平面向量
平面向量知识点总结(精华)

必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示 .注意:不能说向量就是有向线段,为什么?提示:向量可以平移.举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0)2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与u A uu B r共线uuur的单位向量是u A u B ur );| AB|4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r、b r叫做平行向量,记作:a r∥b r,规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有r0);④三点A、B、C 共线u A uu B r、u A u C ur共线.6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r.举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相等的充要条件是它们的起点相同,终点相同 . (3)若u A u B uru D u C u r,则ABCD是平行四边形 .(4)若ABCD是平行四边形,则u A uu B r u D u C uur.(5)若a r b r,b r c r,则a r c r.(6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2. 符号表示 :用一个小写的英文字母来表示,如 a r ,b r , c r 等;3. 坐标表示 :在平面内建立直角坐标系,以与 x 轴、 y 轴方向相同 的两个单位向量 i r , r j 为基底,则平面内的任一向量 a r 可表示为 a r xi r y r j (x, y ) ,称 ( x, y )为向量 a r 的坐标, a r (x, y )叫做向量 a r 的坐标表示 .结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标 相同.三、平面向量的基本定理定理 设e r 1,e r 2同一平面内的一组基底向量, a r 是该平面内任一向量, 则存在唯一实数对 ( 1, 2),使 a r 1e r 1 2e r 2.1)定理核心: a rλ1e r 1 λ2er 2;(2)从左向右看,是对向量 a r的分解,且表达式唯一;反之,是对向量 a r的合成 .(3)向量的正交分解:当 e r 1,e r 2时,就说 a r λ1r e 1 λ2r e 2为对向量 a r的正交分 解.举例 3 (1)若 a r(1,1), b r(1, 1), c r( 1,2) ,则 c r. 结果:1r 3 r a b.22(2)下列向量组中, 能作为平面内所有向量基底的是 B A. e r 1(0,0) , e r 2(1, 2) B. r e 1( 1,2) , e r 2(5,7) C. r e 1(3,5) , e r 2(6,10)(1)模:| a r | | | |a r |;(2)方向:当 0时, a r 的方向与 a r 的方向相同,当D. e r 1(2, 3) , 1, 3 ,24(3)已知u A u D ur ,u B u E ur分别是 可用向量 a r,b r表示为 . (4)已知 △ABC 中,点 值是 . 结果: 0 四、实数与向量的积 实数 与向量 a r 的积是 下: △ABC 的边 BC ,AC 上的中线 ,且 u A u D ura r4r a2果 结上 边B u u r Bu u u u ru u ru u u u r C u 的u u r u u 个向量,记作 a r ,它的长度和方向规定如方向与a r的方向相反,当0时,a r r0,注意:a r 0.五、平面向量的数量积1. 两个向量的夹角:对于非零向量a r,b r,)称为向量a r,b r的夹角. uuur r作OAa r,u ru u把r bAOB (0当 0时, a r , b r 同向;当 时, a r , b r 反向;当 2时,a r ,b r 垂直. 2. 平面向量的数量积 :如果两个非零向量 a r , b r ,它们的夹角为 , 我们把数量 | a r || b r | cos 叫做 a r 与b r 的数量积(或内积或点积) ,记作: a r b r , 即 a r b r |a r | |b r |cos .规定:零向量与任一向量的数量积是 0. 注:数量积是一个实数,不再是一个向量 举例 4(1)△ ABC 中,| u A uu B r| 3 ,|u A uu C r| 4 ,|u B u C ur| 5 ,则 9.uuur uuur AB BC果:结果:2)已知a r1,21,b r0, 12,c ra rkb r,d ra rb r,c r与d r的夹角为 4,则k1. 3)已知 |a r| 2,|b r| 5, a rb r3,则 |a rb r| ___ . 结果: 23. 4)已知 ra, rb 是两个非零向量,且| a r| |b r| |a rb r|,则a r与a rb r的夹角为 30o . 结果: 3.向量b r 在向量 a r上的投影: |b r | cos ,它是一个实数,但不一定大于 0. 举例 5 已知|a r| 3,|b r| 5,且 a rb r12 ,则向量 a r在向量 b r上的投影为 ___ . 结果: 152.54. a r b r 的几何意义 :数量积 a r b r 等于a r 的模|a r |与b r 在a r 上的投影的积 .5. 向量数量积的性质 :设两个非零向量 a r , ( 1) a r b a r b 0 ; (2)当 a r 、 b 同向时, a r b |a r | |b|,特别地, a r b r |a r | | b r |是a r 、 b r同向的充要分条件 ; 当a r 、 b r 反向时, a r b r |a r | |b r |,a r b r |a r | 件; 当 为锐角时, a r b r 0,且 a r 、b r 不同向, 充分条件 ; 当 为钝角时, a r b r 0 ,且 a r 、 b r 不反向; 充分条件 .(3)非零向量 a r , b r 夹角b r ,其夹角为 ,则:a r 2|b r |是a r 、 b r 反向的充要分条 ab ab 的计算公式: cos 0 是 为锐角的 必要不 0 是 为钝角的 必要不 | a r a ||b b r | ;④ a r b r |a r ||b r | . 举例 6 取值范1)已知 a r( ,2 ) , b r(3 ,2) ,如果 a r与b r的夹角为锐角,则 的 3或 0且 3;(2)已知△OFQ 的面积为 S ,且u O u F ur u F u Q ur 1,若12 S 23,则u O u F ur, u F u Q ur夹角的 取值范围是 _____ . 结果: 4, 3;43①用 k 表示 a rb r;②求 a rb r的最小值,并求此时 a r与b r的夹角 的大小. 结果:① a rb r k 4k 1(k 0) ;②最小值为 12, 60o. 六、向量的运算1. 几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则 . r 运算形式:若 u A uu B r a r , u B uu C r b r ,则向量u A uu C r 叫做 a r与b 的和,即 r r uuur uuur uuur a b AB BC AC ;作图:略 . 注:平行四边形法则只适用于不共线的向量 .(2)向量的减法 运算法则:三角形法则 . 运算形式:若 u A uu B r a r , u A u C ur b r ,则 a r b r u A u B ur u A uu C r C uu A ur ,即由减向量的终 点指向被减向量的终点 .作图:略 .注:减向量与被减向量的起点相同 .举例 7( 1)化简:①u A u B uru B u C urC uuD ur;② u A uu B ru A u D uru D uu C ur;③uuur uuur uuur uuur uuur uuur r (AB CD) (AC BD) . 结果:① AD ;② CB ;③ 0;(2)若正方形 ABCD 的边长为 1,u A u B ura r,u B u C urb r,u A u C ur rc ,则 |a rb rc r|.结果: 2 2 ;(3)若O 是△ABC 所在平面内一点,且满足 O uu B urO uu C ur u O u B urO uu C ur2u O u A ur,则△ABC 的 形状为 . 结果:直角三角形;( 4)若 D 为 △ ABC 的边 BC 的中点, △ ABC 所在平面内有一点 P ,满足 u P u A ur u B u P urC uu P ur r0,设 || u u PAu u DuP ur r || ,则 的值为 . 结果:2;(5)若点O 是 △ABC 的外心,且 u O u A ur u O uu B r u C uu O r r0 ,则△ABC 的内角 C 为 . 结果: 120o.2. 坐标运算 :设 a r (x 1,y 1) ,b (x 2,y 2) ,则(1)向量的加减法运算 :a r b (x 1 x 2,y 1 y 2),a r b (x 1 x 2,y 1 y 2) . 举例 8 (1)已知3)已知 a r(cos x,sin x) , rb (cos y,sin y) ,且满足 |k ra b | 3|a rkb|其中 k 0 )点A(2,3) ,B(5,4) ,C(7,10) ,若u A uu P r u A uu B ru A uu C r( R) ,则当 ______ 时,点P在第一、三象限的角平分线上 . 结果:21;(2)已知 A(2,3) , B(1,4) ,且21 u A u B ur (sin x,cos y), x, y ( 2,2),则 x y . 结 果: 6 或2;(3)已知作用在点 A(1,1)的三个力 F 1(3,4) ,F 2(2, 5) , F 3(3,1) ,则合力 F u r u Fur 1u F ur 2 u F ur 3的终点坐标是 . 结果: (9,1) .(2)实数与向量的积 : a r (x 1,y 1) ( x 1, y 1).(3)若 A(x 1, y 1) , B(x 2, y 2) ,则 u A u B ur (x 2 x 1,y 2 y 1) ,即一个向量的坐标等 于表示这个向量的有向线段的终点坐标减去起点坐标 .举例 9 设A(2,3) , B( 1,5) ,且 u A uu C r 13u A u B ur, u A u D ur 3u A u B ur,则 C,D 的坐标分别是3举例 10 已知向量 a r(sin x,cos x ) , b (sin x ,sin x) , c r( 1,0) .(1)若 x 3,求向量 a r、 c r的夹角;3(2)若x [38 , 4],函数 f(x) a rb r的最大值为 12,求 的值.结果:(1)150o;8 4 22) 21或 2 1.5)向量的模 : a r2 |a r |2 x 2 y 2 |a r | x 2 y 2 . 举例 11 已知 a r ,b r 均为单位向量,它们的夹角为 . 结果: 13 .位向量,则 P 点斜坐标为 (x,y) .1)若点 P 的斜坐标为 (2, 2) ,求 P 到 O 的距离 |PO| ;2)求以O 为圆心, 1为半径的圆在斜坐标系 xOy 中的方程.结果:( 1) 2;(2) x 2y 2xy 1 0 . 七、向量的运算律 1. 交换律: a r 2. 结合律: a r 3. 分配律: ( r b rr arr a)r b rr a r a rr a r c )r br b r( r b r b( r ar ) r b r r a(r r 举例 13 给出下列命题:ar (b c r ) a r b a r c r a r (b c r ) (a r b) c r结果: (1,131),( 7,9).4)平面向量数量积yxx r b60o,那么 |a r3b r|6)两点间的距离 :若 A(x 1, y 1) , B(x 2,y 2),则|AB| (x 2 x 1)2 (y 2 y 1)2 . 举例 12 如图,在平面斜坐标系 于斜坐标系 的斜坐标是这样定义的:若 u O u P urxe r 1方向的单 xOy 中, xOy 60o,平y 面上任一点 P关ye r 2,其中 e r 1,e r 2分别为60o与 x 轴、④ 若a rb r0,则 a r0r或b r r0;⑤若 a r b r c rb r则a r c r;⑥ |a r |2 a r 2;⑦ ar a r2bb a r ; ⑧ (a rb r )2 a r 2 b r 2;⑨ (a rb r )2 a r 22a rb rb r 2. 其中正确的是 . 结果:①⑥⑨ . 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个 向量等式, 可以移项,两边平方、两边同乘以一个实数, 两边同时取模, 两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一 个向量,切记两向量不能相除 ( 相约) ; (2)向量的“乘法”不满足结合律,即 八、向量平行 (共线) 的充要条件 a r //b a r b (a r b)2 (|a r ||b|)2 举例 14 (1) 若向量 a r (x,1) , 相同. 结果: 2. ( 2)已知 a r (1,1) ,b (4,x) ,u r果:4. uuur uuur (3)设 PA ( k,12) , PB (4,5) , 果: 2 或 11. 九、向量垂直的充要条件0. (4,x) ,当 x x 1 y 2 y 1 x 2r br br rrb ar r 2b , uu urPC r v ar (b c r) (a rb) c r,为什么? 时, a r 与b r共线且方向 2a r b ,且 u r //v r,则 x(10, k) , 则k时, A,B,C 共线 . y 1 y 2 0.|AB AC AB AC特别地 uuur uuuruuur uuur .|AB | |AC | |AB | | AC |举例 15 (1)已知 u O u A ur( 1,2) ,O uu B ur(3,m) , (2)以原点 O 和 A(4,2)为两个顶点作等腰直角三角形 B 的坐标是 .结果: (1,3) 或( 3,-1)); (3)已知 n r(a,b)向量 n rm r,且|n r| |m r| ,则m r的坐标是 ( b,a) . 十、线段的定比分点1. 定义:设点 P 是直线 P 1P 2上异于 P 1、 P 2的任意一点,若存在一个实 数 ,使 u P u 1P ur u P u P ur 2 ,则实数 叫做点 P 分有向线段 P 1P 2 所成的比 , P 点叫 做有向线段 u P u 1u P ur 2的以定比为 的定比分点 . 2. 的符号与分点 P 的位置之间的关系 (1) P 内分线段 P 1P 2 ,即点P 在线段 P 1P 2上 0; (2) P 外分线段 u P u 1u P u 2r 时,①点 P 在线段 P 1P 2的延长线上 P 在线段 P 1P 2的反向延长线上 1 0.x 1x 2 uuuruuur uuur 若OA OB ,则 m. 结果: OAB , B 90 ,则点 32; 结果: (b, a)或1,②点比为 1.举例 16 若点 P 分u A u B ur所成的比为 43,则 A 分u B u P ur所成的比为 .结果: 73.33. 线段的定比分点坐标公式 :设 P 1(x 1, y 1) , P 2( x 2, y 2) ,点P(x, y)分有向线段 u P u 1u P u 2r 所成的比为 ,则定比分x 1 x 21 y 1 y 2x 1时,就得到线段 P 1P 2的中点坐标公式y说明:(1) 的意义,即分别为分点,起点,终点的坐标 . (2)在具体计算时应根据题设条件,灵活地确定起点,分点和 终点,并根据这些点确定对应的定比举例 17 (1)若 M( 3, 2) ,N(6, 1),且 结果: ( 6, 37) ;3(2)已知 A(a,0) , B(3,2 a),直线 y 1ax 与线段 AB 交于M ,且u A u M uur 2u M uu B ur,则 a r. 结果:2或 4 .十一、平移公式如果点 P(x,y)按向量 a r (h,k) 平移至 P(x,y) ,则 x x h,;曲线 f(x,y) 0按 y y k.向量 a r (h,k) 平移得曲线 f(x h,y k) 0.说明:( 1)函数按向量平移与平常“左加右减”有何联系?( 2) 向量平移具有坐标不变性,可别忘了啊!举例 18 (1)按向量 a r 把(2, 3)平移到(1, 2) ,则按向量 a r把点( 7,2)平 移到点 ________ . 结果: ( 8,3) ;(2)函数 y sin 2x 的图象按向量 a r平移后,所得函数的解析式是点坐标公式为特别地,当1).x 1 x 2 , 2 y 1 y 2 .2 在使用定比分点的坐标公式时, 应明确 (x,y) ,(x 1,y 1)、(x 2,y 2)13uM uuN ur,则点 P 的坐标为 uuu ury cos2x 1 ,则a r _________ . 结果:( ,1) .4 十二、向量中一些常用的结论1. 一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:|a r| |b r| |a r b r| |a r| |b r|.(1)右边等号成立条件: (2)左边等号成立条件: (3)当 a r 、b r 不共线 |a r | 3. 三角形重心公式在 △ABC 中,若 A(x 1, y 1) , B(x 2,y 2) , C(x 3,y 3) ,则其重 心的 坐标为举例 19 若△ABC 的三边的中点分别为 心的坐标为 . 结果: 32,34.335. 三角形“三心”的向量表示G 为△ ABC 的重心,特别地 u P uu A r u P u Bur u P u C ur 0r G为△ ABC 的重心 .uuur uuur uuur uuur uuur uuur(2)PA PB PB PC PC PA P 为△ ABC 的垂心 .uuuur uuur uuuur uuur uuuur uuur( 3 ) |AB|PC |BC|PA |CA|PB 0 P 为 △ ABC 的 内 心 ; 向 量 uuur uuur uu A u B ur uu A u C ur ( 0)所在直线过 △ ABC 的内心. |AB | | AC |6.点 P 分有向线段 u P 1uu P ur 2所成的比 向量形式设点 P 分有向线段 P 1P 2所成的比为 ,若 M 为平面内的任一点,则 uuuur uuuur uuuur uuuur u M uu P r MP 1MP 2,特别地 P 为有向线段 u P u 1u P ur 2的中点 u M uu P r MP 1MP 2. 127. 向 量 u P u A ur ,u P u B ur ,u P u C ur 中三终 点 A,B,C 共线 存 在实数 , ,使得 uuuruuur uuur PA PB PC 且1.举例 20 平面直角坐标系中, O 为坐标原点,已知两点 A(3,1) ,B( 1,3), 若点 C满足 OC 1OA 2OB ,其中 1, 2R 且 1 21, 则点 C 的轨迹是 . 结 果:直线 AB .a r 、b 同向或a r 、b a r 、b r 反向或r rr rrG(x 1 x 2 x 3 3y 1y 2y 3 ) 3)A(2,1) 、B( 3,4)、C( 1, 1),则 △ ABC 的重 uuur 1 uuur uuur uuur1) PG (PA PB PC)r。
平面向量概念

平面向量概念
平面向量是指在平面上具有大小和方向的量。
它由两个分量表示,分别是水平方向和垂直方向的分量。
平面上的向量一般用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
向量的大小通常用模表示,用两个竖线表示,例如,向量a的模可以表示为|a|。
向量的方向有两种表示方法,一种是用与水平轴的夹角表示,另一种是用坐标轴上的分量表示,通常用点(x, y)表示。
平面向量有一些基本运算,包括加法、减法、数乘和点乘。
向量的加法是指将两个向量的对应分量相加得到一个新的向量。
向量的减法是指将两个向量的对应分量相减得到一个新的向量。
数乘是指将一个向量的每个分量都乘以一个实数得到一个新的向量。
点乘是指将两个向量的对应分量相乘再相加得到一个数字。
平面向量有一些重要的性质和定理,比如平行四边形法则、向量的模长和向量的夹角等。
这些性质和定理在解决几何、物理等问题时非常有用。
平面向量在数学中的应用非常广泛,包括几何、力学、电磁学等。
它们可以描述物体的位移、速度、加速度等物理量,也可以用来研究几何图形的性质和变换。
平面向量基本定理

平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。
2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。
同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。
故A×B=C×A+B,即平面向量基本定理得证。
3、应用:平面向量基本定理主要应用于平面向量运算。
它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。
4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。
(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。
(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
平面向量的运算法则

平面向量的运算法则平面向量是二维的有方向和大小的量,通常用箭头表示。
在平面上,我们可以进行平面向量的加法、减法、数乘、点乘和叉乘等运算,下面将详细介绍这些运算法则。
1.平面向量的加法:设有平面向量A和B,表示为⃗A和⃗B,其加法运算为:⃗A+⃗B=⃗C,其中C是由A和B的箭头所形成的三角形的对角线的向量。
加法满足以下性质:-交换律:⃗A+⃗B=⃗B+⃗A-结合律:(⃗A+⃗B)+⃗C=⃗A+(⃗B+⃗C)2.平面向量的减法:设有平面向量A和B,表示为⃗A和⃗B,其减法运算为:⃗A-⃗⃗B=⃗C,其中C是由A的箭头指向B的箭头所形成的三角形的对角线的向量。
3.平面向量的数乘:设有平面向量A和实数k,表示为⃗A和k,其数乘运算为:k⃗A=⃗B,其中B的大小等于A的大小乘以k,方向与A相同(若k>0),或相反(若k<0)。
数乘满足以下性质:- 结合律:k(l⃗A) = (kl)⃗A-分配律:(k+l)⃗A=k⃗A+l⃗A4.平面向量的点乘(数量积):设有平面向量A和B,表示为⃗A和⃗B,其点乘运算为:⃗A · ⃗B = ABcosθ,其中A和B的夹角θ的余弦值等于点乘结果与两个向量大小的乘积的商。
点乘满足以下性质:-交换律:⃗A·⃗B=⃗B·⃗A-结合律:(⃗A+⃗B)·⃗C=⃗A·⃗C+⃗B·⃗C-数乘结合律:(k⃗A)·⃗B=k(⃗A·⃗B)特殊情况下:-若⃗A与⃗B垂直,即⃗A·⃗B=0,则称⃗A与⃗B是正交的或垂直的。
-若⃗A和⃗B非零,且⃗A·⃗B>0,则夹角θ为锐角。
-若⃗A和⃗B非零,且⃗A·⃗B=0,则夹角θ为直角。
-若⃗A和⃗B非零,且⃗A·⃗B<0,则夹角θ为钝角。
5.平面向量的叉乘(向量积):设有平面向量A和B,表示为⃗A和⃗B,其叉乘运算为⃗A × ⃗B = nABsinθ⃗n,其中n为垂直于A和B所在平面的单位向量,θ为A和B 的夹角。
高中数学-公式-平面向量

平面向量1.两个向量平行的充要条件,设a =(x 1,y 1),b =(x 2,y 2),λ为实数。
〔1〕向量式:a ∥b (b ≠0)⇔a =λb ;〔2〕坐标式:a ∥b (b ≠0)⇔x 1y 2-x 2y 1=0;2.两个向量垂直的充要条件, 设a =(x 1,y 1),b =(x 2,y 2), 〔1〕向量式:a ⊥b (b ≠0)⇔a b =0; 〔2〕坐标式:a ⊥b ⇔x 1x 2+y 1y 2=0;3.设a =(x 1,y 1),b =(x 2,y 2),那么a b θ=x 1x 2+y 1y 2;其几何意义是a b 等于a 的长度与b 在a 的方向上的投影的乘积;4.设A 〔x 1,x 2〕、B(x 2,y 2),那么S ⊿AOB =122121y x y x -; 5.平面向量数量积的坐标表示:〔1〕假设a =(x 1,y 1),b =(x 2,y 2),那么a b =x 1x 2+y 1y 2221221)()(y y x x -+-=; 〔2〕假设a =(x,y),那么a 2=a a =x 2+y 2,22y x a +=;十、向量法 1、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕线线平行:l ∥m ⇔a ∥b ⇔=a kb〔2〕线面平行:l ∥α⇔a ⊥u 0⇔=a u〔3〕面面平行:////αβ⇔⇔=u v u kv注意:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.2、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕线线垂直:⊥⇔l m a ⊥b 0⇔=a b〔2〕线面垂直:α⊥⇔l a ∥u ⇔=a ku〔3〕面面垂直:αβ⊥⇔u ⊥v 0⇔=u v3、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕直线、m l 所成的角(0)2πθθ≤≤,cos θ⋅=a ba b〔2〕直线l 与平面α所成的角(0)2πθθ≤≤,sin θ⋅=a ua u〔3〕平面α与平面β所成的二面角的平面角(0)θθπ≤≤,cos θ⋅=u vu v教学过程:二、新课讲授1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模.3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a +b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c );⑶数乘分配律:λ(a + b ) =λa +λb ; ⑶数乘结合律:λ(u a ) =(λu )a .4. 推广:⑴12233411n n n A A A A A A A A A A -++++=;⑵122334110n n n A A A A A A A A A A -+++++=;方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量. 向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .称平面向量共线定理,二、新课讲授1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.a 平行于b 记作a //b .2.关于空间共线向量的结论有共线向量定理及其推论: 共线向量定理:空间任意两个向量a 、b 〔b ≠0〕,a //b 的充要条件是存在实数λ,使a =λb . 理解:⑴上述定理包含两个方面:①性质定理:假设a ∥b 〔a ≠0〕,那么有b =λa ,其中λ是唯一确定的实数。
平面向量知识点总结
平面向量知识点总结平面向量是二维空间中的向量,它在数学中有着广泛的应用。
在平面向量的研究中,我们需要了解平面向量的定义、运算法则、坐标表示、线性相关与线性无关、向量的模和方向、向量的投影、平行四边形法则、平面向量的夹角、向量的数量积等内容。
本文将对这些内容进行详细的总结,以帮助读者更好地理解平面向量的相关知识。
1. 定义:平面向量是一个具有大小和方向的量。
它可以用一个有向线段来表示,也可以用它的坐标来表示。
平面向量的定义包括初始点和终点,表示为AB。
2. 运算法则:平面向量有加法和数乘两种运算方式。
向量的加法规则是将两个向量的横纵坐标分别相加,得到一个新的向量。
向量的数乘规则是将向量的横纵坐标分别与给定的实数相乘,得到一个新的向量。
3. 坐标表示:平面向量可以用坐标表示,即用其横纵坐标表示向量的位置。
设向量AB的坐标为(a, b),则向量AB的终点的坐标为(A.x + a, A.y + b),其中A.x和A.y分别为点A 的横纵坐标。
4. 线性相关与线性无关:若存在一组实数k1, k2, ... , kn,使得k1v1 + k2v2 + ... + knvn = 0,则向量组V1, V2, ... , Vn是线性相关的。
否则,向量组V1, V2, ... , Vn是线性无关的。
线性无关的向量组在平面向量的研究中具有重要的作用。
5. 向量的模和方向:向量的模表示向量的大小,即向量的长度。
向量的方向表示向量的朝向,即向量的角度。
向量的模可以用勾股定理计算,即v的模等于√(x^2 + y^2),其中x 和y分别为向量v的横纵坐标。
6. 向量的投影:向量的投影指的是一个向量在另一个向量上的投影长度。
设向量A在向量B上的投影为P,且向量A 和向量B的夹角为θ,则投影P的长度等于A在B上的模乘以cosθ。
7. 平行四边形法则:平行四边形法则是用来计算两个向量的和的规则。
根据平行四边形法则,两个向量的和等于以这两个向量为邻边的平行四边形的对角线。
平面向量基础知识
平面向量一、平面向量的基本概念㈠、向量的概念:我们把既有大小又有方向的量叫向量1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母AB 表示.(AB 的大小──长度称为向量的模,记作|AB|. )3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.4.向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.5、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.6、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:⑴综合①、②才是平行向量的完整定义;⑵向量a、b、c平行,记作a∥b∥c.7、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:⑴向量a与b相等,记作a=b;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 8、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........). 说明:⑴平行向量可以在同一直线上,要区别于两平行线的位置关系;⑵共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.二、 向量的加法与减法1、位移问题:①某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AB BC AC +=②某人从A 到B ,再从B 按反方向到C ,则两次的位移和:AB BC AC +=③某车从A 到B ,再从B 改变方向到C ,则两次的位移和:AB BC AC +=④船速为AB,水速为BC ,则船单位时间内的位移:AB BC AC +=2、向量的加法:求两个向量的和的运算,叫做向量的加法。
什么是平面向量
什么是平面向量平面向量是代数学中的一个重要概念,广泛应用于几何学、物理学和工程学等领域。
平面向量可以用来表示平面上的位移、速度、力等物理量,具有方向和大小两个特征。
一、平面向量的定义平面向量是由两个有序实数组成的有序对,记作AB→,其中A、B 表示平面上的两个点,→表示有向线段。
实数称为平面向量的坐标或分量,可以用来表示向量在坐标轴上的投影。
二、平面向量的表示平面向量可以用坐标轴上的点表示,也可以用向量的坐标表示。
以直角坐标系为例,设A点的坐标为(x1, y1),B点的坐标为(x2, y2),那么平面向量AB→的向量坐标为{(x2-x1), (y2-y1)}。
三、平面向量的运算1. 加法:设有平面向量AB→和CD→,则它们的和为AB→ +CD→ = AD→。
即向量的加法满足“三角形法则”。
2. 数乘:设有平面向量AB→,实数k,则kAB→ = BA→。
即向量的数乘改变了向量的方向或长度。
3. 减法:设有平面向量AB→和CD→,则它们的差为AB→ - CD→ = AD→。
即向量的减法可以看作是加法和数乘的结合。
四、平面向量的性质1. 零向量:零向量是长度为0的向量,任何向量与零向量的和等于该向量本身。
2. 平行向量:若两个向量的方向相同或相反,则它们是平行向量。
3. 共线向量:若两个向量在同一直线上,则它们是共线向量。
4. 相等向量:若两个向量的方向和长度相等,则它们是相等向量。
5. 单位向量:长度为1的向量称为单位向量,可以通过将一个非零向量除以它的模长得到。
五、平面向量的应用平面向量在几何学中被广泛应用,例如求向量的模长、向量的夹角、向量的投影等。
在物理学中,平面向量可用于描述力的大小和方向,在工程学中,平面向量可用于描述力的分解和合成等问题。
总结:平面向量是由两个有序实数组成的有序对,具有方向和大小两个特征。
它可以用坐标轴上的点或向量的坐标来表示。
平面向量的运算包括加法、数乘和减法,满足相应的运算规律。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回扣验收特训(三) 平面向量
1.如图所示,在△ABC 中,设AB ―→=a ,AC ―→
=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP ―→
=( )
A.12a +1
2b B.13a +2
3b C.27a +47
b D.47a +27
b 解析:选C 连接BP ,则AP ―→=AC ―→+CP ―→=b +PR ―→
, ① AP ―→=AB ―→+BP ―→=a +RP ―→-RB ―→. ② 由①+②,得2AP ―→=a +b -RB ―→
.
③ 又RB ―→=12QB ―→=12(AB ―→-AQ ―→)=1
2⎝⎛⎭⎫a -12 AP ―→ ,
④
将④代入③,得2AP ―→
=a +b -12⎝⎛⎭⎫a -12 AP ―→ ,
解得AP ―→=27a +4
7
b .
2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0 B .1 C .2
D. 5
解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D. 3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)
D .(-6,3)
解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以
λ=-3,b =(3,-6).
4.已知平面向量a ,b 满足|a +b |=1,|a -b |=x ,a ·b =-38x ,则x =( )
A. 3 B .2 C. 5
D .3
解析:选B |a +b |2=a 2+2a ·b +b 2=1,|a -b |2=a 2-2a ·b +b 2=x 2,两式相减得4a ·b =1-x 2.又a ·b =-38x ,所以1-x 2=-32x ,解得x =2或x =-12
(舍去).故选B.
5.在△ABC 中,(BC ―→+BA ―→)·AC ―→=|AC ―→
|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形
D .等腰直角三角形
解析:选C 由(BC ―→+BA ―→)·AC ―→=|AC ―→|2,得AC ―→·(BC ―→+BA ―→-AC ―→)=0,即AC ―→·(BC ―→+BA ―→+CA ―→)=0,∴2AC ―→·BA ―→=0,∴AC ―→⊥BA ―→,∴A =90°.故选C.
6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )
A .6或 3
B .6或 2 C. 2
D .6
解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.
当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝⎛⎭⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝⎛⎭⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝⎛⎭⎫-12=-3
2
, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝⎛⎭⎫-1-3-3
2=3, ∴|a +b +c |= 3. ∴|a +b +c |=6或 3.
7.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析:∵|a +b |2=|a |2+|b |2+2a ·b =|a |2+|b |2, ∴a ·b =0.
又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-2
8.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0.∴m =-6.
答案:-6
9.已知向量OA ―→=(1,7),OB ―→
=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那
么MA ―→·MB ―→的最小值是________.
解析:设M ⎝⎛⎭⎫x ,12x ,则MA ―→=⎝⎛⎭⎫1-x ,7-12x ,MB ―→=⎝⎛⎭⎫5-x ,1-12x ,MA ―→·MB ―→
=(1-x )(5-x )+⎝⎛⎭⎫7-12x ⎝⎛⎭⎫1-12x =54
(x -4)2-8.所以当x =4时,MA ―→·MB ―→ 取得最小值-8. 答案:-8
10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.
解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.
∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.
(2)|a +b |=
a 2+2a ·
b +b 2=
16+2×(-6)+9=13.
11.已知a =(cos α,sin α),b =(cos β,sin β),a 与b 满足|ka +b |=3|a -kb |,其中k >0. (1)用k 表示a ·b ;
(2)求a ·b 的最小值,并求出此时a ,b 的夹角.
解:(1)将|ka +b |=3|a -kb |两边平方,得|ka +b |2=(3|a -kb |)2,k 2a 2+b 2+2ka ·b =3(a 2
+k 2b 2-2ka ·b ),
∴8ka ·b =(3-k 2)a 2+(3k 2-1)b 2, a ·b =(3-k 2)a 2+(3k 2-1)b 2
8k
.
∵a =(cos α,sin α),b =(cos β,sin β), ∴a 2=1,b 2=1,∴a ·b =3-k 2+3k 2-18k =k 2+1
4k
.
(2)∵k 2+1≥2k (当且仅当k =1时等号成立),即k 2+14k ≥2k 4k =12,∴a ·b 的最小值为1
2
.
设a,b的夹角为γ,则a·b=|a||b|cos γ.
=1×1×cos γ,
又|a|=|b|=1,∴1
2
∴γ=60°,即当a·b取最小值时,a与b的夹角为60°.
12.已知平面上三个向量a,b,c的模均为1,它们两两之间的夹角均为120°.
(1)求证:(a-b)⊥c;
(2)若|ka+b+c|>1(k∈R),求实数k的取值范围.
解:(1)证明:∵|a|=|b|=|c|=1,且a,b,c之间的夹角均为120°,
∴(a-b)·c=a·c-b·c=|a||c|cos 120°-|b||c|·cos 120°=0,
∴(a-b)⊥c.
(2)∵|ka+b+c|>1,∴(ka+b+c)2>1,
即k2a2+b2+c2+2ka·b+2ka·c+2b·c>1,
∴k2+1+1+2k cos 120°+2k cos 120°+2cos 120°>1.
∴k2-2k>0,解得k<0或k>2.
∴实数k的取值范围为(-∞,0)∪(2,+∞).。