图所示,则该几何体的体积是解析:据三视图的长、宽、高画出正方体的直观图,由正视图可以得到两条切痕,实线在正面,虚线在背面(如图1所示);再由俯视图可以得到两条切痕,实线在正面,虚线在背面(如图2所示);再由侧视图可以得到两条切痕,实线在正面,虚线在背面(如图3所示),因此平面和平面就是切割面,即该几何体是由一个边长为2的正方体被切去了两个角(三棱锥)得到(如图4所示),所以该几何体的体积为.2、由三视图还原简单几何体三棱锥、四棱锥类型简单几何体的三视图还原直观图,一直都是三视图中的重难点,也是学生最难理解和掌握的题型,下面将总结出“有理可据,有法可循”的方法——标数定点法,破解此类三视图问题,借以帮助学生更好的备战高考。

高中三视图的解题技巧

高中三视图的解题技巧

People who have never failed may not have succeeded either.(页眉可删)高中三视图的解题技巧空间立体几何的三视图是高中数学新课程的新增内容之一,也是近几年全国各地高考的热点内容,那你知道高中三视图有什么解题技巧吗?下面是整理的高中三视图的解题技巧的相关内容,仅供参考。

高中三视图的解题技巧【1】一、简单几何体的三视图还原规律复杂的几何体是由简单几何体组合而成的,简单几何的分类:柱体(圆柱和棱柱);椎体(圆锥和棱锥);台体(圆台和棱台);球体.要掌握复杂几何体的三视图还原,先要搞清楚简单几何体的三视图还原规律,一般情况下简单几何体的三视图还原有如下规律:1. 三视图中如果其中两个视图是矩形(不要管内部的细节,只要外轮廓线为矩形就称该视图为矩形)那么该空间几何体为柱体.当第三个试图为圆时,该空间几何体为圆柱,否则为棱柱.2. 三视图中如果其中两个视图是三角形(不要管内部的细节,只要外轮廓线为矩形就称该视图为三角形)那么该空间几何体为锥体,当第三个试图为圆时,该空间几何体为圆锥,否则为棱锥.3. 三视图中如果其中两个视图是梯形(不要管内部的细节,只要外轮廓线为矩形就称该视图为梯形)那么该空间几何体为台体.当第三个试图两个同心圆时,该空间几何体为圆台,否则为棱台.二、叠加式组合体的三视图还原方法组合体的组合形式可分为三种:叠加式、切割式、综合式.切割式与综合式在高中阶段见到的不是很多,这里只对高中阶段出现较多的叠加式组合体的三视图还原方法进行论述.既然组合体是由简单几何体组合而成的,那么就可以“化整为零”,把组合体的三视图划分为一个个简单几何体的三视图,再分别根据这些简单几何体的三视图按照上面论述的简单几何体三视图的还原规律把它们还原成简单几何体,再“积零为整",把这些简单几何体组合在一起就得了组合体的三视图.这样就将复杂的三视图问题转化成最基本的'简单几何体的三视图还原问题来解决了,大大降低了对空间想象能力的要求,这一方法的难点在于如何把组合体的三视图划分为一个个简单几何体的三试图,该方法的具体过程如下:1. 分线框.一般从主视图入手,将主视图划分成一个个线框(一般是封闭的线框,但有时也可不完全封闭),这些线框就是组成组合体的一个个简单几何体的主视图.2. 对投影.在俯视图和左视图上把主视图中每个线框对应的投影找出来,主要是根据“长对正,高平齐,宽相等”和"三视图所反映的组合体各部分的方位”来找.3. 识形体.根据每一部分的三视图,逐个想象出每一部分所对应的几何体4. 合起来,想整体. 每一部分的形状确定后,再根据各部分的相对位置关系组合成整个组合体的形状.相关阅读-高中三视图规则【2】主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用“去顶点法”处理三视图问题
几何体的三视图从本质上来说,可看成是将一个几何体放在某个对应的长(正)方体中,再分别投影到该长(正)方体的里面、右侧面和下底面后,所形成的三个平面图形(其中,侧视图还要将其向右翻折).因此对于较复杂的三视图还原出对应几何体的问题,可将其放到相应的长(正)方体中进行考察,根据题目中给出的正、侧、俯视图,然后通过排除长(正)方体的顶点——“去顶点法”,可以较快捷地确定原几何体的形状.
例1. (1)如图1—1(1),网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,
则该多面体的各条棱中,最长棱的长度为( ) . A.6√2. B.4√2. C..6. D.4. (2)一个几何体的三视图如图1—2(1)所示.则该几何体的全面积为( ).
A.48+12√2.
B.48+24√2.
C.36+12√2.
D. 36+24√2.
(3)一个几何体的三视图如图1—3(1)所示,则该几何体的各面面积中的最大值为( ). A.16. B.8. C.2√13. D.6.
解:(1)如图1—1(2)所示,作一棱长为4的正方体,由正视图知顶点A 、D 应去掉;又由俯视
图知顶点A 1应去掉;再由侧视图知顶点B 、B 1应去掉.由于正视图中含有高的中点且为实线,从而应有棱BB 1的中点E ,这样一来可确定原几何体为D 1—ECC 1.其中,D 1C 1=CC 1=4,
D 1C=4√2,EC=EC=2√5,D 1E=√(4√2)2+4=6,∴ 最长棱的长度为 D 1
E =6,故应选C.
(2)如图1—2(2)所示,作一棱长为6的正方体,由正视图和侧视图知顶点A 1、B 1、C 1、D 1
应去掉;又由俯视图顶点C 应去掉;再由正视图和侧视图知应有上底面的中心O 1.从而可知原几何体为三棱锥O —ABD.其中,AB=AD=6,BD=6√2,OA=OB=OD=√34.从而可求得三棱锥O —ABD 的全面积为48+12√2.应选A.
(3)如图1—3(2).作一棱长为4的正方体.由正视图知点A 1、D 1应去掉;由侧视图知点A 、
B 、A 1、B 1应去掉;结合俯视图知所对应的几何体为三棱锥E —DC
C 1,其面积最大的侧面 为三角形DCC 1,易求得其面积为8,应选B.
例2(1).一个几何体的三视图如图2—2所示.则该几何体的体积为( ).
A.12.
B.1.
C. 3
2. D.2. (2).如图2—2某几何体的三视图,则该几何体的体积为( ). A.8
3. B. 4
3. C.
8√2
3
. D.
4√23
.
1 3 4
2 图1—1(1) 6
4 3 6 4 3
6 3 图1—2(1) 图1—3(1) 图1—1(2) A B C D A 1 B 1 D 1 C 1 A B C D A 1 B 1
D 1 C 1 图1—2(2)
E O A B C D A 1 B 1
D 1 C 1 图1—3(2) × × × × × × × × × × × × × × × E
解:(1)作长、宽、高分别为√3、2、√3的长方体ABCD—A1B1C1D1.由正视图可去掉点B1、C1;由侧视图可去掉点A1、D1;再由俯视图可去掉点B、C. 结合正视图、侧视图和俯视图还原出几何体为多面体AEDFO1,其中,E、F分别为BC和A1D1的中点,O1为上底面的中心.如图2.—1(1).将多面体AEDFO1分成三棱锥O1—ADE和O1—ADF,
∵V O
1—ADE
=1
3
×1
2
×2×√3×√3=1, V O
1—ADF
=1
3
×1
2
×2×√3×√3
2
=1
2

可得其体积为3
2
.故应选C.
(2)作棱长为2的正方体ABCD—A1B1C1D1.由侧视图可去掉点A、B;当有点C1时,正视图
中就没有虚对角线,故应去掉点C1.结合正、侧和俯视图可得原几何体为四棱锥D1—
A1B1C D,如图2—(2).∴V D
1—A1B1CD
=1
3
×1
2
AD1×2√2×2=8
3
.故应选A.
例3(1).某几何体的三视图如图3—1所示.则该几何体的体积为( ).
A.2.
B.8
3
. C.3. D.4.
(2).某几何体的三视图如图3.—2所示.且该几何体的体积为2√3
3
.则正视图中x的值为( ).
A.√3.
B.2 √3.
C.√3
2
. D.2.
解:(1)作棱长为2的正方体ABCD—A1B1C1D1.由正视图可去掉点B1、C1;由侧视图(注意,要向右翻折),可去掉点C1、D1、C、D.结合正、侧和俯视图可得原几何体为四棱锥A1—ABEF,2
2
1
2 图3—1
2
1 1 1
x
2
图3—2
侧视图
俯视图
√3
2
正视图
1
1
图2.—1
正视图侧视图
俯视图
图2—2
2
2
2
F O1
C
A
D
图.2—1(1)
B
E
A1 B
1
C1
D1 ×
×
×
×
××
D1
A1 B1
C
D
图.2—2(2)
A B
××
×C
1
其中E 、F 分别为CC 1、DD 1的中点, 如图3—1(1), 易求得其体积为8
3
. 故应选B.
(2)作长、宽、高分别为3、√3、x 的长方体ABCD —A 1B 1C 1D 1. 由正视图可去掉点B 1、C 1;由俯视图可去掉点D 、D 1、B 、B 1.结合正、侧和俯视图可得原几何体为三棱柱 AEA 1 —FCG ,如图3—2(2). ∵ V AEA 1—FCG =S ∆AEA 1×AD =1
2×2x ×√3=2
3√3 易求得x= 2
3.故应选D.
另外对于一些三视图没有全部给出的问题,也可以通过构造对应的正(长)方体来处理. 例4.(1)在如图4-1所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),
(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( ).
A.①和②.
B.③和①.
C.④和③.
D.④和②. (2)某几何体的一条棱长为√7,在该几何体的正视图中,这条棱的投影是长为√6的线段,
在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a+b 的最大值为( ).
A.2√2.
B. 2√3.
C.4.
D. 2√5.
解:(1)如图4—1(1)所示,作一正方体并建立对应的空间直角坐标系,作出题中对应的点,
则易知应选D.
(2)由三视图与长方体的对应关系,可将长度为√7的线段看成是某长方体的体对角线,其三视图可看成长方体对应的三个面的面对角线.设该长方体的长、宽、高分别为x 、y 、z ,
不失一般性可得{x 2+y 2+z 2=7,
x 2+z 2=6, a +b =√x 2+y 2+√y 2+z 2,
∴ a+b=√x 2+y 2+√y 2+z 2≤√2√(x 2+y 2)+(y 2+z 2)=√2×√8=4.故应选C.
综上所述,处理与三视图有关的问题时,要用好其对应的长(正)方体这个模型,同时要注意三视图中各线段的虚实对几何体还原的影响.只要熟练、准确地掌握了上述方法,处理此类问题就会得心应手了.
图4—1
图4—1(1) z x
y A 1
A
B E 图3—1(1)
F C
D B 1
C
1 D 1 A
B A 1 G F
D 图1.2—5
E B 1
C
C 1
D 1 × × × × ×
× × × × ×。

相关文档
最新文档