2011中考数学真题解析15 分式的基本性质,负指数幂的运算(含答案)

合集下载

北京市2011年中考数学试题及答案-解析版

北京市2011年中考数学试题及答案-解析版

北京市2011年中考数学试卷—解析版一、选择题(共8小题,每小题4分,满分32分)1、(2011•北京)﹣的绝对值是( )A 、﹣B 、C 、﹣D 、考点:绝对值。

专题:计算题。

分析:数轴上某个数与原点的距离叫做这个数的绝对值.解答:解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是﹣.故选D .点评:本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.2、(2011•北京)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A 、66.6×107B 、0.666×108C 、6.66×108D 、6.66×107考点:科学记数法与有效数字。

分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a 有关,与10的多少次方无关.解答:解:665 575 306≈6.66×108.故选C .点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•北京)下列图形中,即是中心对称又是轴对称图形的是( )A 、等边三角形B 、平行四边形C 、梯形D 、矩形考点:中心对称图形;轴对称图形。

分析:根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D 选项既为中心对称图形又是轴对称图形解答:解:A 、是轴对称图形,不是中心对称图形.故本选项错误;B 、是不是轴对称图形,是中心对称图形.故本选项错误;C 、是轴对称图形,不是中心对称图形.故本选项错误;D 、既是轴对称图形,又是中心对称图形.故本选项正确.故选D .点评:本题主要考察中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.4、(2011•北京)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若1AD =,3BC =,则AO CO的值为( )A 、B 、C 、D 、考点:相似三角形的判定与性质;梯形。

人教版初中数学八年级上单元试卷第5章 分式【B卷】(解析版)

人教版初中数学八年级上单元试卷第5章 分式【B卷】(解析版)

第15章分式B卷一、单选题1. ( 3分) 根据分式的基本性质,分式−aa−b可以变形为()A.a−a+b B.aa+bC.﹣−aa−bD.﹣aa+b【答案】A【考点】分式的基本性质【解析】【解答】解:分式−aa−b 可变形为原式= −aa−b=a−a+b,故选A.2. ( 3分) 下列运算,正确的是()A.a0=0B.a−1=1a C.a2b2=abD.(a−b)2=a2−b2【答案】B【考点】完全平方公式及运用,分式的约分,0指数幂的运算性质,负整数指数幂的运算性质【解析】【解答】A、因为只有当a≠0时,a0=1,所以A不符合题意;B、a−1=1a,所以B符合题意;C、a2b2的分子与分母没有公因式,不能约分,所以C不符合题意;D、(a−b)2=a2−2ab+b2,所以D不符合题意;故答案为:B.【分析】(1)根据任何一个不为0的数的0次幂等于1可得原式=1;(2)根据一个不为0的数的负整数指数幂等于这个数的正整数幂的倒数可得原式=1a;(3)分式的约分是约去分子和分母中的公因式,所以原式不能约分;(4)由完全平方公式可得原式=a2−2ab+b2.3. ( 3分) 下列各分式中,最简分式是()A.34(x−y)85(x+y)B.y2−x2x+yC.y2+x2x2y+xy2D.x2−y2(x+y)2【答案】C【考点】分式的约分,最简分式【解析】【解答】解:A、分式的分子与分母中的系数34和85有公因式17,可以约分,A不符合题意;B、y2−x2x+y =(y+x)(y−x)x+y=y−x,B不符合题意;C、分子分母没有公因式,是最简分式,C符合题意;D、x2−y2(x+y)2=(y+x)(y−x)(x+y)2=x−yx+y,D不符合题意;故答案为:C.【分析】最简分式包括系数也要最简,所以A不对;B中有公因式(x+y);D中有公因式(x+y).4. ( 3分)下列函数中自变量x的取值范围是x>1的是()A.y=√x−1B.y=√x−1 C.y=√x−1D.y=√1−x【答案】A【考点】分式有意义的条件,二次根式有意义的条件【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,逐一检验.【解答】A、二次根式和分式有意义,x-1>0,解得x>1,符合题意;B、二次根式有意义,x-1≥0,解得x≥1,不符合题意;C、二次根式和分式有意义,x≥0且√x−1≠0,解得x≥0且x≠1,不符合题意;D、二次根式和分式有意义1-x>0,解得x<1,不符合题意.故选A.【点评】本题考查了函数自变量的取值范围.当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.5. ( 3分) 关于x的方程m−1x−1﹣xx−1=0有增根,则m的值是()A.2B.﹣2C.1D.﹣1【答案】A【考点】分式方程的增根【解析】【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∵最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2. 故选A .【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x ﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值. 6. ( 3分 ) 计算a a−5−5a−5的结果是A. 1B. ﹣1C. 0D. a ﹣5 【答案】 A【考点】分式的混合运算【解析】【分析】根据同分母分式的减法法则计算即可得到结果: aa−5−5a−5=a−5a−5=1。

2011年安徽省中考数学试题及详细解析

2011年安徽省中考数学试题及详细解析

2011年安徽省中考数学试题及详细解析一、选择题(共10小题,每小题4分,满分40分)1、在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A、﹣1B、0C、1D、2考点:有理数。

分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.点评:理解正数和负数的概念是解答此题的关键.2、计算(2x)3÷x的结果正确的是()A、8x2B、6x2C、8x3D、6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。

分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答.解答:解:(2x)3÷x=8x3÷x=8x2.故选A.点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A、50°B、55°C、60°D、65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。

专题:计算题。

分析:先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.解答:解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A、2.89×107B、2.89×106C、2.89×105D、2.89×104考点:科学记数法—表示较大的数。

2011中考数学代数式、整式、分式、二次根式知识点

2011中考数学代数式、整式、分式、二次根式知识点

2. 代数式(分类)2.1. 整式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.1.1. 整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.1.2. 同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.1.3. 去括号法则去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.2.1.4. 整式的运算法则整式的加减法:整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.整式的乘法:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn nm a a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同. ②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.整式的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的.2.2. 因式分解(包含题目总数:14); ; ; ; ; ; ; ; ; ; ; ; ; ;2.2.1. 因式分解的概念把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=; ()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()cb ac b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++. 2.2.2. 因式分解的常用方法1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.2.2.3. 因式分解的一般步骤因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.2.3. 分式(包含题目总数:16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.3.1. 分式及其相关概念分式的概念:一般的,用B A ,表示两个整式,B A 就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式. 注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.分式的相关概念:把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.2.3.2. 分式的性质分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式).分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--=. 2.3.3. 分式的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小.(1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+;(2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568y x y x -+=. 2.3.4. 分式的运算法则1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x .分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到. 2.4. 二次根式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.4.1. 二次根式及其相关概念2.4.1.1. 二次根式的概念式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.2.4.1.2. 最简二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来. 2.4.1.3. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.4.1.4. 分母有理化把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. 2.4.2. 二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a b ab a.2.4.3. 二次根式的运算法则二次根式的运算法则:二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则: 两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则: 两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()213122213122+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a .()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.。

【史上最全】2011中考数学真题解析7_实数概念、运算(含答案)

【史上最全】2011中考数学真题解析7_实数概念、运算(含答案)

第1页
【史上最全】2011 中考数学真题解析 7_实数概念、运算(含答案)
解答:解:9< ( 11)2 11 <16,故 3< 11 <4; 故选 B. 点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数 部分即可解决问题,属于基础题. 3. (2011 江苏镇江常州, 1, 2 分) 在下列实数中, 无理数是 ( A.2 B.0 C. 5 D.
【史上最全】2011 中考数学真题解析 7_实数概念、运算(含答案)
(2012 年 1 月最新最细)2011 全国中考真题解析 120 考点汇编 实数概念、运算 一、选择题 1. (2011•江苏宿迁,1,3)下列各数中,比 0 小的数是( A.-1 B.1 C. 2 D.π )
考点:实数大小比较。 专题:应用题。 分析:根据正数都大于 0,负数都小于 0,两个负数绝对值大的反而 小即可求解. 解答:解:∵π> 2 >1>0>﹣1, ∴比 0 小的数是﹣1. 故选 A. 点评:此题主要考查了实数的大小的比较,要牢记:正数都大于 0, 负数都小于 0,两个负数绝对值大的反而小即可求解. 2. (2011•江苏徐州,3,2)估计 11 值( A、在 2 到 3 之间 D、在 5 到 6 之间 考点:估算无理数的大小。 专题:计算题。 分析:先确定 11 的平方的范围,进而估算 11 的值的范围. B、在 3 到 4 之间 ) C、在 4 到 5 之间
B、2 到 3 之间 C、3 到 4 之间
第4页
【史上最全】2011 中考数学真题解析 7_实数概念、运算(含答案)
考点:估算无理数的大小。 专题:计算题。 分析: 根据特殊有理数找出 10 最接近的完全平方数, 从而求出即可. 解答:解:∵ 9 < 10 < 16 , ∴3< 10 <4, 故选:C. 点评:此题主要考查了估计无理数的大小,根据已知得出 10 最接近 的完全平方数是解决问题的关键. 8. ( 2011 新疆建设兵团, 6 , 5 分)将 ( - 5)0 , ( - 3)3 , ( -

2011年广东省中考数学试卷、答案及考点详解

2011年广东省中考数学试卷、答案及考点详解

2011年广东省中考数学试卷、答案及考点详解一、选择题(本大题5小题,每小题3分,共15分)1、(2011•广东)﹣2的倒数是()A、﹣B、C、2D、﹣2考点:倒数。

分析:根据倒数的定义,即可得出答案解答:解:根据倒数的定义,∵﹣2×(﹣)=1,∴﹣2的倒数是﹣点评:本题主要考查了倒数的定义,比较简单2、(2011•广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A、5.464×107吨B、5.464×108吨C、5.464×109吨D、5.464×1010吨考点:科学记数法—表示较大的数。

专题:常规题型。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将546400000用科学记数法表示为5.464×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•广东)将下图中的箭头缩小到原来的,得到的图形是()A、B、C、D、考点:相似图形。

专题:应用题。

分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A.点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4、(2011•广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A、B、C、D、考点:概率公式。

2011年武汉市中考数学试题,答案及解析(word版)

2011年武汉市中考数学试题,答案及解析(word版)

武汉龙文中小学个性化辅导专家 网 址:13-1A B C D C D A B 武汉市2011年中考数学试题及答案一、选择题(共12小题每小题3分,共36分)I 。

下列各题中均有四个答案,其中只有一个是正确的,请在答题卡上将正确答案的代号涂黑。

1有理数-3的相反数是( ) A.3 B .-3. C.31 .D.- 31 2.函数 y=2-x 中自变量x 的取值范围为( )A .x ≥ 0.B .x ≥-2. C.x ≥2. D .x ≤-23 .如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A.{301>->+x x B 。

{301>->+x x C.{301>-<+x x D.{301>-<+x x4.下列事件中,为必然事件的是( ) A.购买一张彩票,中奖,B .打开电视机.正在播放广告。

C.抛一牧捌币,正面向上.D 一个袋中装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x +3 =0的两个根,则x 1·x 2的值是( )A.4 B .3 C .-4 D .-36.据报道,2011年全国普通高校招生计划约675万人,数6750000用科学计数法表示为( ) A.675×l04B.67.5×l05C.6.75 ×l06. D. 0.675 ×l077.如图.在梯形ABCD 中,AB∥DC,AD=DC=CB ,若∠ABD=25°,则∠BAD 的大小是( ) A .40°. B .45°。

C 。

50° D 。

60°8.右图是某物体的直观图,它的俯视图是( )武汉龙文中小学个性化辅导专家 网 址:2H G F CDABE图1购置器材其它10%安装设施28%24%维修场地图2201132%20%40%200820092010购置器材投入资金年增长率年份o x y O QP NM A -11-11o x y9.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.且规定,芷方形的内部不包含边界上的点.观察如图昕示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的 正方形内部整点个数为( ) A .64 B .49. C .36. D .2S10.如图,铁路MN 和公赂PQ 在点O 处交汇,∠QON=30°,公路PQ 上A 处距离O 点240米,如果火行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为( )A .12秒. B.16秒. C .20秒. D .24秒.11.。

2011年湖北省黄冈市中考数学试题及答案

2011年湖北省黄冈市中考数学试题及答案

2011年湖北省黄冈市中考数学试卷2011年湖北省黄冈市中考数学试卷参考答案与试题解析一、填空题(共8小题,每小题3分,满分24分)1.(2011•随州)﹣的倒数是考点:倒数。

分析:根据倒数的定义直接解答即可.解答:解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.点评:本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.2.(2011•随州)分解因式:8a﹣2= 2(2a+1)(2a﹣1).考点:提公因式法与公式法的综合运用。

分析:先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解答:解:8a﹣2,2=2(4a﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).点评:本题考查了提公因式法,公式法分解因式.注意分解要彻底.3.(2011•随州)要使式子有意义,则a的取值范围为a≥﹣2且a≠0 . 22考点:二次根式有意义的条件。

专题:计算题。

分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.(2011•随州)如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k= ﹣4 .菁优网考点:反比例函数系数k的几何意义。

分析:先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOB=2求出k的值即可.解答:解:∵反比例函数的图象在二、四象限,∴k<0,∵S△AOB=2,∴|k|=4,∴k=﹣4.故答案为:﹣4.点评:本题考查的是反比例系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.5.(2011•鄂州)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为考点:平移的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2012年1月最新最细)2011全国中考真题解析120考点汇编
分式的基本性质,负指数幂的运算
一、选择题
1. (2011广东珠海,5,3分)若分式
b a a +2的a 、b 的值同时扩大到原来的10倍,则此分式的值 ( )
A .是原来的20倍
B .是原来的10倍
C . 是原来的
101倍 D .不变 考点:分式的基本性质
专题:分式
分析:根据分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变;可知该运算中分式的值没有改变,故选D .
解答:D
点评:抓住分式的基本性质,分式的基本性质是分式通分、约分的依据.
(1)在运用分式的基本性质进行通分或约分时,容易漏掉分子或分母中的某一项,从而出现运算错误.(2)分式本身、分子和分母三个当中,任意改变其中的两个符号,分式值不变,这也是一个易错点. 2. 计算-22+(-2)2-(- 12)-1的正确结果是( )
A 、2
B 、-2
C 、6
D 、10 考点:负整数指数幂;有理数的乘方.
分析:根据负整数指数幂和有理数的乘方计算即可.
解答:解:原式=-4+4+2=2.
故选A .
点评:本题考查了有理数的乘方以及负整数指数幂的知识,当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
3. (2011四川遂宁,2,4分)下列分式是最简分式的( )
A.b a a
232 B .a a a 32- C .22b a b a ++ D .222b a ab a --
考点:最简分式;分式的基本性质;约分。

专题:计算题。

分析:根据分式的基本性质进行约分,画出最简分式即可进行判断.
解答:解:A 、ab b a a 32322=,故本选项错误; B 、3132-=-a a
a a ,故本选项错误; C 、22
b a b a ++,不能约分,故本选项正确; D 、()()b a b a b a a b a ab
a -+-=--)(222=b
a a +,故本选项错误;故选C . 点评:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分
式的基本性质正确进行约分是解此题的关键.
5.(2011丽江市中考,4,3分)计算10()(12-+-= 3 .
考点:负整数指数幂;零指数幂。

专题:计算题。

分析:本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算. 解答:解:原式=2+1=3.
故答案为3.
点评:本题考查了整数指数幂、零指数幂的考点,负整数指数幂:
a -p =(a≠0,p 为正整数);零指数幂:a 0=1(a≠0).
二、填空题
1. (2011•江苏徐州,11,3)0132--= .
考点:负整数指数幂;零指数幂。

专题:计算题。

分析:本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算. 解答:解:原式=1﹣
12= 12, 故答案为12
. 点评:本题考查了整数指数幂、零指数幂的考点,负整数指数幂:1p p a
a -=(a≠0,p 为正整数);零指数幂:a 0=1(a≠0).
2. (2011江苏镇江常州,9,3分)计算:-(-12)=12;︱-12︱=12; 01()2
-= 1 ;11()2
--= ﹣2 . 考点:负整数指数幂;相反数;绝对值;零指数幂.
专题:计算题.
分析:分别根据绝对值.0指数幂及负整数指数幂的运算法则进行计算即可.
解答:解:-(-
12)=12
; ︱-12︱=12;01()2-= 1 ;11()2--= ﹣2 . 故答案为:,,1,﹣2.
点评:本题考查的是绝对值.0指数幂及负整数指数幂的运算法则,熟知以上知识是解答此题的关键.
3. (2011云南保山,4,3分)计算10
1()(12-+-= .
考点:负整数指数幂;零指数幂。

专题:计算题。

分析:本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.
解答:解:原式=2+1=3.
故答案为3.
点评:本题考查了整数指数幂、零指数幂的考点,负整数指数幂:
1a (0,p p a p a
-=
≠为正整数);零指数幂:0a 1(0)a =≠. 4. (2011北京,1,5分)计算:︒-++︒--)2(2730cos 2)21(1π. 考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值。

专题:计算题。

分析:根据负指数幂、特殊角的三角函数值、三次根式、零指数幂的性质化简,然后根据实数运算法则进行计算即可得出结果.
解答:解:原式=2﹣2×2
3+33+1=2﹣3+33+1=23+3. 点评:本题主要考查了负指数幂、特殊角的三角函数值、三次根式、零指数幂的性质及实数运算法则,难度适中.
5. 计算:|-3|+201102-
1. 考点实数的运算;零指数幂;负整数指数幂
分析本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
解答解:原式=3+1+6×12
=4﹣4+3=3.
点评本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
三、解答题。

相关文档
最新文档