2017-2018学年第一学期高等数学AI期中试卷答案
2017-2018学年江苏省徐州市高三(上)期中数学试卷

2017-2018学年江苏省徐州市高三(上)期中数学试卷一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.1.(5分)设集合A={1,2,3},B={2,4,6},则A∩B=.2.(5分)已知复数z满足(1+i)z=i,其中i为虚数单位,则复数z的实部为.3.(5分)函数f(x)=2sin()的周期为.4.(5分)已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为.5.(5分)双曲线的离心率是.6.(5分)从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是.7.(5分)执行如图所示的流程图,则输出的x值为.8.(5分)棱长均为2的正四棱锥的体积为.9.(5分)已知公差不为零的等差数列{a n}的前n项和为S n,且a2=6,若a1,a3,a7成等比数列,则S8的值为.10.(5分)如图,在半径为2的扇形AOB中,∠AOB=90°,P为上的一点,若=2,则的值为.11.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f (4﹣x2)>2,则实数x的取值范围为.12.(5分)已知实数x,y满足x2+y2=3,|x|≠|y|,则的最小值为.13.(5分)已知点P是圆O:x2+y2=4上的动点,点A(4,0),若直线y=kx+1上总存在点Q,使点Q恰是线段AP的中点,则实数k的取值范围为.14.(5分)已知函数f(x)=x3﹣x2﹣2a,若存在x0∈(﹣∞,a],使f(x0)≥0,则实数a的取值范围为.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或计算步骤.15.(14分)已知△ABC的内角A,B,C所对的边分别为a,b,c且a+2c=2bcosA.(1)求角B的大小;(2)若b=2,a+c=4,求△ABC的面积.16.(14分)如图,在三棱锥S﹣ABC中,SA=SC,AB⊥AC,D为BC的中点,E 为AC上一点,且DE∥平面SAB.求证:(1)直线AB∥平面SDE;(2)平面ABC⊥平面SDE.17.(14分)如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD及其矩形附属设施EFGH,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O,半径为R,矩形的一边AB在直径上,点C,D,G,H 在圆周上,E,F在边CD上,且,设∠BOC=θ.(1)记游泳池及其附属设施的占地面积为f(θ),求f(θ)的表达式;(2)怎样设计才能符合园林局的要求?18.(16分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左顶点为A(﹣2,0),离心率为,过点A的直线l与椭圆E交于另一点B,点C为y轴上的一点.(1)求椭圆E的标准方程;(2)若△ABC是以点C为直角顶点的等腰直角三角形,求直线l的方程.19.(16分)已知数列{a n}的前n项和为S n,满足S n=2a n﹣1,n∈N*.数列{b n}满足nb n﹣(n+1)b n=n(n+1),n∈N*,且b1=1.+1(1)求数列{a n}和{b n}的通项公式;(2)若c n=a n,数列{c n}的前n项和为T n,对任意的n∈N*,都有T n<nS n ﹣a,求实数a的取值范围;(3)是否存在正整数m,n使b1,a m,b n(n>1)成等差数列,若存在,求出所有满足条件的m,n,若不存在,请说明理由.20.(16分)已知函数f(x)=(ax﹣1)e x(a≠0,e是自然对数的底数).(1)若函数f(x)在区间[1,2]上是单调减函数,求实数a的取值范围;(2)求函数f(x)的极值;(3)设函数f(x)图象上任意一点处的切线为l,求l在x轴上的截距的取值范围.【选做题】请从21.22.23.24选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.(10分)如图,CD是圆O的切线,切点为D,CA是过圆心O的割线且交圆O于B点,过B作圆O的切线交CD于点E,DE=.求证:CA=.[选修4-2:矩阵与变换]22.(10分)已知矩阵A=,若直线y=kx+1在矩阵A对应的变换作用下得到的直线过点P(2,6),求实数k的值.[选修4-4:坐标系与参数方程]23.在极坐标系中,圆C的方程为ρ=2acosθ(a>0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数),若直线l与圆C恒有公共点,求实数a的取值范围.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2(x﹣y﹣1)+≥1.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)如图,在三棱锥A﹣BOC中,OA,OB,OC两两垂直,点D,E分别为棱BC,AC的中点,F在棱AO上,且满足OF=,已知OA=OC=4,OB=2.(1)求异面直线AD与OC所成角的余弦值;(2)求二面角C﹣EF﹣D的正弦值.26.(10分)某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是、、,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.2017-2018学年江苏省徐州市高三(上)期中数学试卷参考答案与试题解析一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.1.(5分)设集合A={1,2,3},B={2,4,6},则A∩B={2} .【解答】解:由集合A={1,2,3},B={2,4,6},所以A∩B={1,2,3}∩{2,4,6}={2}.故答案为{2}.2.(5分)已知复数z满足(1+i)z=i,其中i为虚数单位,则复数z的实部为.【解答】解:∵(1+i)z=i,∴z====+i,∴复数z的实部为,故答案为:3.(5分)函数f(x)=2sin()的周期为6.【解答】解:函数f(x)=2sin()的周期为=6,故答案为:6.4.(5分)已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为4.【解答】解:数据:87,x,90,89,93的平均数为90,则=×(87+x+90+89+93)=90,解得x=91,∴该组数据的方差为s2=×[(87﹣90)2+(91﹣90)2+(90﹣90)2+(89﹣90)2+(93﹣90)2]=4.故答案为:4.5.(5分)双曲线的离心率是2.【解答】解:∵双曲线中,a2=1且b2=3∴a=1,b=,可得c==2因此双曲线的离心率e==2故答案为:26.(5分)从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是.【解答】解:从袋中随机取两个球,所有的取法共有=10种,而取出的两个球颜色不同的取法有2×3=6种,∴取出的两个球颜色不同的概率P==,故答案为:7.(5分)执行如图所示的流程图,则输出的x值为4.【解答】解:当x=0时,不满足x≥8,故x=1,k=1,不满足退出循环的条件;当x=1时,不满足x≥8,故x=2,k=2,不满足退出循环的条件;当x=2时,不满足x≥8,故x=4,k=3,不满足退出循环的条件;当x=4时,不满足x≥8,故x=16,k=4,不满足退出循环的条件;当x=16时,满足x≥8,故x=4,k=5,满足退出循环的条件;故输出的x值为4,故答案为:48.(5分)棱长均为2的正四棱锥的体积为.【解答】解设正四棱锥的底面中心为O,连结OP,则PO⊥底面ABCD.∵底面四边形ABCD是正方形,AB=2,∴AO=.∴OP==.∴正四棱锥的体积V===.故答案为:.9.(5分)已知公差不为零的等差数列{a n}的前n项和为S n,且a2=6,若a1,a3,a7成等比数列,则S8的值为88.【解答】解:设公差不为零的等差数列{a n}的公差为d,∵a2=6,a1,a3,a7成等比数列,∴a1+d=6,=a1a7,即,d≠0.解得a1=4,d=2.则S8==88.故答案为:88.10.(5分)如图,在半径为2的扇形AOB中,∠AOB=90°,P为上的一点,若=2,则的值为2﹣2.【解答】解:如图,连接BP,AP,设OP交AB于点M,∵半径为2,=||•||cos∠AOP=2×2×cos∠AOP=2,解得cos∠AOP=,可得∠AOP=60°,∴由∠AOB=90°,可得:∠POB=30°,可得:∠BPO=∠PBO=75°,又∵∠ABO=∠BAO=45°,可得:∠PBA=∠PBO﹣∠ABO=75°﹣45°=30°,∴∠PMB=180°﹣∠OPB﹣∠PBA=180°﹣75°﹣30°=75°,∴=||•||•cos∠PMB=2××cos75°=4×cos(45°+30°)=4×=2﹣2.故答案为:2﹣2.11.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f (4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f (4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).12.(5分)已知实数x,y满足x2+y2=3,|x|≠|y|,则的最小值为.【解答】解:∵实数x,y满足x2+y2=3,|x|≠|y|,∴=1,则=×=≥=,当且仅当|x﹣2y|=2|2x+y|,x2+y2=3,|x|≠|y|,时取等号.即或或.故答案为:.13.(5分)已知点P是圆O:x2+y2=4上的动点,点A(4,0),若直线y=kx+1上总存在点Q,使点Q恰是线段AP的中点,则实数k的取值范围为[﹣,0] .【解答】解:设P(2cosθ,2sinθ),则AP的中点坐标为Q(cosθ+2,sinθ),∴sinθ=k(cosθ+2)+1,即k=,即k表示单位圆上的点(cosθ,sinθ)与点M(﹣2,1)连线的斜率,设过点M的直线y﹣1=k(x+2)与圆x2+y2=1相切,则=1,解得k=0或k=﹣.∴﹣≤≤0.故答案为:[﹣,0].14.(5分)已知函数f(x)=x3﹣x2﹣2a,若存在x0∈(﹣∞,a],使f(x0)≥0,则实数a的取值范围为[﹣1,0]∪[2,+∞).【解答】解:∵函数f(x)=x3﹣x2﹣2a,∴f′(x)=3x2﹣2x,当x<0,或x>时,f′(x)>0,当0<x<时,f′(x)<0,故当x=0时,函数取极大值﹣2a,若a≤0,若存在x0∈(﹣∞,a],使f(x0)≥0,则f(a)=a3﹣a2﹣2a≥0,解得:a∈[﹣1,0],若a>0,若存在x0∈(﹣∞,a],使f(x0)≥0,则f(0)=﹣2a≥0,或f(a)=a3﹣a2﹣2a≥0,解得:a∈[2,+∞),综上可得:a∈[﹣1,0]∪[2,+∞),故答案为:[﹣1,0]∪[2,+∞).二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或计算步骤.15.(14分)已知△ABC的内角A,B,C所对的边分别为a,b,c且a+2c=2bcosA.(1)求角B的大小;(2)若b=2,a+c=4,求△ABC的面积.【解答】解:(1)因为a+2c=2bcosA,由正弦定理,得sinA+2sinC=2sinBcosA,因为C=π﹣(A+B),所以sinA+2sin(A+B)=2sinBcosA.即以sinA+2sinAcosB+2cosAsinB=2sinBcosA,所以sinA(1+2cosB)=0,因为sinA≠0,所以cosB=﹣,又因为0<B<π,所以B=,(2)由余弦定理a2+c2﹣2accosB=b2及b=2得,a2+c2+ac=12,即(a+c)2﹣ac=12,又因为a+c=4,所以ac=4,=acsinB=×4×=.所以S△ABC16.(14分)如图,在三棱锥S﹣ABC中,SA=SC,AB⊥AC,D为BC的中点,E 为AC上一点,且DE∥平面SAB.求证:(1)直线AB∥平面SDE;(2)平面ABC⊥平面SDE.【解答】证明:(1)因为DE∥平面SAB,DE⊂平面ABC,平面SAB∩平面ABC=AB,所以DE∥AB,因为DE⊂平面SDE,AB⊄平面SDE,所以AB∥平面SDE,(2)因为D为BC的中点,DE∥AB,所以E为AC的中点.又因为SA=SC,所以SE⊥AC,又AB⊥AC,DE∥AB,所以DE⊥AC,∵DE⊂平面SDE,SE⊂平面SDE,DE∩SE=E,所以AC⊥平面SDE,因为AC⊂平面ABC,所以平面ABC⊥平面SDE.17.(14分)如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD及其矩形附属设施EFGH,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O,半径为R,矩形的一边AB在直径上,点C,D,G,H 在圆周上,E,F在边CD上,且,设∠BOC=θ.(1)记游泳池及其附属设施的占地面积为f(θ),求f(θ)的表达式;(2)怎样设计才能符合园林局的要求?【解答】解:(1)由题意,AB=2Rcosθ,BC=Rsinθ,且△HOG 为等边三角形,所以,HG=R,GF=R﹣Rsinθ,…(2分)f(θ)=S ABCD+S EFGH=2Rcosθ•Rsinθ+R(R﹣Rsinθ),θ∈(0,)…(6分)(2)要符合园林局的要求,只要f(θ)最小,由(1)知,f′(θ)=R2(2cos2θ﹣2sin2θ﹣cosθ)=R2(4cos2θ﹣cosθ﹣2),令f′(θ)=0,即4cos2θ﹣cosθ﹣2=0,解得cosθ=或(舍去),…(10分)令cosθ0=,θ0∈(0,),当θ∈(0,θ0)时,f′(θ)<0,f(θ)是单调减函数,当θ∈(θ0,)时,f′(θ)>0,f(θ)是单调增函数,所以当θ=θ0时,f(θ)取得最小值.答:当θ满足cosθ=时,符合园林局要求…(14分)18.(16分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左顶点为A(﹣2,0),离心率为,过点A的直线l与椭圆E交于另一点B,点C为y轴上的一点.(1)求椭圆E的标准方程;(2)若△ABC是以点C为直角顶点的等腰直角三角形,求直线l的方程.【解答】(1)由题意可得:,从而有b2=a2﹣c2=3,所以椭圆E的标准方程为:…(4分)(2)设直线l的方程为y=k(x+2),代入为:,得(3+4k2)x2+16k2x+16k2﹣12=0因为x=﹣2为该方程的一个根,解得B(,),…(6分)设C(x0,y0),由k AC•k BC=﹣1,得:,即:(3+4k2)y02﹣12ky0+(16k2﹣12)=0 ①…(10分)由AC=BC,即AC2=BC2,得4+y02=()2+(y0﹣)2,即4=+()2﹣,即4(3+4k2)2=(6﹣8k2)2+144k2﹣24(3+4k2)y0…①,所以k=0或y0=,当k=0时,直线l的方程为y=0,当y0=时,代入①得16k4+7k2﹣9=0,解得k=,此时直线l的方程为y=±(x+2)综上,直线l的方程为y=0,y=±(x+2)19.(16分)已知数列{a n}的前n项和为S n,满足S n=2a n﹣1,n∈N*.数列{b n}﹣(n+1)b n=n(n+1),n∈N*,且b1=1.满足nb n+1(1)求数列{a n}和{b n}的通项公式;(2)若c n=a n,数列{c n}的前n项和为T n,对任意的n∈N*,都有T n<nS n ﹣a,求实数a的取值范围;(3)是否存在正整数m,n使b1,a m,b n(n>1)成等差数列,若存在,求出所有满足条件的m,n,若不存在,请说明理由.【解答】解:(1)当n=1时,S1=2a1﹣1=a1,所以a1=1.当n≥2时,S n=2a n﹣1,S n﹣1=2a n﹣1﹣1,两式相减得a n=2a n﹣1,从而数列{a n}为首项a1=1,公比q=2的等比数列,从而数列{a n}的通项公式为a n=2n﹣1.﹣(n+1)b n=n(n+1),两边同除以n(n+1),由nb n+1得﹣=1,从而数列{}为首项b1=1,公差d=1的等差数列,所以=n,从而数列{b n}的通项公式为b n=n2,(2)由(1)得c n=a n=n•2n﹣1,于是T n=1×1+2×2+3×22+…+(n﹣1)•2n﹣2+n•2n﹣1,所以2T n=1×21+2×22+3×23+…+(n﹣1)•2n﹣1+n•2n,两式相减得﹣T n=1+21+22+23+…+2n﹣1﹣n•2n=﹣n×2n,所以T n=(n﹣1)2n+1由(1)得S n=2a n﹣1=2n﹣1,因为任意的n∈N*,都有T n<nS n﹣a,即(n﹣1)•2n+1<n(2n﹣1)﹣a恒成立,所以a<2n﹣n﹣1恒成立,记c n=2n﹣n﹣1,所以a<(c n)min,因为=2n﹣1>0,从而数列{c n}为递增数列,所以当n=1时c n取最小值c1=0,于是a<0(3)假设存在正整数m,n(n>1),使b1,a m,b n成等差数列,则b1+b n=2a m,即1+n2=2m,若n为偶数,则1+n2为奇数,而2m为偶数,上式不成立.若n为奇数,设n=2k﹣1(k∈N*),则1+n2=1+(2k﹣1)2=4k2﹣4k+2=2m,于是2k2﹣2k+1=2m﹣1,即2(k2﹣k)+1=2m﹣1,当m=1时,k=1,此时n=2k﹣1=1与n>1矛盾;当m≥2时,上式左边为奇数,右边为偶数,显然不成立.综上所述,满足条件的实数对(m,n)不存在20.(16分)已知函数f(x)=(ax﹣1)e x(a≠0,e是自然对数的底数).(1)若函数f(x)在区间[1,2]上是单调减函数,求实数a的取值范围;(2)求函数f(x)的极值;(3)设函数f(x)图象上任意一点处的切线为l,求l在x轴上的截距的取值范围.【解答】解:(1)函数f(x)的导函数f'(x)=(ax﹣1+a)e x,则f'(x)≤0在区间[1,2]上恒成立,且等号不恒成立,又e x>0,所以ax﹣1+a≤0在区间[1,2]上恒成立,…(2分)记g(x)=ax﹣1+a,只需,即,解得且a≠0…(4分)(2)由f'(x)=(ax﹣1+a)e x=0,得,①当a<0时,有;,所以函数f(x)在单调递增,单调递减,所以函数f(x)在取得极大值,没有极小值.②当a>0时,有;,所以函数f(x)在单调递减,单调递增,所以函数f(x)在取得极小值,没有极大值.综上可知:当a<0时,函数f(x)在取得极大值,没有极小值;当a>0时,函数f(x)在取得极小值,没有极大值.…(10分)(3)设切点为T(t,(at﹣1)e t),则曲线在点T处的切线l方程为y﹣(at﹣1)e t=(at﹣1+a)(x﹣t)e t,当时,切线l的方程为,其在x轴上的截距不存在.当时,令y=0,得切线l在x轴上的截距为:====,…(12分)当时,,当且仅当,即或时取等号;…(14分)当时,,当且仅当,即或时取等号.所以切线l在x轴上的截距范围是…(16分)【选做题】请从21.22.23.24选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.(10分)如图,CD是圆O的切线,切点为D,CA是过圆心O的割线且交圆O于B点,过B作圆O的切线交CD于点E,DE=.求证:CA=.【解答】证明:∵CD是圆O的切线,∴CD2=CA•CB,连接OD,则OD⊥CD,∵BE是圆O的切线,∴BE=ED,又DE=.∴BE=EC,∴∠C=30°,∠CDO=90°.则OD=OC,而OB=OD,∴CB=BO=OD=OA,∴CA=3CB,将CA=3CB代入CD2=CA•CB得CD2=CA•CA.∴CA=.[选修4-2:矩阵与变换]22.(10分)已知矩阵A=,若直线y=kx+1在矩阵A对应的变换作用下得到的直线过点P(2,6),求实数k的值.【解答】解:∵矩阵A=,得A﹣1=,…(5分)∵直线y=kx+1在矩阵A对应的变换作用下得到的直线过点P(2,6),所以A﹣1==,将点(2,2)代入直线y=kx+1得k=…(10分)[选修4-4:坐标系与参数方程]23.在极坐标系中,圆C的方程为ρ=2acosθ(a>0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数),若直线l与圆C恒有公共点,求实数a的取值范围.【解答】解:由ρ=2acosθ得ρ2=2aρcosθ,∴圆C的标准方程为x2+y2=2ax,把(t为参数)代入圆的方程可得169t2﹣(14+10a)t+2﹣2a=0,∴△=(14+10a)2﹣4×169×(2﹣2a)≥0,解得:﹣17≤a≤,又a>0,∴0<a≤.∴实数a的取值范围为(0,].[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2(x﹣y﹣1)+≥1.【解答】证明:因为x>y>0,x﹣y>0,∵2(x﹣y﹣1)+=(x﹣y)+(x﹣y)+﹣2≥3﹣2=3﹣2=1.当且仅当x﹣y=1.∴2(x﹣y﹣1)+≥1.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)如图,在三棱锥A﹣BOC中,OA,OB,OC两两垂直,点D,E分别为棱BC,AC的中点,F在棱AO上,且满足OF=,已知OA=OC=4,OB=2.(1)求异面直线AD与OC所成角的余弦值;(2)求二面角C﹣EF﹣D的正弦值.【解答】解:(1)如图,以O为原点,分别以OB、OC、OA所在直线为x轴、y 轴、z轴正方向建立空间直角坐标系.依题意可得:O(0,0,0),A(0,0,4),B(2,0,0),C(0,4,0),D(1,2,0),E(0,2,2),F(0,0,1),∴,,于是,,,∴cos<>=;(2)平面AOC的一个法向量为.设为平面DEF的一个法向量,又,,则,取z=2,则x=4,y=﹣1,∴为平面DEF的一个法向量,从而cos<>=,设二面角C﹣EF﹣D的大小为θ,则|cosθ|=.∵θ∈[0,π],∴sinθ=.因此二面角C﹣EF﹣D的正弦值为.26.(10分)某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是、、,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.【解答】解:(1)设这名同学在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名同学在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为P(A)=(1﹣)(1﹣)×=;…(4分)(2)记“这名同学在上学路上因遇到红灯停留的总时间”为ξ,由题意,可得ξ可能取值为0,40,20,80,60,100,120,140(单位:秒);…(5分)∴即ξ的分布列是:P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=;P(ξ=40)=×(1﹣)×(1﹣)=;P(ξ=20)=(1﹣)××(1﹣)=;P(ξ=80)=(1﹣)×(1﹣)×=;P(ξ=60)=××(1﹣)=;P(ξ=100)=(1﹣)××=;P(ξ=120)=×(1﹣)×=;P(ξ=140)=××=;所以Eξ=40×+20×+80×+60×+100×+120×+140×=.答:这名同学在上学路上因遇到红灯停留的总时间为.。
内蒙古包头市2017-2018学年高一数学上学期期中试题(word版含答案)

2017-2018学年度第一学期高一年级期中考试数学试题第一部分一.选择题(本大题共12小题,每小题5分,共60分)1.设集合{}1|->∈=x Z x A 则( )A.A ∉φB.A ∉2C.A ∈2D.{}A ⊆22.设{}12|>=x x A ,(){}1log |2+==x y x B ,则=B A ( )A.{}01|<<-x xB.{}1|≥x xC.{}0|>x xD.{}1|->x x3.7.07.32.03.2,7.0log ,5.0log ===c b a 的大小关系是( )A.c a b <<B.c b a <<C.a c b <<D.a b c <<4.下列函数中,与函数x y =相同的是( ) A.2x y = B.x y 10lg = C.()2x y = D.x y lg 10=5.下列函数)(x f 中,满足“对任意()0,,21∞-∈x x ,当21x x <时,都有)()(21x f x f <”的是( )A.x x f 24)(-=B.21)(-=x x f C.22)(2--=x x x f D.||)(x x f -= 6.函数x x y 42+-=的值域是( )A.(]4,∞-B.(]2,∞-C.[]2,0D.[]4,07.已知函数()a ax x x f 3log )(22+-= 在 [)+∞,2 上是增函数,则a 的取值范围是( ) A.(]4,∞- B.(]2,∞- C.(]4,4- D.(]2,4-8.已知函数)(x f 是定义在R 上的偶函数,且在区间[)+∞,0单调递增. 若实数a 满足())1(2lo g lo g 212f a f a f ≤⎪⎪⎭⎫ ⎝⎛+, 则a 的取值范围是( ) A.]21,0( B.]2,0( C.[]2,1 D.]2,21[9.已知)(x f 是定义在)2,1(上的单调递减函数,若)13()1(-<+m f m f ,则实数m 的取值范围是( )A.)1,0(B.)1,32( C.)1,(-∞ D.),1(+∞ 10.若函数⎪⎩⎪⎨⎧≤+->=11)32(1)(x x a x x a x f 是R 上的减函数,则实数a 的取值范围是( ) A.)1,32( B.)1,43[ C.]43,32( D.),32(+∞11.定义在R 上的奇函数)(x f ,0)5(=f ,且对任意不相等的正实数1x ,2x ,都满足()()[]()01221<--x x x f x f ,则不等式 0)(>-x xf 的解集为( ).A.()()5,00,5 -B.()()+∞-∞-,55,C.()()5,05, -∞-D.()()+∞-,50,512.函数)(x f 是自变量不为零的偶函数,且当0>x 时,x x f 2l o g )(=,⎪⎩⎪⎨⎧>≤≤-=111023)(x xx x g x ,若存在实数n 使得)()(n g m f =,则实数m 的取值范围是( )A.]2,2[-B.]2,21[]21,2[ --C.]21,0()0,21[ -D.),2[]2,(+∞--∞二.填空题(本大题共4小题,每小题5分,共20分)13.若函数()αx m x f 1)(-=是幂函数,则函数()m x x g a -=log )((其中1,0≠>a a )的图象过定点A 的坐标为___________________.14.若1)1(2-=-x x f ,则_______________)(=x f .15.函数22)(x x f x -=的零点的个数为__________________.16.关于x 的方程()012124=++⋅-+m m x x 有两个不相等的实数根,则实数m 的取值范围是___________.第二部分三.解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设集合{}04|2=-=x x A ,(){}0)5(12|22=-+++=a x a x x B .若{}2=B A ,求实数a 的值.18.(本小题满分12分)计算: ()713392322log 12lg 2lg 2lg 2183377a a a a ÷⋅-+-++⎪⎭⎫ ⎝⎛---19.(本小题满分12分)已知()x f 是定义在R 上的奇函数,且0≤x 时,()1log )(2+-=x x f )(1)求()()1,0f f 的值;(2)求函数()x f 的解析式;20.(本小题满分12分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为80.1元,当用水超过4吨时,超过部分每吨为00.3元,每月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为x x 3,5.(1)求y 关于x 的函数关系式;(2)若甲、乙两户该月共交水费4.26元,分别求出甲、乙两户该月的用水量.21.(本小题满分12分)设函数()x x a k a x f ---=1)(()10≠>a a 且 是定义域为R 的奇函数.(1)求k 的值;(2)若)(2)(,23)1(22x f a a x g f x x -+==-,求)(x g 在),1[+∞的最小值.22.(本小题满分12分)已知函数 )21)(log 2(log )(42--=x x x f 且 42≤≤x(1)求该函数的值域;(2)若x m x f 2log )(≥对于任意]4,2[∈x 恒成立,求m 的取值范围.高一期中考试题答案一、 选择题1、B2、D3、A4、B5、D 6、C 7、C 8、D 9、B 10、C 11、A 12、B 二、填空题13、(3,0) 14、 15、3 16、(-1,0)三、解答题17、18、19、(1)(2)20、(1)(2)甲用水量为7.5吨;乙用水量为4.5吨21、(1)k=2 (2)22、(1) (2)。
2017-2018学年江苏省扬州市高三(上)期中数学试卷和答案

2017-2018学年江苏省扬州市高三(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)若集合A={2,3},B={3,4},则A∪B=.2.(5分)命题“∀x∈R,x2+2x+5>0”的否定是.3.(5分)已知复数z=(其中i为虚数单位),则|z|=.4.(5分)函数y=的定义域是.5.(5分)若双曲线﹣=1(a>0,b>0)的虚轴长为2,一条渐近线方程为y=x,则双曲线的方程为.6.(5分)若实数x,y满足,则z=4x﹣y的最大值为.7.(5分)若一个扇形的圆心角为π,面积为π,则此扇形的半径为.8.(5分)若sinα=,且α∈(0,),则tan2α的值是.9.(5分)已知函数f(x)是R上的周期为4的偶函数,当x∈[﹣2,0]时,f (x)=()x,则f(2017)=.10.(5分)在△ABC中,AB=3,AC=2,∠BAC=60°,点D,E分别在边BC和AC上,且=,=,则•=.11.(5分)若函数f(x)=|3x﹣1|+ax+2(x∈R)有最小值,则实数a的取值范围是.12.(5分)已知A(﹣1,4),B(2,1),圆C:(x﹣a)2+(y﹣2)2=16,若圆C上存在唯一的点P,使得PA2+2PB2=24成立,则实数a的取值集合为.13.(5分)已知四边形MNPQ的四个顶点都在函数f(x)=log的图象上,且满足=,其中M(3,﹣1),N(,﹣2),则四边形MNPQ的面积为.14.(5分)若实数x,y,z满足,则xyz的最小值为.三、解答题(本大题共6小题,共90分)15.(14分)记函数f(x)=的定义域为集合A,函数g(x)=x2﹣x+1,x∈R的值域为集合B.(1)求A∩B;(2)若对任意x∈(0,+∞),不等式g(x)≥kx恒成立,求实数k的取值范围.16.(14分)已知向量=(,1),=(sinx,﹣cosx)(x∈R).(1)若∥,且x∈[0,π],求x的值;(2)记函数f(x)=•,将函数f(x)图象上的所有点向左平移个单位后得到函数g(x)的图象,当x∈[0,π]时,求函数g(x)的值域.17.(14分)已知抛物线y=﹣x2+x+4与x轴交于A,B两点,与y轴交于C 点,△ABC的外接圆为⊙M.(1)求⊙M的方程;(2)若直线l与⊙M相交于P,Q两点,PQ=4,且直线l在x轴、y轴上的截距相等,求直线l的方程.18.(16分)如图所示,湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的A点处,乙船在中间B点处,丙船在最后面C点处,且BC:AB=5:1,此时一架无人机在空气的P点处对它们进行数据测量,测得∠APB=30°,∠BPC=90°.(船只大小、无人机大小忽略不计)(1)求此时无人机到甲、丙两船的距离之比;(2)若无人机到乙船的距离为10(单位:百米),求此时甲、乙两船的距离.19.(16分)已知椭圆+=1(a>b>0)的右焦点为F,直线l经过F且与椭圆交于A,B两点.(1)给定椭圆的离心率为.①若椭圆的右准线方程为x=2,求椭圆方程;②若A点为椭圆的下顶点,求;(2)若椭圆上存在点P,使得△ABP的重心是坐标原点O,求椭圆离心率e的取值范围.20.(16分)已知函数f(x)=2x+lnx﹣a(x2+x).(1)若函数f(x)在x=1处的切线与直线y=﹣3x平行,求实数a的值;(2)若存在x∈(0,+∞),使得不等式f(x)≥0成立,求实数a的取值范围;(3)当a=0时,设函数p(x)=2x+1﹣f(x),q(x)=x3﹣mx+e(其中e为自然对数底数,m为参数).记函数h(x)=,试确定函数h (x)的零点个数.2017-2018学年江苏省扬州市高三(上)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)若集合A={2,3},B={3,4},则A∪B={2,3,4} .【解答】解:集合A={2,3},B={3,4},则A∪B={2,3,4},故答案为:{2,3,4}2.(5分)命题“∀x∈R,x2+2x+5>0”的否定是∃x0∈R,x02+2x0+5≤0.【解答】解:因为特称命题的否定是全称命题,所以,命题p:“∀x∈R,x2+2x+5>0”的否定是:∃x0∈R,x02+2x0+5≤0.故答案为:∃x0∈R,x02+2x0+5≤0.3.(5分)已知复数z=(其中i为虚数单位),则|z|=.【解答】解:z==,则|z|=.故答案为:.4.(5分)函数y=的定义域是[0,+∞).【解答】解:函数y=的定义域满足不等式3x﹣1≥0,解出即可得到:x≥0,故答案为:[0,+∞)5.(5分)若双曲线﹣=1(a>0,b>0)的虚轴长为2,一条渐近线方程为y=x,则双曲线的方程为﹣=1.【解答】解:根据题意,双曲线的标准方程为﹣=1(a>0,b>0),其焦点在x轴上,渐近线方程为y=±x,双曲线的虚轴长为2,则2b=2,即b=1,又由该双曲线的一条渐近线方程为y=x,则有=,解可得a=2,则双曲线的方程为:﹣=1;故答案为:﹣=1.6.(5分)若实数x,y满足,则z=4x﹣y的最大值为13.【解答】解:实数x,y满足,表示的平面区域如图所示,当直线z=4x﹣y过点A时,目标函数取得最大值,由解得A(3,﹣1),在y轴上截距最小,此时z取得最大值:13.故答案为:13.7.(5分)若一个扇形的圆心角为π,面积为π,则此扇形的半径为2.【解答】解:∵扇形的圆心角为π,面积为π,∴π=r2×π,解得:r=2.故答案为:2.8.(5分)若sinα=,且α∈(0,),则tan2α的值是.【解答】解:sinα=,且α∈(0,),则cosα==,tanα==,即有tan2α===.故答案为:.9.(5分)已知函数f(x)是R上的周期为4的偶函数,当x∈[﹣2,0]时,f (x)=()x,则f(2017)=2.【解答】解:∵f(x)是定义在R上周期为4的偶函数,∴f(2017)=f(1)=f(﹣1),由当x∈[﹣2,0)时,f(x)=()x,∴f(﹣1)=2,故f(2017)=2,故答案为:2.10.(5分)在△ABC中,AB=3,AC=2,∠BAC=60°,点D,E分别在边BC和AC上,且=,=,则•=﹣.【解答】解:==()=+,==﹣+,∴•=(+)•(﹣+)=﹣+﹣.又=9,=4,=3×2×cos60°=3,∴•=﹣3+﹣=﹣.故答案为:﹣.11.(5分)若函数f(x)=|3x﹣1|+ax+2(x∈R)有最小值,则实数a的取值范围是[﹣3,3] .【解答】解:f(x)=|3x﹣1|+ax+2=,函数f(x)有最小值的充要条件为,即﹣3≤a≤3,故实数a的取值范围是[﹣3,3].故答案为:[﹣3,3].12.(5分)已知A(﹣1,4),B(2,1),圆C:(x﹣a)2+(y﹣2)2=16,若圆C上存在唯一的点P,使得PA2+2PB2=24成立,则实数a的取值集合为{﹣1,3} .【解答】解:设P(x,y),则PA2=(x+1)2+(y﹣4)2=x2+y2+2x﹣8y+17,PB2=(x﹣2)2+(y﹣1)2=x2+y2﹣4x﹣2y+5,∵PA2+2PB2=24,∴x2+y2﹣2x﹣4y+1=0,即(x﹣1)2+(y﹣2)2=4.∴P点轨迹方程为(x﹣1)2+(y﹣2)2=4.∵圆C上存在唯一的点P符合题意,∴两圆相切,∴|a﹣1|=2,解得a=﹣1或a=3.故答案为:{﹣1,3}.13.(5分)已知四边形MNPQ的四个顶点都在函数f(x)=log的图象上,且满足=,其中M(3,﹣1),N(,﹣2),则四边形MNPQ的面积为.【解答】解:∵M(3,﹣1),N(,﹣2)都在函数f(x)=log的图象上,∴,解得a=1,b=﹣1,∴f(x)=log=log 2=log2(1﹣),∴f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),∵f(﹣x)=log2=log2=﹣f(x),∴f(x)是奇函数,且在(1,+∞)上单调递增,∵=,∴四边形MNPQ是平行四边形,∴原点O为平行四边形MNPQ的对角线交点.∵=(3,﹣1),=(,﹣2),∴cos<>==,∴S=sin<>=×=.△OMN∴四边形MNPQ的面积为4S=.△OMN故答案为:.14.(5分)若实数x,y,z满足,则xyz的最小值为﹣14﹣30.【解答】解:由xy+2z=1,可得xy=1﹣2z.∴10=x2+y2+z2≥2xy+z2=z2﹣4z+2,化为:z2﹣4z﹣8≤0,解得2﹣2≤z≤2+2.∴xyz=z(1﹣2z)=﹣2z2+z=﹣2(z﹣)2+,其对称轴为z=,故当z=2+2时,有最小值,最小值为(2+2)(﹣4﹣3)=﹣14﹣30故答案为:﹣14﹣30.三、解答题(本大题共6小题,共90分)15.(14分)记函数f(x)=的定义域为集合A,函数g(x)=x2﹣x+1,x∈R的值域为集合B.(1)求A∩B;(2)若对任意x∈(0,+∞),不等式g(x)≥kx恒成立,求实数k的取值范围.【解答】解:(1)f(x)=的定义域为集合A,由﹣x2+2x+3≥0得:﹣1≤x≤3,即A={x|﹣1≤x≤3};又函数g(x)=x2﹣x+1=(x﹣)2+(x∈R)的值域为集合B,则B={x|x≥}.所以A∩B={x|≤x≤3};(2)若对任意x∈(0,+∞),不等式g(x)≥kx恒成立,即∀x∈(0,+∞),x2﹣x+1≥kx恒成立,等价于k≤x+﹣1(x>0)恒成立,因为当x>0时,x+﹣1≥2﹣1=1(当且仅当x=,即x=1时取“=“),所以实数k的取值范围为:k≤1.16.(14分)已知向量=(,1),=(sinx,﹣cosx)(x∈R).(1)若∥,且x∈[0,π],求x的值;(2)记函数f(x)=•,将函数f(x)图象上的所有点向左平移个单位后得到函数g(x)的图象,当x∈[0,π]时,求函数g(x)的值域.【解答】解:向量=(,1),=(sinx,﹣cosx)(x∈R).(1)∵∥,∴﹣cosx=sinx,即tanx=,∵x∈[0,π],∴x=(2)由函数f(x)=•,即f(x)=sinx﹣cosx=2sin(x),将f(x)图象上的所有点向左平移个单位,可得y=2sin(x)=﹣2cosx.∴函数g(x)=﹣2cosx,∵x∈[0,π]时,∴﹣1≤cosx≤1,故函数g(x)的值域为[﹣2,2].17.(14分)已知抛物线y=﹣x2+x+4与x轴交于A,B两点,与y轴交于C 点,△ABC的外接圆为⊙M.(1)求⊙M的方程;(2)若直线l与⊙M相交于P,Q两点,PQ=4,且直线l在x轴、y轴上的截距相等,求直线l的方程.【解答】解:(1)令y=﹣x2+x+4=0,解得x=﹣2,或x=8,即A(﹣2,0),B(8,0),令x=0,则y=4,即C(0,4)设△ABC的外接圆⊙M的方程为:(x﹣a)2+(y﹣b)2=r2,则,解得:故⊙M的方程为(x﹣3)2+y2=25(2)直线l与⊙M相交于P,Q两点,PQ=4,则圆心(3,0)到直线l的距离d==∵直线l在x轴、y轴上的截距相等,则直线l斜率为﹣1,或经过原点;当直线l斜率为﹣1时,设直线的方程为:x+y+M=0,由d==,解得:M=﹣3+,或M=﹣3﹣,当直线l经过原点时,设直线的方程为:Ax+y=0,由d==,解得:A=±,故直线l的方程为:x+y﹣3+=0,或x+y﹣3﹣=0,或x+2y=0,或x﹣2y=0.18.(16分)如图所示,湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的A点处,乙船在中间B点处,丙船在最后面C点处,且BC:AB=5:1,此时一架无人机在空气的P点处对它们进行数据测量,测得∠APB=30°,∠BPC=90°.(船只大小、无人机大小忽略不计)(1)求此时无人机到甲、丙两船的距离之比;(2)若无人机到乙船的距离为10(单位:百米),求此时甲、乙两船的距离.【解答】解:(1)在△BPC中,由正弦定理得=BC,在△PAB中,由正弦定理得==2AB,又∠PBC+∠PBA=180°,∴sin∠PBC=sin∠PBA,∴=.(2)∵==,∴2sin(60°﹣C)=5sinC,即cosC﹣sinC=5sinC,又sin2C+cos2C=1,0<C<60°,∴sinC=,∴BC==10,AB=BC=2,∴甲、乙两船的距离为2百米.19.(16分)已知椭圆+=1(a>b>0)的右焦点为F,直线l经过F且与椭圆交于A,B两点.(1)给定椭圆的离心率为.①若椭圆的右准线方程为x=2,求椭圆方程;②若A点为椭圆的下顶点,求;(2)若椭圆上存在点P,使得△ABP的重心是坐标原点O,求椭圆离心率e的取值范围.【解答】解:(1)①由题意可得,解得a=,b=1,∴椭圆方程为+y2=1.②F(c,0),A(0,﹣b),∴直线AB的方程为y=﹣b,∵e==,∴b=c,a=b,∴即直线AB方程为y=x﹣b,联立方程组,消元得x2﹣2bx=0,∴x=0或x=2b,∴B点横坐标为2b,∴==1.(2)设A(x1,y1),B(x2,y2),P(x0,y0).,依题意直线l的斜率不能为0,故设直线l的方程为:x=my+c,由,得(b2m2+a2)y2+2mcb2y﹣b4=0.,x1+x2=my1+c+my2+c=要使△ABP的重心是坐标原点O,则有∴P(x0,y0)在b2x2+a2y2=a2b2上,得=a2b2,⇒b4m4+(2b2a2﹣4c2b2)m2+a4﹣4a2c2=0,⇒(b2m2+a2)(b2m2+a2﹣4c2)=0,∵⇒b2m2+a2>0,∴椭圆上存在点P,使得△ABP的重心是坐标原点O,则方程b2m2+a2﹣4c2=0必成立.∴a2﹣4c2≤0,⇒⇒e=,椭圆离心率e的取值范围为[,1).20.(16分)已知函数f(x)=2x+lnx﹣a(x2+x).(1)若函数f(x)在x=1处的切线与直线y=﹣3x平行,求实数a的值;(2)若存在x∈(0,+∞),使得不等式f(x)≥0成立,求实数a的取值范围;(3)当a=0时,设函数p(x)=2x+1﹣f(x),q(x)=x3﹣mx+e(其中e为自然对数底数,m为参数).记函数h(x)=,试确定函数h (x)的零点个数.【解答】解:(1)函数f(x)=2x+lnx﹣a(x2+x)的导数为f′(x)=2+﹣a(2x+1),可得函数f(x)在x=1处的切线斜率为3﹣3a,由切线与直线y=﹣3x平行,可得3﹣3a=﹣3,解得a=2;(2)存在x∈(0,+∞),使得不等式f(x)≥0成立,即为a≤的最大值,令m(x)=,(x>0),m′(x)=,由1﹣x﹣lnx=0,即x+lnx=1,由于x+lnx﹣1的导数为1+>0,即x+ln﹣1在x>0递增,且x=1时,x+lnx﹣1=0,则x=1为m(x)的极值点,当x>1时,m(x)递减,当0<x<1时,m(x)递增,则x=1时,m(x)取得极大值,且为最大值1,则a≤1;(3)当a=0时,设函数p(x)=2x+1﹣f(x)=1﹣lnx,q(x)=x3﹣mx+e,则当1﹣lnx≥x3﹣mx+e,h(x)=1﹣lnx;当1﹣lnx<x3﹣mx+e,h(x)=x3﹣mx+e.①当x∈(0,e)时,p(x)>0,依题意,h(x)≥p(x)>0,h(x)无零点;②当x=e时,p(e)=0,q(e)=e3﹣me+e,若q(e)=e3﹣me+e≤0,即m≥e2+1,则e是h(x)的一个零点;若q(e)=e3﹣me+e>0,即m<e2+1,则e不是h(x)的零点;③当x∈(e,+∞)时,p(x)<0,所以此时只需考虑函数q(x)在(e,+∞)上零点的情况.因为q'(x)=3x2﹣m>3e2﹣m,所以当m≤3e2时,q'(x)>0,q(x)在(e,+∞)上单调递增.又q(e)=e3﹣me+e,所以(i)当m≤e2+1时,q(e)≥0,q(x)在(e,+∞)上无零点;(ii)3e2≥m>e2+1时,q(e)<0,又q(2e)=8e3﹣2me+e≥6e3﹣e>0,所以此时q(x)在(e,+∞)上恰有一个零点;当m>3e2时,令q'(x)=0,得x=±.由q'(x)<0,得e<x<;由q'(x)>0,得x>.所以q(x)在(e,)上单调递减,在(,+∞)上单调递增.因为q(e)=e3﹣me+e<e3﹣3e3+e<0,q(m)=m3﹣m2+e>m2﹣m2+e=e>0,所以此时q(x)在(e,+∞)上恰有一个零点;综上,m<e2+1时,h(x)没有零点;m=e2+1时,h(x)有一个零点;m>e2+1时,h(x)有两个零点.。
2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.512.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.154.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=105.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.78.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.511.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,7012.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.14.(5分)将二进制数101101(2)化为十进制数,结果为;再将结果化为8进制数,结果为.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填,输出的s=.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.51【分析】用459除以357,得到商是1,余数是102,用357除以102,得到商是3,余数是51,用102除以51得到商是2,没有余数,得到两个数字的最大公约数是51.【解答】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选D.【点评】本题考查辗转相除计算最大公约数,本题是一个基础题,是在算法案例中出现的一个案例,近几年在新课标中出现,学生掌握的比较好,若出现一定会得分.2.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a【分析】根据赋值语句的格式,逐一进行分析,即可得到答案.【解答】解:由赋值语句的格式我们可知,赋值语句的赋值号左边必须是一个变量,而右边的运算符号与平常书写的运算符号有所不同.A中左侧是常数,不是变量,格式不对;B中满足赋值语句的格式与要求,正确;C与D中左侧是运算式,不对;故选:B.【点评】本题考查赋值语句,通过对赋值语句定义和格式的把握直接进行判断即可,属于基础题.3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.15【分析】根据分层抽样的定义,即可得到结论.【解答】解:∵高一240人,高二260人,高三300人,∴按年级抽样分配参加名额40人,高二参加人数为×40=13,故选:B.【点评】本题考查了分层抽样的定义和应用问题,是基础题.4.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=10【分析】先根据输出的结果推出循环体执行的次数,再根据s=2+4+6+…+10=30得到程序中UNTIL后面的“条件”.【解答】解:因为输出的结果是30,即s=2+4+6+…+10,需执行5次,则程序中UNTIL后面的“条件”应为i>10.故选B.【点评】本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能.5.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数【分析】方差计算公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],n表示样本容量,为平均数,根据此公式即可得到答案.【解答】解:由于S2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2],所以样本容量是10,平均数是20.故选:D.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.【分析】根据题意,在图中的四个方格中填入数字的方法种数共有43种,对于A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A 方格,小的放进B方格,由组合数公式计算可得其填法数目,对于另外两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得填入A方格的数字大于B方格的数字的填法种数,利用古典概型的概率计算公式求概率.【解答】解:根据题意,在图中的四个方格中填入数字的方法种数共有44=256种,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有C42=6种情况,对于另外两个方格,每个方格有4种情况,则共有4×4=16种情况,则填入A方格的数字大于B方格的数字的不同的填法共有16×6=96种,则填入A方格的数字大于B方格的数字的概率为p=.故选D.【点评】本题考查古典概型及其概率计算公式,考查排列、组合的运用,注意题意中数字可以重复的条件,这是易错点,此题是基础题,也是易错题.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.7【分析】根据茎叶图提供的数据,去掉1个最高分和1个最低分后,利用公式求平均数可得x的值.【解答】解:选手的7个得分中去掉1个最高分96,去掉1个最低分86,剩余5个得分为88,93,90,94,(90+x);它们的平均分为=91,∴x=0;故选:A.【点评】本题考查了利用茎叶图求平均数的问题,是基础题.8.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.【分析】使2x∈[2,4]的区间为[1,2],由此能求出使得2x∈[2,4]的概率.【解答】解:∵2=2¹,4=22∴使2x∈[2,4]的区间为[1,2],∵x∈[1,6],且[1,6]长为5,[1,2]长为1∴使得2x∈[2,4]的概率p=.故选:B.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意几何概型的合理运用.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球【分析】利用互斥事件和对立事件的概念求解.【解答】解:在A中,至少有一个黒球与都是黒球能同时发生,两个事件不是互斥事件;在B中,至少有一个红球与都是红球能同时发生,两个事件不是互斥事件;在C中,至少有一个黒球与至少有1个红球能同时发生,两个事件不是互斥事件;在D中,恰有1个黒球与恰有2个黒球不能同时发生,可以同时不发生,两个事件是互斥而不对立事件.故选:D.【点评】本题考查互斥而不对立的两个事件的判断,是基础题,解题时要认真审题,注意互斥事件和对立事件的概念的合理运用.10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.5【分析】先求样本中心点,再代入回归直线方程,即可求得m的值.【解答】解:由题意,,∵y对x的回归直线方程是=0.7x+0.35,∴2.5+0.25m=3.15+0.35,∴m=4.故选A.【点评】本题考查回归直线方程,解题的关键是利用回归直线方程恒过样本中心点,属于基础题.11.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,70【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,求出该班的学生数,再计算平均成绩.【解答】解:根据频率分布直方图,得;低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数为=50,;所以,该班的平均成绩为:30×0.005×20+50×0.01×20+70×0.02×20+90×0.015×20=68.故选:B.【点评】本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,考查了求平均数的计算问题,是基础题目.12.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34【分析】由于多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,可得当x=﹣4时,v0=3,v1=3×(﹣4)+5=﹣7,v2,v3即可得出.【解答】解:∵多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,当x=﹣4时,∴v0=3,v1=3×(﹣4)+5=﹣7,v2=﹣7×(﹣4)+6=34,v3=34×(﹣4)+79=﹣57.故选:C.【点评】本题考查了秦九韶算法计算多项式的值,考查了计算能力,属于基础题.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号785,667,199,507,175(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.【分析】找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.【解答】解:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916它大于800要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.故答案为:785、667、199、507、175【点评】抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.14.(5分)将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8).【分析】根据二进制转化为十进制的方法,分别用每位数字乘以权重,累加后即可得到结果;根据“除8取余法”的方法转化为对应的八进制数即可得到结果.【解答】解:101101(2)=1×20+0×21+1×22+1×23+0×24+1×25=1+4+8+32=45..又45=8×5+5,∴45=55(8)故答案为:45,55.(8)【点评】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于基础题.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于60.【分析】根据比例关系设出各组的频率,在频率分布表中,频数的和等于样本容量,频率的和等于1,求出前三组的频率,再频数和建立等量关系即可.【解答】解:设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得,所以前三组数据的频率分别是,故前三组数据的频数之和等于=27,解得n=60.故答案为60.【点评】本小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键,属于基础题.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填i<7(或i≤6),输出的s=51.【分析】由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故循环次数为6,由于第一次进行循环时,循环变量的初值为1,步长为1,故最后一次进入循环的终值应为6,故不难得到判断框中的条件及输出结果.【解答】解:由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故判断框应填i≤6或i<7,输出s的值为:9+13+11+7+5+6=51.故答案为:i<7(或i≤6),51.【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.【分析】利用线段的长度与面积的关系,直接利用几何概型求解即可.【解答】解:点P在BC边上沿B→C运动,落在BC上的任何一点都是等可能的.全部基本事件可用BC表示.…(2分)设事件M 为“△ABC面积小于4”,则事件M包含的基本事件可用长度为2的线段BP 表示,…(4分)由几何概型可知:即所求事件的概率为.…(10分)【点评】本题主要考查了几何概型.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关解.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}做出集合对应的面积是边长为60的正方形的面积,写出满足条件的事件A═{(x,y)|0<x<60,0<y<60,|x﹣y|≤15}对应的集合和面积,根据面积之比得到概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}集合对应的面积是边长为60的正方形的面积SΩ=60×60,而满足条件的事件对应的集合是A={(x,y)|0<x<60,0<y<60,|x﹣y|≤15}得到S A=60×60﹣(60﹣15)×(60﹣15)∴两人能够会面的概率P==,∴两人能够会面的概率是.【点评】本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.【分析】(I)根据所有小矩形的面积之和为1,求得第四组的频率,再根据小矩形的高=求a的值;(II)利用分段函数写出S关于x的函数;根据S≥3400得x的范围,利用频率分布直方图求数据在范围内的频率及可得概率.【解答】解:(Ⅰ)由直方图可知:(0.013+0.015+0.017+a+0.030)×10=1,∴a=0.025,∵,∴估计日需求量的众数为125件;(Ⅱ)(ⅰ)当100≤x<130时,S=30x﹣20(130﹣x)=50x﹣2600,当130≤x≤150时,S=30×130=3900,∴;(ⅱ)若S≥3400由50x﹣2600≥3400得x≥120,∵100≤x≤150,∴120≤x≤150,∴由直方图可知当120≤x≤150时的频率是(0.030+0.025+0.015)×10=0.7,∴可估计当天纯利润S不少于3400元的概率是0.7.【点评】本题考查了由频率分布直方图求频率与众数,考查了分段函数的值域与定义域,在频率分布直方图中小矩形的高=,所有小矩形的面积之和为1.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.【分析】(I)算法的功能是求f(x)=的值,根据输入实数x 的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7求得a 、b ;(II )分别在不同的段上求得函数的值域,再求并集.【解答】解:(Ⅰ)由程序框图知:算法的功能是求f (x )=的值,∵输入x=﹣1<0,输出f (﹣1)=﹣b=2,∴b=﹣2.∵输入x=3>0,输出f (3)=a 3﹣1=7,∴a=2. ∴. (Ⅱ)由(Ⅰ)知:①当x <0时,f (x )=﹣2x >1,∴; ②当x ≥0时,f (x )=2x ﹣1>1,∴x >1.综上满足不等式f (x )>1的x 的取值范围为或x >1}.【点评】本题借助考查选择结构程序框图,考查了分段函数求值域,解题的关键是利用程序框图求得分段函数的解析式.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .【分析】(1)利用题目条件直接画出散点图即可.(2)利用条件求解回归直线方程的参数,即可.(3)利用回归直线方程求解推出结果即可.【解答】解:(1)散点图如图所示,…(3分)(2)由表中数据得:=52.5,=3.5,=3.5;=54,∴===0.7,,==3.5﹣0.7×3.5=1.05,∴=0.7x+1.05 …(8分)(3)将x=10代入回归直线方程,得=0.7×10+1.05=8.05(小时)预测加工10个零件需要8.05小时.…(12分)【点评】本题考查回归直线方程的求法,散点图的画法,考查计算能力.。
河北定州中学2018届高三(承智班)上-期中考试数学试卷(含答案)

河北定州中学2017—2018学年度高三上学期数学期中考试试题一、选择题1.函数的导函数为,满足,且,则的极值情况为()A. 有极大值无极小值B. 有极小值无极大值C. 既有极大值又有极小值D. 既无极大值也无极小值2.已知直线分别于半径为的圆相切于点,若点在圆的内部(不包括边界),则实数的取值范围是( )A. B. C. D.3.已知函数(为常数,)的图像关于直线对称,则函数的图象()A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称4.设函数是定义在上的偶函数,且,当时,,若在区间内关于的方程(且)有且只有4个不同的根,则实数的取值范围是()A. B. C. D.5.已知,若,则当取得最小值时,()A. 2B. 4C. 6D. 86.已知数列满足,,其前项和为,则下列说法正确的个数为()①数列是等差数列;②;③.A. 0B. 1C. 2D. 37.设O 为坐标原点, P 是以F 为焦点的抛物线22y px =(0p >)上任意一点, M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A.2 B. 23C. 3D. 18.若函数()f x x =,则函数()12log y f x x =-的零点个数是( ) A. 5个 B. 4个 C. 3个 D. 2个9.用一个平面去截正方体,则截面不可能是( )A. 等边三角形B. 直角三角形C. 正方形D. 正六边形 10.已知函数()()2312cos sin 2sin cos 222f x x x πππθθθ⎛⎫⎛⎫⎛⎫=-+--≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,在3,86ππ⎡⎤--⎢⎥⎣⎦上单调递增,若8f m π⎛⎫≤⎪⎝⎭恒成立,则实数m 的取值范围为( ) A. 3,⎡⎫+∞⎪⎢⎪⎣⎭ B. 1,2⎡⎫+∞⎪⎢⎣⎭ C. [)1,+∞ D. 2,⎡⎫+∞⎪⎢⎪⎣⎭11.如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A. B. C. D.12.已知公比不为1的等比数列的前项和为,且成等差数列,则( )A. B. C. D.二、填空题13.已知 ,若关于的方程 恰好有 个不相等的实数根,则实数的取值范围是______________.14.已知圆22:1O x y +=的弦AB 长为2,若线段AP 是圆O 的直径,则AP AB ⋅=u u u v u u u v____;若点P 为圆O 上的动点,则AP AB ⋅u u u v u u u v的取值范围是_____.15.在数1和2之间插入n 个正数,使得这n+2个数构成递增等比数列,将这n+2个数的乘积记为n A ,令*2log ,n n a A n N =∈.(1)数列{}n a 的通项公式为n a =____________;(2) 2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋅⋅⋅+⋅=___________.16.已知ABC ∆的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且()222c b b =-,则AO BC ⋅u u u v u u u v的取值范围是__________.三、解答题17.函数.(1)求的单调区间;(2)若,求证:.18.已知函数.(1)求在区间上的最值;(2)若过点可作曲线的3条切线,求实数的取值范围.19.设公差大于0的等差数列的前项和为.已知,且成等比数列,记数列的前项和为. (1)求; (2)若对于任意的,恒成立,求实数的取值范围.20.在平面直角坐标系xOy 中, F 是抛物线2:2(0)C y px p =>的焦点, M 是抛物线C 上的任意一点,当M 位于第一象限内时, OFM ∆外接圆的圆心到抛物线C 准线的距离为32. (1)求抛物线C 的方程;(2)过()1,0K -的直线l 交抛物线C 于,A B 两点,且[]()2,3KA KB λλ=∈u u u r u u u r,点G 为x 轴上一点,且GA GB =,求点G 的横坐标0x 的取值范围。
南京市2017~2018学年度第一学期期中考试·数学参考答案

(这是边文,请据需要手工删加)南京市2017~2018学年度第一学期期中考试数学参考答案1. {2,3}2. -1-i3. 35 4. 600 5.2或5 6. 12 7. -2 8. 2-1 9. -4 10. -1411. 9 12. -4 13. ⎝⎛⎦⎤0,1e +1 14. y=22x15. (1) a +b =(sin x -1,3cos x +1). 因为(a +b )∥c ,所以sin x -1=3cos x +1,则sin x -3cos x =2, 可得2⎝⎛⎭⎫12sin x -32cos x =2,故sin ⎝⎛⎭⎫x -π3=1.因为x ∈[0,π],所以x -π3∈⎣⎡⎦⎤-π3,2π3,故x -π3=π2,解得x =5π6.(2) 因为a ·b =12,所以-sin x +3cos x=12,即sin x -3cos x =-12, 可得2⎝⎛⎭⎫12sin x -32cos x =-12,故sin ⎝⎛⎭⎫x -π3=-14.因为⎝⎛⎫x +π6-⎝⎛⎭⎫x -π3=π2,所以sin ⎝⎛⎭⎫x +π6=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫x -π3=cos ⎝⎛⎭⎫x -π3. 由x ∈[0,π],可得x -π3∈⎣⎡⎦⎤-π3,2π3,又sin ⎝⎛⎭⎫x -π3=-14<0,则x -π3∈⎣⎡⎦⎤-π3,0,故可得cos ⎝⎛⎭⎫x -π3>0. 因为sin 2⎝⎛⎭⎫x -π3+cos 2⎝⎛⎭⎫x -π3=1,所以cos ⎝⎛⎭⎫x -π3=1-⎝⎛⎭⎫-142=154.16. (1) 如图,连结OE.由四边形ABCD 是正方形知O 为BD 的中点.因为PD ∥平面ACE ,PD ⊂平面PBD ,平面PBD ∩平面ACE =OE ,所以PD ∥OE.在△PBD 中,PD ∥DE ,O 为BD 为中点,所以E 为PB 的中点.(2) 在四棱锥PABCD 中,AB =2PC , 因为四边形ABCD 是正方形, 所以AC =2AB =2OC ,则AB =2OC ,所以PC =OC.在△CPO 中,PC =OC ,G 为PO 的中点,所以CG ⊥PO.因为PC ⊥底面ABCD ,BD ⊂底面ABCD ,所以PC ⊥BD.因为四边形AC ⊥BD ,因为AC ,PC ⊂所以BD ⊥平面因为CG ⊂平面因为PO ,BD ⊂O ,所以CG ⊥平面17. (1) =DB 1=h ,则AC =12(AB -h =AC·tan 60故V(x)=Sh =694x 2(30-x),0<x<30. (2) V′(x)=94(60x x =20.当x ∈(0,20)30)时,V ′(x)>0,所以V(x)在(030)单调递减, 所以当且仅当x 值9 000. cm 时,容318. (1) 316, 所以3a 4-16a 2a 2=43.所以椭圆C y 2=1.(2) 设F 2(c ,0)0),B(-x 1,-y 1),故M ⎝⎛⎭⎫x 1-c 2,y 12①由题意,得→因为函数h(x)的最小值为-1e ,所以x =-1是不等式f(x)≤g(x)的解, 所以-1+a ≤-1e ,即a ≤1-1e .故实数a 的取值范围是⎝⎛⎦⎤-∞,1-1e . (3) 因为h(x)=g(x),所以g(x)≥f(x)恒成立,即x e x ≥x 3-ax 对一切x ∈R 恒成立.令p (x )=x 2-e x ,即p ′=2x -e x ,p ″(x )=2-e x ,当x >ln 2,p ″(x )<0;当x <ln 2,p ″(x )>0, 所以p ′(x )max =2ln 2-2<0,所以p (x )=x 2-e x 在R 上单调递减. x e x ≥x 3-ax 对一切x ∈R 恒成立等价于 ①当x >0时,问题转化为a ≥p (x )在R 上恒成立;②当x =0时,不等式恒成立,则a ∈R ; ③当x <0时,问题转化为a ≤p (x )在R 上恒成立.因为p (x )=x 2-e x 是R 上的单调减函数, 所以当x >0时,p (x )<p (0)=-1,所以a ≥-1;当x <0时,p (x )>p (0)=-1,所以a ≤-1.综上所述,a =-1.20. (1) 由g ⎝⎛⎭⎫-12-g(1)=f(0),得(-2b +4c)-(b +c)=-3,故b 、c 所满足的关系式为b -c -1=0. (2) 方法一:由b =0,b -c -1=0,可得c =-1.方程f(x)=g(x),即ax -3=-x -2,可转化为ax 3-3x 2+1=0在(0,+∞)上有唯一解.令h(x)=ax 3-3x 2+1,则h′(x)=3ax 2-6x =3x(ax -2).当a ≤0时,h ′(x)<0,h(x)在(0,+∞)上单调递减.又h(0)=1>0,h(1)=a -2<0,h(x)在(0,+∞)上连续,由零点存性定理,知h(x)在(0,1)内存在唯一零点,即h(x)在(0,+∞)上有唯一的零点;当a>0时,令h′(x)=0,得x =0或x =2a ,所以h(x)在⎝⎛⎭⎫0,2a 上单调递减,在(2a ,+∞)上单调递增,所以h(x)min =h ⎝⎛⎭⎫2a =1-4a 2. 若h ⎝⎛⎭⎫2a =0,即a =2,则当x ∈(0,+∞)时,h(x)≥0,当且仅当x =2a 时,h(x)=0,即h(x)在(0,+∞)上有唯一的零点;若h ⎝⎛⎭⎫2a >0,则当x ∈(0,+∞)时,h(x)>0恒成立,即h(x)在(0,+∞)上不存在零点;若h ⎝⎛⎭⎫2a <0,因为h(0)=1>0,h ⎝⎛⎭⎫3a =1>0, 所以h(x)在⎝⎛⎭⎫0,2a 和⎝⎛⎭⎫2a ,3a 内各有一个零点,即函数h(x)的零点不唯一.综上所述,实数a 的取值范围是(-∞,0)∪{2}.方法二:由方法一可知a =3x -1-x -3.令x -1=t ,则由题意可得a =3t -t 3在(0,+∞)上有唯一解.令h(t)=3t -t 3(t>0),则由h′(t)=3-3t 2=0,可得t =1,当0<t<1时,由h′(t)>0,可知h(t)在(0,1)上是单调增函数;当t>1时,由h′(t)<0,可知h(t)是在(1,+∞)上是单调减函数,故当t =1时,h(t)取得最大值2; 当0<t<1时,h(t)>h(0)=0, 所以f(x)=g(x)在(0,1)无解; 当t>1时,因为h(3)=0,所以当t>3时,h(t)<0,由零点存在性定理可知h(t)在(1,+∞)只有一个零点.故当a =2或a ≤0时,方程f(x)=g(x)在(0,+∞)有唯一解.从而所求a 的取值范围是{a|a =2或a ≤0}.(3) 由b =1,b -c -1=0,可得c =0. 由A ={x|f(x)>g(x)且g(x)<0}得ax -3>1x 且x<0,即ax 2-3x -1<0且x<0.当a>0时,A =⎝⎛⎭⎪⎫3-9+4a 2a ,0;当a =0时,A =⎝⎛⎭⎫-13,0; 当a<-94时,A =(-∞,0);当-94≤a<0时,A =(-∞,3+9+4a 2a )∪(3-9+4a2a,0). 数学附加题21. B. 由题意知M ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤45,则⎣⎢⎡⎦⎥⎤2+a 2b -1=⎣⎢⎡⎦⎥⎤45,所以⎩⎪⎨⎪⎧2+a =4,2b -1=5,解得⎩⎪⎨⎪⎧a =2,b =3,所以M =⎣⎢⎡⎦⎥⎤123-1.由|M |=⎪⎪⎪⎪⎪⎪123-1=-7得M -1=⎣⎢⎡⎦⎥⎤172737-17. C. 因为ρ=2cos θ-2sin θ, 即ρ2=2ρcos θ-2ρsin θ, 所以圆C 的直角坐标方程为x 2+y 2-2x +2y =0,即⎝⎛⎭⎫x -222+⎝⎛⎭⎫y +222=1, 所以圆心的直角坐标为⎝⎛⎭⎫22,-22. 因为直线的普通方程为x -y +42=0,所以圆心C 到直线l 距离是⎪⎪⎪⎪22+22+422=5,故直线l 上的点向圆C 引的切线长的最小值是52-12=2 6.22. (1) 如图,以A 为原点建立如图所示的空间直角坐标系Axyz ,则A(0,0,0),B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·A 1C 1→=0,即⎩⎪⎨⎪⎧3y -4z =0,4x =0.取z =3,则x =0,y =4,所以平面A 1BC 1的一个法向量为n 1=(0,4,3).同理可得平面BB 1C 1的一个法向量为n 2=(3,4,0),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1625.因为〈n 1,n 2〉∈[0,π],所以二面角A 1BC 1B 1的正弦值为34125.(2) 假设存在.设D (x ,y ,z )是线段BC 1上一点,且BD →=λBC 1→,0≤λ≤1,则(x ,y -3,z )=λ(4,-3,4),所以x =4λ,y =3-3λ,z =4λ,所以AD →=(4λ,3-3λ,4λ). 因为AD ⊥A 1B ,所以AD →·A 1B →=0, 即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B ,此时BD BC 1=λ=925.23. (1) 从7个顶点中随机选取3个点构成三角形,共有C 37=35(种)取法.其中X =3的三角形如△ABF ,这类三角形共有6个,所以P(X=3)=6 35.(2)由题意,X的可能取值为3,223,3 3.其中X=3的三角形如△ABF,角形共有6个;其中X=2的三角形有两类,如△个),△PAB(6个),共有9个;其中X=6的三角形如△PBD,角形共有6个;其中X=23的三角形如△CDF 三角形共有12个;其中X=33的三角形如△BDF。
2017-2018学年度第一学期期中考试数学试卷

2017--2018学年度第二学期高一数学期中试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知ABC ∆中,31sin ,2,3===B AC AB .则=C ( )。
A.ο30 B.ο60 C.ο30或ο150 D.ο60或ο120 2 设11a b >>>-,则下列不等式中恒成立的是 ( ) A ba 11< Bb a 11> C 2a b > D 22a b > 3.已知数列{}n a 满足*112,10()n n a a a n N +=-+=∈,则此数列的通项n a 等于 ( ).A 21n + .B 1n + .C 1n - .D 3n -4. 在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A 090 B 060 C 0135 D 0150 5. 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-≤⎩≥≥,,.则目标函数4z x y =+的最大值为( ) A.4 B.11C.12 D.14 6. 一元二次不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b +的值是( ) A 10 B 10- C 14 D 14-7.在等差数列{}n a 中,若210,a a 是方程21280x x +-=的两个根,那么6a 的值为A .-12B .-6C .12D .68.△ABC 中,cos cos A a B b=,则△ABC 一定是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 9.若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成 立的最大自然数n 是:( )A .4005 B . 4006 C .4007 D .4008 10.在△ABC 中,若3a = 2b sin A , 则B 为( )A . 3πB . 6πC . 6π或65πD . 3π或32π 11 《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样的一道题目,把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和.则最小的1份为( )A .53 B .56 C .103 D .11612.在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210,则项数n 为( )A .12 B .14 C .15 D .16二、填空题:本大题共4小题,每小题5分,满分20分. 13 不等式24x ≥的解集是 .14.若a >b >c >1,则abc , ab , bc , ac 的从小到大的顺序是15一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60o ,行驶4h后,船到达C 处,看到这个灯塔在北偏东15o ,这时船与灯塔的距离为 km .16.在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a = .三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程或演算步骤.17. (本小题满分10分)已知{}n a 为等差数列,且36a =-,60a =。
(完整word版)17-18学年高等代数I期中考试试卷答案

北 京 交 通 大 学2017-2018学年第一学期《高等代数I 》期中考试试卷学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________一.(本题满分36分,每题3分)请把答案填在空中.1、2n+1级排列2n+1,2n-1,...,5,3,1,2,4,6,...,2n 的逆序数是 n(n+1) 。
2、若 111213212223313233,a a a a a a d a a a = 则 112131132333122232333222a a a a a a a a a ---= 6d 。
3、设ij A 是行列式1230222621033418-中ij a 的代数余子式,则142434448511A A A A +++ 等 于 0 。
4、若方程组123123123112ax x x x ax x x x ax ++=⎧⎪++=⎨⎪++=-⎩有无穷多解,则a= -2 。
5、矩阵010...00002...00............000 (201500)0 (020*******)...= 2017! 。
6、设,,a b c 为常数,则向量组()()121,2,,1,1,1,,1,a b αα== ()30,1,,0c α=线性相关,当且仅当,,a b c 满足条件0a b c --=。
显然,将其的系数矩阵化简后得到的秩应当小于三,才能说明其线性相关。
7、 若向量组1234,,,αααα的秩为4,则向量组12233441,,,αααααααα++++的秩 为 3 。
将其作为一个线性方程组,展开,观察方程组解的情况8、设1121111122254A a b ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩为2,则a = 1 ,b = 1 。
9、设有n 维向量组12s ,,...,ααα,则下面命题正确的是 4 , (1)若s α不能被121,,...,s ααα-线性表示,则12s ,,...,ααα线性无关; (2)若12s ,,...,ααα中任意1s -个向量线性无关,则12s ,,...,ααα线性无关;(3)若12s ,,..,ααα线性无关,则1223s -1s 1,,..,,s αααααααα++++线性无关;(4)若12s ,,...,ααα可由121,,...,s βββ-线性表出,则12s ,,...,ααα线性相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年第一学期北京科技大学
微积分AI 期中考试试题答案
一、填空题(本题共40分,每小题4分)
1、14x ≤≤. 2.不能. 3. ()2,10,11,01
1,1
x x x f x x x
x ⎧>⎪=⎪⎪=⎨-<<⎪⎪=-⎪⎩. 4.0. 5.5021225250cos 2sin 2sin 22x x x x x ⎛⎫-+ ⎪⎝⎭ 6. 9
4. 7.12
8.()250! 9.2e - 10.2π
二、单项选择题(本题共40分,每小题4分)
(1).D. (2) .B (3).C. (4) .A. (5) .D.
(6).B (7).C (8) .B (9) . A. (10) .D.
三、解答题(共14分,每小题7分)
1、1、设()1sin ,00,0
x x f x x x α⎧≠⎪=⎨⎪=⎩,试确定α的取值范围,使得()f x 分别满足:(1)在0x =处右连续;(2)在0x =处右导数存在;(3)导函数()f x '在0x =处右连续.
解:(1)要使()f x 在0x =处右连续,则必须()()++001lim lim sin 00→→===x x f x x f x
α,所以0α> 2分 (2)要使()f x 在0x =处右导数存在,则必须()()++10001lim lim sin -→→-=x x f x f x x x
α存在,所以1α> 2分 (3)当0x ≠时,()1211sin cos f x x x x x
ααα--'=- -------- 1分 要使()f x '在0x =处右连续,则必须()f x 在0x =处右导数存在,由(2)得1α>,并且
()()++12+001100lim lim sin cos --→→⎛⎫''===- ⎪⎝⎭
x x f f x x x x x ααα,所以2α>. -------- 2分
2、利用泰勒展开式求极限()30e sin 1lim x x x x x x →-+
解:由于分母为3x ,因此,先求分子的3阶麦克劳林展开式,
()2233211sin 11()()26x e x x x x x o x x x o x x x ⎛⎫⎛⎫-+=+++⋅-+-- ⎪ ⎪⎝⎭⎝⎭
331()3x o x =+ --------4分 所以,()3333001()sin 113lim lim 3x
x x x o x e x x x x x →→+-+== -------- 3分
四、证明题(6分)以下两题,任选一题
1、设函数()f x 在[]0,1上有界,且对10,2x ⎡⎤∈⎢⎥⎣
⎦
,有()()22f x f x =. 证明:(1)()00f =;(2)()0lim 0x f x +→=. 证明:(1)将0x =带入()()22f x f x =得()()020f f =,所以()00f =. -------- 3分 (2)当10,
2n x ⎡⎤∈⎢⎥⎣⎦时,有()()22n n f x f x =,可记()[],0,1f x M x ≤∈,于是, 当10,2n x ⎡
⎤∈⎢⎥⎣⎦时,有()()1222
n n n M f x f x =≤,所以()0lim 0x f x +→=. -------- 3分 2、设()f x 在[0,]a 上存在三阶导数,且()()00f f a ==,设()()3F x x f x =.证明:存在一点(0,)a ξ∈,使得()0F ξ'''=
证明:由所给条件知,()F x 在[0,]a 上满足罗尔定理条件,
所以,存在1(0,)a ξ∈,使得1()0F ξ'=, -------- 1分 由于()()()233F x x f x x f x ''=+,()00F '=.所以,()F x '在1[0,]ξ上满足罗尔定理条件,因此,存在21(0,)ξξ∈,使得2()0F ξ''=, -------- 2分 再由()()()()()()()()2232363366F x xf x x f x x f x x f x xf x x f x x f x '''''''''=+++=++, 得()00F ''=,所以,()F x ''在2[0,]ξ上满足罗尔定理条件,因此,存在2(0,)(0,)a ξξ∈⊂,使得()0F ξ'''=. -------- 3分。