函数图象第1课时教案

合集下载

高中数学单个函数图像教案

高中数学单个函数图像教案

高中数学单个函数图像教案
一、教学内容:数学-函数图像
二、教学目标:学生能够通过学习本节课的内容,理解函数图像的表示方法,掌握函数图像的基本特征和性质。

三、教学重点:函数图像的基本特征和性质。

四、教学难点:理解函数图像的概念和表示方法。

五、教学准备:
1. 教师准备PPT课件和教学素材。

2. 学生准备笔记本和作业本。

六、教学过程:
1.导入:通过展示一道关于函数图像的问题引入本节课的内容。

2.讲解:教师介绍函数图像的概念和表示方法,讲解函数图像的基本特征和性质。

3.示范:通过展示一个函数的图像,让学生理解函数图像的意义和表现形式。

4.练习:让学生做一些练习题,巩固所学的知识。

5.讨论:让学生讨论不同类型的函数图像可能的特征和性质。

6.总结:总结本节课的内容,强调函数图像的重要性和应用。

七、课后作业:
1.完成课后练习题。

2.总结本节课所学的知识,写一篇小结。

八、教学反馈:
1.检查学生的课后作业,给予及时的反馈。

2.收集学生的学习反馈,查看学生对本节课的理解和掌握情况。

以上就是本节课的教学内容,希望学生能够认真学习,掌握函数图像的基本特征和性质,提高数学学习的能力和水平。

愿学生在学习过程中取得更好的成绩!。

《10[1].1 函数的图象》教案

《10[1].1 函数的图象》教案

第10章:一次函数10.1 函数的图象(1课时)教学目标:1、能从图象中获取变量之间相依关系的信息,并能用语言进行描述,通过具体实例认识函数的图象。

2、了解表示函数关系的图像法,能结合图象对简单实际问题中的函数关系进行分析,感悟数形结合的思想。

教学过程一:复习回顾(一)1.汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,则s与t的函数关系式是__________ ;2.下表是我国人口统计表,人口数y是年份x的函数吗?3.如图是体检时的心电图,其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,y是关于x的函数吗?以上3个小题用了函数的哪几种表示方法?(二)知识链接:1.在某一问题中,保持-------------- 的量叫常量,可以取---------------的量,叫做变量.2.函数:在同一变化过程中,有两个变量x和y,如果对于x的每—个值,y都有______________与之对应,我们就把y叫做x的函数,其中x叫做自变量.如果自变量x取a时,y的值是b,就把b叫做x=a时的函数值3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数轴,水平的一条叫做x轴或横轴,习惯上取向----------- 的方向为正方向,----------- 的一条叫做-------或-----------,取向上的方向为正方向,这就组成了平面直角坐标系.二:合作探究:1、出示教材132页实验与探究,投影出示图10—1每四位同学一组,分别负责看秒表、控制铁夹、观察水面高度、记录数据。

打开铁夹,使水由塑料管流入水杯,分别记下从放水开始到10秒、20秒、30秒、⋯、100秒时,瓶内水面下降的高度L.将表中每对t和L的数据作为点的坐标,在以t为横轴、L为纵轴的直角坐标系中描出各点,并将描出的点用平滑的曲线一次连接起来. 观察这条曲线,思考下列问题:(1)从放水开始到放水10s时,饮料瓶内水面下降的高度是多少?从放水后10s到放水后20s呢?(2)随着放水时间t的逐渐增大,饮料瓶内水面下降的高度L的变化趋势是怎样的?(3)t每增大10s,L的变化情况相同吗?(4)估计当t=55s,L的值是多少?你是怎样估计的?(5)你发现在水面下降高度L和放水时间t的变化过程中,L是t的函数吗?哪一个变量是自变量?它们之间的函数关系是如何表达的?学生回答后得出:像这样用图象表示变量之间函数关系的方法叫做图像法(6)通过上面的问题,你体会用图象表示函数关系有什么优点?学生交流得出:用图象可以直观、形象地刻画变量之间的函数关系和变化趋。

4.3一次函数的图象(第1课时)

4.3一次函数的图象(第1课时)
的图象上吗?
都在
(2)正比例函数y=-3x的图象上的点
(x,y)都满足关系式y=-3x吗?
满足
(3)正比例函数y = kx 图象有何特点?
你是怎样理解的?
正比例函数 y = kx (k≠0) 的图象是一
原点(0,0)
直线
条经过 _______________
的_______。
y
5
4
3
2
1
-3 -2 -1 0 1 2 3
(1,5),(-1,5),(0.5,-2.5),(-5,1).
解:将各点的坐标依次代入验证,可知点(-1,5),
(0.5,-2.5)在正比例函数y=-5x的图象上.
2.画出下列正比例函数的图象:
2
2
(1)y 4 x;(2)y x; (3)y x .
3
3
解:三个函数分别列表如下:
(1)
例题讲解
例1 画出正比例函数 y =2x 的图象
解:
y
1. 列表
x … -2 -1 0 1
2 …
y … -4 -2 0
4
2
2. 描点
3. 连线
它是一条直线。

5
4
3
2
1
y=2x
-3 -2 -1 0 1 2 3
-1
-2
-3
-4
x
做一做
议一议
(1)满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x
(1)、当k>0时,图象经过第 一、三
右 上升 ,y的值随着x值得增大而
象限,从左向
增大
;
(2)、当k<0时,图象经过第 二、四 象限,从左向

一次函数的图像(1) 教案

一次函数的图像(1) 教案

课题:一次函数的图像(第一课时)观风海中学李兴兴教学目标:知识与技能:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象过程与方法:1.经历函数图象的作图过程,初步了解作函数图象的一般步骤.2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.情感、态度与价值观:1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.2.在探究活动中发展学生的合作意识和探究能力.教学重点1.熟练地作一次函数的图象.2.理解、归纳作函数图象的一般步骤:列表、描点、连线.3.理解一次函数的代数表达式与图象之间的一一对应关系.教学难点理解一次函数的代数表达式与图象之间的一一对应关系.教学流程:一、课前回顾1. 在下列函数24(1)3(2)2(3)(4)25y x y x y y x x =-===-; ; ; ; 是一次函数的是 (2)(4) ,是正比例函数的是 (2) .2、函数的表示法: ①图象法、②列表法、③解析式法(关系式法)三种方法可以相互转化二、 情境引入探究一: 什么是函数的图象?把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.试在平面直角坐标系中画出点M(4,3)请作出正比例函数y=2x的图象.分析:函数图象上的点一般来说有无数多个,要把每个点都作出来得到函数图象很困难,甚至是不可能的.所以我们常作出函数图象上的一部分点,然后用光滑的线把这些点连接起来得到函数的图象.请同学们想一想,怎么才能得到图象上的一部分点呢?为此,我们首先要取一些自变量x的值,求出对应的函数值y,那么以(x,y)为坐标的点就是函数图象上的点.为了表达方便,我们可以列表来表示x和y的对应关系.解:列表: 取自变量的一些值,求出对应的函数值,填入表中.描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连结起来,得到y=2x的图象.总结:作一个函数的图象需要三个步骤:列表,描点,连线.这种画函数图象的方法叫做描点法.探究二:(1)作出一次函数y=-3x的图象.(2) 在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.满足(1)列表(2)描点连线( 3 ) 满足关系式y=-3x的x,y所对应的点(x,y)是否都在它的图象上? 是( 4 ) 正比例函数y=-3x的图象上的点(x,y)都满足它的关系式吗? 满足( 5 ) 正比例函数y=kx的图象有什么特点?一条直线总结:正比例函数y=kx的图象是一条经过原点的直线。

正弦函数的图像教案

正弦函数的图像教案

正弦函数的图像教案【篇一:正弦函数的图像与性质教案】《正弦函数的图像与性质》(第一课时)(教案)神木职教中心数学组刘伟教学目标:1、理解正弦函数的周期性;2、掌握用“五点法”作正弦函数的简图;3、掌握利用正弦函数的图像观察其性质;4、掌握求简单正弦函数的定义域、值域和单调区间;5、初步理解“数形结合”的思想;6、培养学生的观察能力、分析能力、归纳能力和表达能力等教学重点:1、用“五点法”画正弦函数在一个周期上的图像;2、利用函数图像观察正弦函数的性质;3、给学生逐渐渗透“数形结合”的思想教学难点:正弦函数性质的理解和应用教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学教学过程:Ⅰ知识回顾终边相同角的诱导公式:Ⅱ新知识1、用描点法作出正弦函数在最小正周期上的图象(1)、列表(2)、描点(3)、连线因为终边相同的角的三角函数值相同,所以y=sinx的图像在?,同2、正弦函数的奇偶性由诱导公式sin(-x)=-sinx,x∈r得:①定义域关于原点对称②满足f(-x)=-f(x)所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性、值域由图像观察可得:正弦函数在??-?2得到最大值为1,最小值为-1,所以值域为[-1,1]Ⅲ知识巩固例1 作下列函数的简图(1)解:(1)①列表②描点③连线(2)①列表②描点③连线例2 求下列函数的单调区间(1)y=sin(-x) (2)y=sin(x-解:(1)因4)y=sin(-x)=-sinx2所以函数在??-?2(2)由题知:-4≤24324≤所以函数在??-44?4??4?练习(师生互动,分层次提问)1.课本第120页练习第1题 2.求函数y=sin(x+解:由题知: -4)的单调性24≤224≤所以函数在??-44?4??4?Ⅳ小结本节课我们学习了用“五点法”作正弦函数的图像,利用正弦函数的简图可以观察到正弦函数的一些基本性质,如奇偶性、单调性、周期性等。

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

函数sin()(0,0)y A x A ωϕω=+>>的图象(一)一、教材分析本节是人教A 版数学第一册第5章第6节的内容,前一节“正弦函数的性质和图象”主要讲述了正弦函数图象的画法(五点法)、性质及应用。

本节课的主要内容是结合实例,了解)sin(φω+=x A y 的实际意义,会用五点法画出函数的图象,揭示参数φω,,A 变化时对函数)sin(φω+=x A y 图象的形状,位置的影响,讨论函数)sin(φω+=x A y 的图象与正弦函数的关系;通过引导学生对函数图象规律性的探索,让学生体会到从简单到复杂,从特殊到一般的化归思想;通过对参数的分类讨论,让学生深刻认识到图象变换与函数解析式变换的内在联系。

二、教学目标:1. 分别通过对三角函数图像的各种变换的探究和动态演示让学生了解三角函数图像各种变换的实质和内在规律。

2. 通过对函数sin()(0,0)y A x A ωϕω=+>>图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。

3. 培养学生观察问题和探索问题的能力。

三、教学重、难点:教学重点:函数sin()(0,0)y A x A ωϕω=+>>的图像的画法和图像与函数y=sinx 图像的关系,以及对各种变换内在联系的揭示。

教学难点:各种变换内在联系的揭示。

四、教法学法采取各个击破,归纳整合为主线,自主探索、合作学习为主导,教师总结点评为辅助,充分发挥学生的动手能力的教学方法;多媒体辅助教学。

五、教学过程:(一)、新课引入:那么怎么画函数12sin()34y x π=-的图象? (二)、尝试探究探究(一):对 sin()y x ϕϕ=+对的图象的影响问题1:sin()3y x π=+函数周期是多少?你有什么办法画出该函数在一个周期内的图象?学生:用“五点法”作出函数 问题2:比较函数 sin()3y x π=+与sin y x = 的图象的形状和位置,你有什么发现?学生:函数sin()3y x π=+的图象,可以看作是把曲线sin y x =上所有的点向左平移3π个单位长度而得到的. 那么函数sin()3y x π=-的图象?学生:函数sin()3y x π=-的图象,可以看作是把曲线sin y x =上所有的点向右平移3π个单位长度而得到的.问题3:一般地,对任意的 (0)ϕϕ≠,函数 sin()y x ϕ=+ 的图象是由函数 sin y x = 的图象经过怎样的变换而得到的? 归纳:函数sin()y x ϕ=+的图象,可以看作是把曲线sin y x =上所有的点向左(0ϕ>时)或向右0ϕ<(时)平移ϕ个单位长度而得到的.上述变换称为平移变换探究(二):(0)sin y x ωωω>=对的图象的影响问题1:函数sin 2y x =周期是多少?如何用“五点法”画出该函数在一个周期内的图象?问题2:比较函数 sin 2y x =与sin y x = 的图象的形状和位置,你有什么发现?学生:函数 sin 2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标缩短到原来的12倍(纵坐标不变)而得到的. 那么函数1sin()2y x =的图象?学生:函数 1sin()2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标伸长到原来的 2 倍(纵坐标不变)而得到的.问题3:一般地,对任意的 (0)ωω>,函数 sin y x ω=的图象是由函数sin y x =的图象经过怎样的变换而得到的?归纳:函数sin (0)y x ωω=>的图像可由函数y =sinx 的图像沿x 轴伸长(w<1)或缩短(w>1)到原来的ω1倍(纵坐标不变).......而得到的,称为周期变换。

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿

湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿一. 教材分析湘教版八下数学4.3一次函数的图象第1课时,主要介绍正比例函数的图象和性质。

在这一课时中,学生将学习正比例函数的定义、图象特点以及如何绘制正比例函数的图象。

教材通过丰富的实例和练习题,帮助学生理解和掌握正比例函数的知识。

二. 学情分析在学习本课时,学生已经掌握了函数的基本概念和一次函数的定义,对函数的图象有一定的了解。

但学生对正比例函数的图象和性质的认识还不够深入,需要通过本节课的学习来进一步理解和掌握。

此外,学生可能对如何绘制正比例函数的图象存在一定的困惑,需要教师的引导和讲解。

三. 说教学目标1.知识与技能目标:学生能够理解正比例函数的定义,掌握正比例函数的图象特点,学会绘制正比例函数的图象。

2.过程与方法目标:通过观察、分析和实践,学生能够培养数形结合的思维方式,提高解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学习的兴趣和自信心。

四. 说教学重难点1.教学重点:正比例函数的定义,正比例函数的图象特点,绘制正比例函数的图象。

2.教学难点:如何引导学生理解正比例函数的图象与性质之间的关系,以及如何绘制正比例函数的图象。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作学习法等,激发学生的学习兴趣,引导学生主动参与课堂讨论和实践活动。

2.教学手段:利用多媒体课件、实物模型、练习题等,辅助教学,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个实际问题,引出正比例函数的概念,激发学生的兴趣。

2.新课导入:介绍正比例函数的定义和图象特点,引导学生观察和分析正比例函数的图象。

3.实例讲解:通过具体的例子,讲解如何绘制正比例函数的图象,让学生动手实践。

4.课堂练习:设计一些练习题,让学生巩固所学知识,并及时给予解答和反馈。

5.总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的思考。

八年级数学上册 一次函数的图象(第一课时)教案 北师大版【精品教案】

八年级数学上册 一次函数的图象(第一课时)教案  北师大版【精品教案】

一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。

根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x 与y 的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢?[生]①列表;②描点;③连线.三、做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.[生]列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.[师]由此看来,满足函数关系式y =-2x +5的x ,y 所对应的点(x ,y )都在一次函数y = -2x +5的图象上;反过来,一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线. [师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )[生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B )[生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7; 当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上.3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号.∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教版八年级下册)
第十九章一次函数
19.1.2函数图象第1课时
一、情景引入:
函数是描述运动和变化过程的重要数学模型,试观察下面问题中,当自变量的值增大时,函数值如何变化?
二、揭示目标:
1、了解函数图象的画法
2、会观察分析图象信息
3、会利用函数图象信息解决问题
三、探究新知
问题:1、表示正方形的面积s与边长x的关系。

x
这个函数的自变量的取值范围是多少?
2、函数S =x2 (x>0)的图象画法步骤
(1)、列表:(2)、描点:(3)、连线
上图的曲线即函数S=x2 (x>0)的图象.
3、一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
四、应用新知:
下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t 变化而变化,你从图象中得到了哪些信息?
(1)、最低、最高温度分别是多少?
(2)、哪些时段温度呈下降状态?上升状态呢?
(3)、我们可以从图象中看出这一天中任一时刻的气温大约是多少吗?
五、巩固新知:
1、下图是某一天北京与上海的气温随时间变化的图象。

(1)、这一天内,上海与北京何时气温相同?
(2)、这一天内,上海在哪段时间比北京气温高?在哪段时间比北京气温低?
六、解决问题:
例2:如图(1),小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图(2)反映了这个过程中,小明离他家的距离 y (km )与时间 x(min)之间的对应关系。

.
8 2 2 5 6
x / y /
O
根据图象回答下列问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时间?
(2)小明吃早餐用了多少时间?
(3)食堂离图书馆多远?小明食堂到图书馆用了多少时间?
(4)小明读报用了多少时间?
(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?
七、检测问题:
八年级(2)班从学校出发去某景点旅游,全班分成甲、乙两组.甲组乘坐大客车,乙组乘坐小轿车.已知甲组比乙组先出发,汽车行驶的路程 s (单位:km )和行驶时间 t (单位:min )之间的函数关系如图所示:
给出下列说法:①学校到景点的路程为55 km ;②甲组在途中停留了5 min ;③甲、乙两组同时到达景点;④相遇后,乙组的速度小于甲组的速度.根据图象信息,以上说法正确的有 哪些? . 拓展
从图象中还能获得哪些信息?
学习小结:
知识:了解函数图象的画法并能根据函数图象信息解决问题
方法: 知道数形结合的数学思想
认识: 数学来源于生活并服务于生活
t /min。

相关文档
最新文档