等比数列的性质及等比中项ppt课件

合集下载

高一数学复习考点知识讲解课件58---等比数列的性质

高一数学复习考点知识讲解课件58---等比数列的性质

高一数学复习考点知识讲解课件等比数列的性质考点知识1.能根据等比数列的定义推出等比数列的性质,并能运用这些性质简化运算.2.灵活应用等比数列通项公式的推广形式及变形.导语在我们学习等比数列的过程中,发现它与等差数列有相似之处,这其实就是我们在这两类数列之间无形之中产生了类比思想,类比的前提大多为结论提供线索,它往往能把人的认知从一个领域引申到另一个共性的领域,由此推出另一个对象也具有同样的其他特定属性的结论,有人曾说“类比使人聪颖,数学使人严谨,数学使人智慧”,今天我们就用类比的思想来研究等比数列具有哪些性质.一、由等比数列构造新等比数列问题1结合我们所学,你能类比等差数列、等比数列的通项公式的结构特点及运算关系吗?提示等差数列等比数列定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫作等比数列符号表示 a n -a n -1=d (n ≥2,n ∈N *)a na n -1=q (n ≥2,n ∈N *) 通项公式 a n =a 1+(n -1)da n =a 1q n -1类比差⇒商;和⇒积,积⇒乘方性质等差数列首项a 1,公差d等比数列首项a 1,公比q把等差数列前k 项去掉,得到一个以a k +1为首项,以d 为公差的等差数列把等比数列前k 项去掉,得到一个以a k +1为首项,以q 公比的等比数列等差数列中,a k ,a k +m ,a k +2m …是以公差为md 的等差数列等比数列中,a k ,a k +m ,a k +2m …是以公比为q m 的等比数列等差数列中任意一项加上同一个常数,构成一个公差不变的等差数列等比数列中任意一项同乘一个非零常数,构成一个公比不变的等比数列两个等差数列相加,还是一个等差数列两个等比数列相乘,还是一个等比数列知识梳理1.在等比数列{a n }中,每隔k 项(k ∈N *)取出一项,按原来的顺序排列,所得的新数列仍为等比数列.2.若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2.3.若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与⎩⎨⎧⎭⎬⎫a nb n 也都是等比数列,公比分别为pq 和pq .注意点:在构造新的等比数列时,要注意新数列中有的项是否为0,比如公比q =-1时,连续相邻偶数项的和都是0,故不能构成等比数列.例1如果数列{}a n 是等比数列,那么下列数列中不一定是等比数列的是()A.⎩⎨⎧⎭⎬⎫1a nB.⎩⎨⎧⎭⎬⎫3a n C.{}a n ·a n +1 D.{}a n +a n +1 答案D解析取等比数列a n =()-1n ,则a n +a n +1=0,所以{a n +a n +1}不是等比数列,故D 错误;对于其他选项,均满足等比数列通项公式的性质.反思感悟由等比数列构造新的等比数列,一定要检验新的数列中的项是否为0,主要是针对q <0的情况.跟踪训练1设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形面积(i =1,2,…),则{A n }为等比数列的充要条件为() A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同答案D解析因为A i 是边长为a i ,a i +1的矩形面积(i =1,2,…),所以A i =a i a i +1(i =1,2,3,…,n ,…), 则数列{A n }的通项为A n =a n a n +1.根据等比数列的定义,数列{A n }(n =1,2,3,…)为等比数列的充要条件是A n +1A n =a n +1a n +2a n a n +1=a n +2a n =q (常数).二、等比数列中任意两项之间的关系问题2结合上面的类比,你能把等差数列里面的a n =a m +(n -m )d 类比出等比数列中相似的性质吗?提示类比可得a n =a m q n -m ;由等比数列的定义可知a n =a 1q n -1,a m =a 1q m -1,两式相除可得a n a m =a 1q n -1a 1qm -1=q (n -1)-(m -1)=q n -m ,即a n =a m q n -m . 知识梳理等比数列通项公式的推广和变形a n =a m q n -m . 例2在等比数列{a n }中:(1)已知a 3+a 6=36,a 4+a 7=18,a n =12,求n ; (2)已知a 5=8,a 7=2,a n >0,求a n . 解设等比数列{a n }的公比为q .(1)由⎩⎪⎨⎪⎧a 4+a 7=q (a 3+a 6)=18,a 3+a 6=36,得q =12.再由a 3+a 6=a 3·(1+q 3)=36得a 3=32,则a n =a 3·qn -3=32×⎝ ⎛⎭⎪⎫12n -3=⎝ ⎛⎭⎪⎫12n -8=12,所以n -8=1,所以n =9. (2)由a 7=a 5·q 2得q 2=14.因为a n >0,所以q =12, 所以a n =a 5·qn -5=8×⎝ ⎛⎭⎪⎫12n -5=⎝ ⎛⎭⎪⎫12n -8.反思感悟等比数列的通项公式及变形的应用(1)在已知等比数列的首项和公比的前提下,利用通项公式a n =a 1q n -1(a 1q ≠0)可求出等比数列中的任意一项.(2)在已知等比数列中任意两项的前提下,利用a n =a m q n -m (q ≠0)也可求出等比数列中的任意一项.跟踪训练2(1)在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为()A .2B.12C .2或12D .-2或12(2)已知等比数列{a n }中,a 3=2,a 4a 6=16,则a 9-a 10a 5-a 6等于()A .16B .8C .4D .2 答案(1)C(2)C解析(1)设等比数列{a n }的公比为q (q ≠0),∵a 1+a 4=18,a 2+a 3=12,∴a 1(1+q 3)=18,a 1(q +q 2)=12,q ≠-1,化为2q 2-5q +2=0,解得q =2或12.故选C.(2)等比数列{a n }中,设其公比为q (q ≠0),a 3=2,a 4a 6=a 3q ·a 3q 3=a 23q 4=4q 4=16,∴q4=4.∴a 9-a 10a 5-a 6=a 1q 8-a 1q 9a 1q 4-a 1q 5=q 4=4,故选C.三、等比数列中多项之间的关系问题3结合上面的类比,你能把等差数列里面的a m +a n =a k +a l ,类比出等比数列中相似的性质吗?提示类比可得a m a n =a k a l ,其中m +n =k +l ,m ,n ,k ,l ∈N *. 推导过程:a m =a 1q m -1,a n =a 1q n -1,a k =a 1q k -1,a l =a 1q l -1,所以a m a n =a 1q m -1·a 1q n -1=a 21q m +n -2,a k a l =a 1q k -1·a 1q l -1=a 21qk +l -2, 因为m +n =k +l ,所以有a m a n =a k a l . 知识梳理设数列{a n }为等比数列,则:(1)若k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (2)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列.注意点:(1)性质的推广:若m +n +p =x +y +z ,有a m a n a p =a x a y a z ;(2)该性质要求下标的和相等,且左右两侧项数相同;(3)在有穷等比数列中,与首末两项等距离的两项之积都相等,即a 1·a n =a 2·a n -1=…. 例3已知{a n }为等比数列. (1)若{a n }满足a 2a 4=12,求a 1a 23a 5;(2)若a n >0,a 5a 7+2a 6a 8+a 6a 10=49,求a 6+a 8;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值. 解(1)在等比数列{a n }中, ∵a 2a 4=12,∴a 23=a 1a 5=a 2a 4=12, ∴a 1a 23a 5=14.(2)由等比中项,化简条件得a 26+2a 6a 8+a 28=49,即(a 6+a 8)2=49, ∵a n >0, ∴a 6+a 8=7.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2·…·a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10.反思感悟利用等比数列的性质解题(1)基本思路:充分发挥项的“下标”的指导作用,分析等比数列项与项之间的关系,选择恰当的性质解题.(2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.跟踪训练3(1)公比为32的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16等于() A.4B.5C.6D.7答案B解析因为a3a11=16,所以a27=16.又因为a n>0,所以a7=4,所以a16=a7q9=32,即log2a16=5.(2)已知在各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=________. 答案5 2解析方法一因为{a n}是等比数列,所以a1a7=a24,a2a8=a25,a3a9=a26.所以a24·a25·a26=(a1a7)·(a2a8)·(a3a9)=(a 1a 2a 3)·(a 7a 8a 9)=5×10=50. 因为a n >0,所以a 4a 5a 6=5 2.方法二因为a 1a 2a 3=(a 1a 3)a 2=a 22·a 2=a 32=5,所以a 2=135.因为a 7a 8a 9=(a 7a 9)a 8=a 38=10,所以a 8=1310.同理a 4a 5a 6=a 35=1133312332222528()()(510)5052a a a ==⋅==.1.知识清单:(1)由等比数列构造新的等比数列. (2)等比数列中任意两项之间的关系. (3)等比数列中多项之间的关系. 2.方法归纳:公式法、类比思想.3.常见误区:构造新的等比数列易忽视有等于0的项.1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为()A .±12B .±2C.12D .-2 答案D解析因为a 5a 2=q 3=-8,故q =-2.2.已知{a n },{b n }都是等比数列,那么() A .{a n +b n },{a n b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n b n }一定是等比数列D .{a n +b n },{a n b n }都不一定是等比数列 答案C解析当两个数列都是等比数列时,这两个数列的和不一定是等比数列,比如取两个数列是互为相反数的数列,两者的和就不是等比数列.两个等比数列的积一定是等比数列. 3.已知在等比数列{}a n 中,有a 3a 7a 10=9,则a 4a 28等于() A .3B .9C .20D .无法计算 答案B解析由等比数列多项之间的下标和的关系可知3+7+10=4+8+8,故a 4a 28=9.4.若正项等比数列{a n }满足a 1a 5=4,当1a 2+4a 4取最小值时,数列{}a n 的公比是________.答案2解析设正项等比数列{}a n 的公比为q ()q >0, 因为a 1a 5=4,所以由等比数列的性质可得a 2a 4=4,因此1a 2+4a 4≥21a 2·4a 4=2,当且仅当1a 2=4a 4,即a 4a 2=q 2=4,即q =2(负值舍去)时,等号成立. 所以数列{}a n 的公比是2.课时对点练1.已知数列{a n }满足a 1=5,a n a n +1=2n ,则a 7a 3等于() A .4B .2C .5D.52答案A解析因为a n a n +1=2n ,所以a n -1a n =2n -1(n ≥2),所以a n +1a n -1=2(n ≥2), 数列{a n }的奇数项组成等比数列,偶数项组成等比数列,故a 7a 3=22=4. 2.在等比数列{a n }中,a 2,a 18是方程x 2+6x +4=0的两根,则a 4a 16+a 10等于()A .6B .2C .2或6D .-2答案B解析由题意知a 2+a 18=-6,a 2·a 18=4,所以a 2<0,a 18<0,故a 10<0,所以a 10=-a 2·a 18=-2,因此a 4·a 16+a 10=a 210+a 10=2,故选B.3.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于()A.32B.23C .-23D.23或-23答案C解析因为a 4=a 2·q 2,所以q 2=a 4a 2=818=49. 又因为a 1<0,a 2>0,所以q <0.所以q =-23. 4.在等比数列{a n }中,若a 2a 3a 6a 9a 10=32,则a 29a 12的值为() A .4B .2C .-2D .-4答案B解析由a 2a 3a 6a 9a 10=(a 2a 10)·(a 3a 9)·a 6=a 56=32=25,得a 6=2,则a 29a 12=a 6a 12a 12=a 6=2. 5.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等比数列,上面3节的容积之积为3,下面3节的容积之积为9,则第5节的容积为()A .2B.6766C .3D. 3答案D解析方法一依题意可设,竹子自上而下各节的容积成等比数列{a n },设其公比为q (q ≠0),由上面3节的容积之积为3,下面3节的容积之积为9,可知⎩⎪⎨⎪⎧a 1·a 1q ·a 1q 2=3,a 1q 6·a 1q 7·a 1q 8=9,解得a 1q =33,q 3=63,所以第5节的容积为a 1q 4=a 1q ·q 3=33·63= 3.故选D. 方法二依题意可设,竹子自上而下各节的容积成等比数列{a n },由上面3节的容积之积为3,下面3节的容积之积为9,可知a 1a 2a 3=3,a 7a 8a 9=9,由等比数列的性质可知a 1a 2a 3a 7a 8a 9=(a 1a 9)·(a 2a 8)·(a 3a 7)=a 65=27.所以a 5= 3.故选D.6.(多选)设{a n }是等比数列,有下列四个命题,其中正确的是()A .{a 2n }是等比数列B .{a n a n +1}是等比数列C.⎩⎨⎧⎭⎬⎫1a n 是等比数列 D .{lg|a n |}是等比数列答案ABC解析由{a n }是等比数列可得a na n -1=q (q 为定值,n >1).A 中,a 2n a 2n -1=⎝ ⎛⎭⎪⎫a n a n -12=q 2为常数,故A 正确;B 中,a n a n +1a n -1a n =a n +1a n -1=q 2,故B 正确; C 中,1a n 1a n -1=a n -1a n=1q 为常数,故C 正确; D 中,lg|a n |lg|a n -1|不一定为常数,故D 错误.7.在正项等比数列{a n }中,若3a 1,12a 3,2a 2成等差数列,则a 2021-a 2020a 2023-a 2022=________. 答案19解析设正项等比数列{a n }的公比q >0,∵3a 1,12a 3,2a 2成等差数列,∴2×12a 3=3a 1+2a 2,即a 1q 2=3a 1+2a 1q ,∴q 2-2q -3=0,q >0,解得q =3.则原式=a 2021-a 2020q 2(a 2021-a 2020)=1q 2=19. 8.已知数列{a n }为等比数列,且a 3+a 5=π,则a 4(a 2+2a 4+a 6)=________. 答案π2解析因为数列{a n }为等比数列,且a 3+a 5=π,所以a 4(a 2+2a 4+a 6)=a 4a 2+2a 24+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=π2.9.已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值. 解∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64.又∵a 3+a 7=20,∴a 3=4,a 7=16或a 3=16,a 7=4.①当a 3=4,a 7=16时,a 7a 3=q 4=4, 此时a 11=a 3q 8=4×42=64.②当a 3=16,a 7=4时,a 7a 3=q 4=14, 此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. 10.已知数列{a n }为等比数列.(1)若a n >0,且a 2a 4+2a 3a 5+a 4a 6=36,求a 3+a 5的值;(2)若数列{a n }的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项. 解(1)∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 23+2a 3a 5+a 25=36,即(a 3+a 5)2=36,又∵a n >0,∴a 3+a 5=6.(2)设等比数列{a n }的公比为q ,∵a 2-a 5=42,∴q ≠1.由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168,a 1q -a 1q 4=42, ∴⎩⎪⎨⎪⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42, 解得⎩⎨⎧ a 1=96,q =12.若G 是a 5,a 7的等比中项,则有G 2=a 5·a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝ ⎛⎭⎪⎫1210=9, ∴a 5,a 7的等比中项为±3.11.设各项均为正数的等比数列{a n }满足a 4a 8=3a 7,则log 3(a 1a 2·…·a 9)等于()A .38B .39C .9D .7答案C 解析因为a 4a 8=a 5a 7=3a 7且a 7≠0,所以a 5=3,所以log 3(a 1a 2·…·a 9)=log 3a 95=log 339=9.12.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于()A .2B .1C.12D.18答案C解析方法一∵a 3,a 5的等比中项为±a 4,∴a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8, ∴q =2,∴a 2=a 1q =14×2=12.方法二∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12.13.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15等于()A.±2B.±4C.2D.4答案C解析∵T13=4T9,∴a1a2...a9a10a11a12a13=4a1a2 (9)∴a10a11a12a13=4.又∵a10·a13=a11·a12=a8·a15,∴(a8·a15)2=4,∴a8a15=±2.又∵{a n}为递减数列,∴q>0,∴a8a15=2.14.在等比数列{a n}中,若a7=-2,则此数列的前13项之积等于________.答案-213解析由于{a n}是等比数列,∴a1a13=a2a12=a3a11=a4a10=a5a9=a6a8=a27,∴a1a2a3…a13=(a27)6·a7=a137,而a7=-2.∴a1a2a3…a13=(-2)13=-213.15.在等比数列{a n }中,若a 7a 11=6,a 4+a 14=5,则a 20a 10=________. 答案23或32解析∵{a n }是等比数列,∴a 7·a 11=a 4·a 14=6,又a 4+a 14=5,∴⎩⎪⎨⎪⎧ a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=32或q 10=23. 而a 20a 10=q 10,∴a 20a 10=23或32. 16.已知{a n }是等差数列,满足a 1=2,a 4=14,数列{b n }满足b 1=1,b 4=6,且{a n -b n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)若任意n ∈N *,都有b n ≤b k 成立,求正整数k 的值.解(1)设{a n }的公差为d ,则d =a 4-a 13=4,所以a n =2+(n -1)×4=4n -2,故{a n }的通项公式为a n =4n -2(n ∈N *).设c n =a n -b n ,则{c n }为等比数列.c1=a1-b1=2-1=1,c4=a4-b4=14-6=8,=8,故q=2.设{c n}的公比为q,则q3=c4c1则c n=2n-1,即a n-b n=2n-1.所以b n=4n-2-2n-1(n∈N*).故{b n}的通项公式为b n=4n-2-2n-1(n∈N*).(2)由题意得,b k应为数列{b n}的最大项.由b n+1-b n=4(n+1)-2-2n-4n+2+2n-1=4-2n-1(n∈N*).当n<3时,b n+1-b n>0,b n<b n+1,即b1<b2<b3;当n=3时,b n+1-b n=0,即b3=b4;当n>3时,b n+1-b n<0,b n>b n+1,即b4>b5>b6>…所以k=3或k=4.。

等比数列ppt课件

等比数列ppt课件
第十一页,编辑于星期五:十三点 二十八分。
性质 :
看清下标用性质
1、b是a, c的等比中项
a b b2 ac bc
2、m+n=2s →am.an=as2
3、m+n=s+t → am.an=as.at
第十二页,编辑于星期五:十三点 二十八分。
1、b2=ac是a,b,c成等比数列的
_____条件。
谢谢观看
第十七页,编辑于星期五:十三点 二十八分。
k (q≠1) 变:等差数列首项为-5,前11项的平均值为5,若从中抽取一项,余下10项的平均值为4.
比较an+1与bn+1的大小。 +an+k} 70a1+a2+. (3)a5=4,a7=6,求a9 等比数列的证明与判断只能用定义 (4)a5-a1=15,a4-a2=6,求a3 第六页,编辑于星期五:十三点 二十八分。 (1)证明:数列{1-bn}为等比数列 (5)a3+a8=124,a4a7=-512,且公比q是整数,an=?
数列的单调性: 1: a1>0,q>1 2: a1<0,q>1 3: a1>0,0<q<1
4: a1<0,0<q<1
第四页,编辑于星期五:十三点 二十八分。
判断 : 1.定义法:
an q
a n1
a n a n1
2.递推公式:a n 1 a n
a
2 n
a n1a n1
第五页,编辑于星期五:十三点 二十八分。
等比数列
第一页,编辑于星期五:十三点 二十八分。
等差等比抓首公;看清下标用性质。 五个元素三基本;求和项数很重要。

等比数列(第二课时)课件

等比数列(第二课时)课件

等比数列(第二课时)课件目录•等比数列的定义与性质•等比数列的通项公式•等比数列的求和公式•等比数列在实际生活中的应用•课堂练习与解答Contents01总结词详细描述式、求和公式等。

总结词于计算数列的和。

详细描述等比数列与等差数列的对比总结词详细描述02定义法递推法特征根法利用等比数列的性质,通过递推关系式推导通项公式。

利用等比数列的特征根,通过代数运算推导通项公式。

030201求特定项的值交替等。

判断项的性质列中不同项的大小。

比较大小交替数列几何数列03等比数列是一种特殊的数列,其中任意一项与前一项的比值都相等,记作 a_n/a_(n-1)=r (r为常数)。

定义等比数列通过等比数列的性质,我们可以将等比数列的各项进行分组求和,再利用等比数列的性质化简,最终得到等比数列的求和公式:S_n=a_1*(1-r^n)/(1-r)。

推导求和公式解决实际问题无限等比数列的求和04复利计算和赔偿金额。

保险计算股票分析放射性衰变放射性衰变过程中,原子核的数目按照等比数列的方式减少。

声音传播在声波传播过程中,振动的次数按照等比数列的方式增加,形成不同的音高。

光学透镜透镜的焦距按照等比数列的方式排列,可以用于制造不同焦距的透镜。

网络传输网络传输中,数据包的发送往往按照等比数列的方式进行,以实现高效的数据传输。

数据压缩在数据压缩算法中,等比数列可以用于高效地存储和传输数据。

加密算法等比数列在加密算法中也有广泛应用,例如RSA算法就是基于等比数列的原理设计的。

等比数列在计算机科学中的应用05基础练习题1在等比数列 { a_n } 中,已知 a_2 = 4,a_6 = 32,求首项 a_1 和公比 q。

基础练习题2基础练习题3已知等比数列 { a_n } 的前 n 项和 S_n = 3^n + r,求 a_3 和 r 的值。

216基础练习题1 2 3提升练习题1提升练习题2提升练习题3综合练习题101等差数列,求 r 的值。

等比数列(公开课课件)

等比数列(公开课课件)

教师备选
已知各项都为正数的数列{an}满足an+2=2an+1+3an. (1)证明:数列{an+an+1}为等比数列;
an+2=2an+1+3an, 所以an+2+an+1=3(an+1+an), 因为{an}中各项均为正数, 所以 an+1+an>0,所以aan+n+2+1+aan+n 1=3,
第六章
考试要求
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和公式. 3.了解等比数列与指数函数的关系.
落实主干知识 探究核心题型
课时精练
LUOSHIZHUGANZHISHI
落实主干知识
知识梳理
1.等比数列的有关概念 (1)定义:一般地,如果一个数列从第 2 项起,每一项与它的前一项的比 都等于同一个常数 (不为零),那么这个数列叫做等比数列.这个常数叫做 等比数列的 公比 ,通常用字母q表示,定义的表达式为 aan+n1=q (n∈N*, q为非零常数). (2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那 么 G 叫做a与b的等比中项,此时,G2=ab.
方法二 设等比数列{an}的公比为q,
则aa34qq22- -aa34= =1224, ,
① ②
②①得aa34=q=2.
将q=2代入①,解得a3=4. 所以 a1=aq32=1,下同方法一.
(2)(2019·全国Ⅰ)记 121
Sn
为等比数列{an}的前
n
项和.若
a1=31,a24=a6,则
S5
=___3_____.
假设存在常数λ,使得数列{Sn+λ}是等比数列, ∵S1+λ=λ+1,S2+λ=λ+4,S3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13),解得 λ=12, 此时 Sn+12=12×3n,则SSn+n+1+1212=1212××33n+n1=3,

高中数学 2.4.2 等比数列的性质课件 新人教A版必修5

高中数学 2.4.2 等比数列的性质课件 新人教A版必修5

6-2log 8 = 0,
= 2,

= 11.
2 + 3log 8 = m.
故存在常数 c=2,使得对任意 n∈N*,an+logcbn 恒为常数 11.
第二十一页,共30页。
问题
(wèntí)导

课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测
三个数或四个数成等比数列的设元技巧:

(1)若三个数成等比数列,可设三个数为 a,aq,aq2 或,a,aq;
(2)若四个数成等比数列,可设 a,aq,aq2,aq3;若四个数均为正(负)数,

可设 3 , ,aq,aq3.

第 2 课时
等比数列的性质
第一页,共30页。
目标(mùbiāo)
导航
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习(yùxí)
引导
学习目
记住等比数列的常见性质,并会用这些性质解答一些简单的等比数

列问题.
重点难
重点:等比数列的性质及应用;

难点:对等比数列性质的理解.
已知条件进行推理,从而得出结论.
第十八页,共30页。
问题(wèntí)
导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测

等比数列求和公式及性质课件PPT

等比数列求和公式及性质课件PPT
的符号相反。
公比为负数的等比数列求和公式: S = a_1 * (1 - q^n) / (1 - q)
公比为负数的等比数列具有特殊 的性质,如对称性、周期性等。
公比为1的性质
当公比q=1时,等比 数列退化为等差数列, 各项相等。
公比为1的等比数列 具有特殊的性质,如 对称性、周期性等。
公比为1的等比数列 求和公式:S = n * a_1
研究电磁波的传播特性
在研究电磁波的传播特性时,常常需要用到等比 数列求和公式来求解与波动相关的数学模型。
在经济中的应用
分析股票价格波动
评估投资回报
在股票市场中,股票价格常常呈现一 定的波动规律,利用等比数列求和公 式可以分析股票价格的波动规律。
在投资领域中,利用等比数列求和公 式可以评估投资回报的长期收益,为 投资者提供参考。
4. 在等比数列中,两个相同项之间的项数可以确定为n, 那么这两项之间的所有项的和可以表示为a_n * (q^n - 1) / (q - 1)。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示等比数列中每一项的数学表达式。
详细描述
等比数列的通项公式为a_n = a_1 * q^(n-1),其中a_1是首项,q是公比,n是 项数。这个公式可以用来计算等比数列中的任何一项,只要知道首项、公比和 项数。
差数列、等比数列的性质、通项公式等。
在物理中的应用
1 2 3
解决与周期性运动相关的问题
等比数列求和公式在物理学中有广泛的应用,如 求解与周期性运动相关的问题,如简谐运动、波 动等。
分析量子力学中的概率幅
在量子力学中,概率幅常常以等比数列的形式出 现,利用等比数列求和公式可以方便地计算出概 率幅之和。

高中数学必修5课件:第2章2-4-2等比数列的性质


数学 必修5
第二章 数列
温故知新
1.等比数列{an},对于任意正整数 n,都有aan+n 1=________.
[答案] q 2.等比数列{an},对于任意正整数 n、m 都有aamn=________. [答案] qn-m
数学 必修5
第二章 数列
(4){|an|}是公比为|q|的等比数列;
(5){amn }(m是整数常数)是公比为qm的等比数列.
特别地,若数列{an}是正项等比数列时,数列{a
m n
}(m是实
数常数)是公比为qm的等比数列;
(6)若{an},{bn}分别是公比为q1,q2的等比数列,则数列 {an·bn}是公比为q1·q2的等比数列.
数学 必修5
第二章 数列
3.在等比数列{an}中,各项都是正数,a6a10+a3a5=41, a4a8=4,则a4+a8=________.
解析: ∵a6a10=a28,a3a5=a24, ∴a24+a28=41, 又a4a8=4, ∴(a4+a8)2=a24+a28+2a4a8=41+8=49, ∵数列各项都是正数,∴a4+a8=7.
【错解】 因为a5,a9是方程7x2-18x+7=0的两个根,
所以a5+a9=178, 又因为a7是a5,a9的等比中项, a5·a9=1.
所以a27=a5·a9=1,即a7=±1.
数学 必修5
第二章 数列
【错因】 上述解法忽视了对a7符号的讨论,由于a5,a9
均为正数且公比为q=±
a7 a5
=±
第二章 数列
(1)本类题目与等差数列中的形式基本类似, 但相对等差数列来说,它的运算量远远高出等差数列,特别提 出一点,对于公比q一定要根据题意进行取舍,并给出必要的 讨论和说明.

等比数列的概念(第一课时)课件-高二上学期数学人教A版(2019)选择性必修第二册

an 2
a2
a3
以上各式相乘得:
a 2 a 3 a4
a1 a2 a3
an 1 an
q q q
a n 2 a n 1
an
q n1,an a1q n1
a1
q q n 1
n-1个
又a1=a1q0=a1q1-1,即当n=1时上式也成立.
an=a1qn-1 (n∈ ∗ )
所以 5 =± 576=±24
因此, 的第5项是24或-24
典例分析
例2 已知等比数列{an}的公比为q,试用{an}的第m项am表示an.
n 1

a

a
q

n
1
解:由题意,得

m 1

am a1q ②
①的两边分别除以②的两边,得
an
q n m ,即an am q n m .
常数列一定是等差数列,公差为0;
非零常数列是等比数列,公比为1.
追问3:是否存在既是等差数列又是等比数列的数列?
非零常数列既是等差数列又是等比数列,公差为0,公比为1.
新知探究二:等比中项
问题3 类比等差中项的概念,你能抽象出等比中项的概念吗?
等比中项
等差中项




如果三个数a,A,b组成等
如果三个数a,G,b组成等
q 3
解 2 :由题意,得a22 a1a3 36,∴a2 6.
a4
2
当a2 6时,a4 54,∴q
第2项与第4项的和等于136,第1项与第5项的和等于132. 求这个数列.
解:设前三项的公比为q,后三项的公差为d ,则数列的各项的各项依次为

等比数列的概念课件高二下学期数学人教A版(2019)选择性必修第二册



d=0, q=1,
(舍去).
例题解析
(2)由(1)知 an=1+(n-1)·5=5n-4, bn=b1qn-1=6n-1.
假设存在常数 a,b,使得对任意 n∈N*,都有 an=logabn+b 成立,则 5n-4=loga6n-1+b,
即 5n-4=nloga6+b-loga6.
比较系数,得
loga6=5, b-loga6=-4,
选择性必修二第四章
4.3等比数列
4.3.1 等比数列的概念
知识梳理
一、等比数列的概念
(1)文字语言:一般地,如果一个数列从第___2_____项起,每一 项与它的前一项的__比______等于_同__一__个___常数,那么这个数列叫做 等比数列,这个常数叫做等比数列的 __公__比____,公比通常用字母 ___q_____(q≠0)表示.
又∵b1=2,∴{bn}是首项为 2,公比为 3 的等比数列.
例题解析
例 7.已知数列{an}满足 a1=2,an+1=3an+2,则 a2 018=( B ) A.32 018+1 B.32 018-1 C.32 018-2 D.32 018+2
∵an+1=3an+2,∴an+1+1=3(an+1).∵a1+1=3,∴数列{an+1}是首项,公比均为 3 的等比数列, ∴an+1=3n,即 an=3n-1,∴a2 018=32 018-1.故选 B
知识梳理
四、等比数列的常用性质 (1)通项公式的推广:an=am·qn-m(m,n∈N*) (2)若 p+q=s+t(p、q、s、t∈N*),则 ap·aq=__a_s_·_a_t __.
知识梳理
注意 (1)在已知等比数列{an}中任一项 am 及公比 q 的前提下,可以利用 an=amqn-

数列等比数列等比数列的性质ppt


等比数列与不等式的关系
利用等比数列中各项的正负交替变化规律, 求解不等式。
利用等比数列的通项公式,构造不等式求解 。
等比数列在实际问题中的应用案例
复利计算
在金融领域中,复利计算是一种常见的计算方式 ,而等比数列是复利计算的核心。
细胞分裂
生物学中细胞分裂的过程可以用等比数列来描述 。
人口增长
人口增长的过程往往呈现出等比数列的变化趋势 ,可以利用等比数列模型进行预测。
前n项和公式
对于复杂等比数列,其前n项和公式可能比较复杂,需要具体问题具体分析。 一般而言,可以通过错位相减法或者递推关系式来求解前n项和。
04
等比数列的性质
性质一:对称性
总结词
等比数列具有对称性,即前后两项相等, 中间项与两端项之间存在等量关系。
VS
详细描述
对于任意等比数列,若第n项为a(n),则 第n+1项与第n项之间存在等量关系,即 a(n+1) = -qa(n),其中q为公比。特别地 ,当公比为1时,数列各项相等。
可以用来解决与数列相关的问题,如求和、找 项等。
对于复杂的问题,可以通过通项公式找到问题 的规律和解决思路。
复杂等比数列的通项公式
对于复杂的等比数列,如包含多个公 比或变比的数列,其通项公式会更加 复杂。
例如,等比数列中包含常数项、线性 项和高次项等复杂项,其通项公式需 要采用相应的数学技巧进行推导。
0比数列的通项公式是数列的核心性质之一, 通过公式可以快速得到数列的任意一项。
2
推导过程基于等比数列的定义,即每一项都等 于前一项乘以公比。
3
假设数列的首项为a1,公比为r,那么第n项an = a1 * r^(n-1)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档