给水管网设计.
给水系统中的管网布置与设计

给水系统中的管网布置与设计随着城市的发展和人口的增加,给水系统的建设越来越重要。
合理的管网布置与设计是确保水资源能够有效供应到每个用户的关键。
本文将就给水系统中的管网布置与设计进行探讨。
一、给水系统的概述在开始讨论管网布置与设计之前,我们先来了解一下给水系统的概述。
给水系统是指将水源收集、处理后分配到各个用户的系统。
其主要包括水源、取水设施、输水管道、水处理设施和用户接口等组成部分。
二、管网布置原则1. 保证供水可靠性管网布置应能够保证供水可靠性,即确保每个用户都能够得到稳定的水源供应。
在设计过程中,需要考虑到水压、水量、水质、管道直径等因素,合理确定管网的布置方案。
2. 缩短供水距离为了减小管道阻力和节约用水成本,管网布置应尽量缩短供水距离。
根据实际情况,可以采用分区供水的方式,将每个区域的供水距离控制在合理范围内。
3. 考虑后期扩展给水系统的建设需要考虑未来的发展和扩容。
在管网布置与设计时,应留出一定的余地,以便后期根据需求进行扩展和改造。
三、管网设计方法1. 管径设计管道直径的选择对于管网设计至关重要。
合理选择管径可以保证供水稳定并降低能源消耗。
管道直径的计算需要考虑到水量、压力损失、水流速度等因素。
2. 管网结构设计管网结构设计包括主干管、支线管和配管等。
主干管负责将水源输送到各个区域,支线管将水分配给具体的用户,配管则将水从支线管输送到每个用户。
合理的管网结构设计可以提高供水效率。
3. 阀门的设置阀门的设置对于管网运行和维护具有重要意义。
阀门可以分区控制供水、切断故障区域以及进行管网维修和清洗。
在设计过程中,应合理布置阀门,确保管网的灵活性和操作性。
4. 泵站设计在远距离供水或者供水高度差较大的情况下,需要考虑泵站的设计。
泵站的选型和布置需要考虑到供水量、供水压力等因素,以确保泵站的正常运行。
四、案例分析为了更好地理解管网布置与设计的实际应用,我们以某城市的给水系统为例进行案例分析。
该城市的给水系统主要包括水源、水处理厂、输水管道和用户接口。
第三讲 给水管网设计计算与案例

3.3 输配水管网计算
由于实际管网的复杂性,加上情况在不断的变 化,例如流量在不断增加,管网逐步扩展,诸 多经济指标如水管价格、电费等也随时变化, 要从理论上计算管网造价和年管理费用相当复 杂且有一定难度时可采用经济流速。
3.3 输配水管网计算
五、水头损失计算 管(渠)道流量、流速和管径确定以后,即能进行 管段的水头损失计算。管渠总水头损失,一般可按下 式计算: hz=hy+hj
3.3 输配水管网计算
三、管段计算流量
沿线分配的流量,实
沿 线 流 量
际情况复杂,理论计
算采用:长度比流量、 面积比流量
无 性 扩 增
从沿线流量折算得出 的并且假设是在节点 集中流出的流量
管网图上各节点的流量包括由沿线流量折算的 节点流量和大用户的集中流量
3.3 输配水管网计算
四、沿线流量、节点流量计算实例 例题 某城市最高时总用水量为440L/s,其中集中工业用水量为 120L/s,分别在节点4、5集中出流50L/s。各管段长度(m)和节 点编号如图3.5所示。管段1-2、2-3、4-5、5-6为一侧供水,其余 为双侧供水。试求:(1)比流量;(2)各管段的沿线流量;(3) 各节点流量。
3.3 输配水管网计算
沿程水头损失计算公式的一般形式
上述沿程水头损失计算公式可转划为一般指数形式:
式中 k,b,c—指数公式参数,海曾—威廉公式和曼宁 公式的参数见表; α— 比阻,即单位长度管长的摩阻系数; q—流量,m³ /s; s—摩阻系数; l—管长,m; d—管道计算内径,m。
3.3 输配水管网计算
3.3 输配水管网计算
解:配水干管计算总长度
(1)配水干管比流量 (2)沿线流量(见下表)
《给水管网工程设计》课件

质量记录
维护保养
根据管网材质和运行状况,制定合理的维护保养计划,对管道、阀门等设施进行定期保养和维修。
档案管理
建立完善的档案管理系统,对管网图纸、维修记录等进行归档管理,方便后期查询和使用。
应急处理
建立应急处理机制,对突发性事件进行快速响应和处理,保障供水安全。
运行管理
建立健全的运行管理制度,定期巡查和维护给水管网,确保其正常运行。
功能
定义
给水管网是城市基础设施的重要组成部分,直接关系到居民的饮用水安全和生活质量,是保障民生的基础工程。
保障民生
给水管网的建设和维护能够带动相关产业的发展,为城市经济建设提供支撑。
促进经济发展
给水管网的安全运行对于维护社会稳定具有重要意义,一旦发生供水事故,将对社会造成严重影响。
维护社会稳定
给水管网工程的历史可以追溯到古代,随着城市化进程的不断加速,给水管网工程的技术和规模也不断发展和完善。
《给水管网工程设计》ppt课件
目录
给水管网工程概述给水管网设计基础给水管网系统规划给水管网结构设计给水管网施工与维护给水管网工程案例分析
01
CHAPTER
给水管网工程概述
给水管网是指由管道、泵站、调节构筑物、水塔等设施组成的系统,用于将饮用水输送到用户家中。
给水管网的主要功能是确保用户能够方便、安全地获得足够的饮用水,满足人们的日常生活需求。
总结词
05
CHAPTER
给水管网施工与维护
根据管网规模、地形地貌、交通状况等因素,选择合适的施工方法,如明挖、顶管、盾构等。
施工方法
根据管材、管径、埋深等要求,采用适当的施工工艺,如管沟开挖、管道安装、回填等。
施工工艺
给水管网设计理念是什么

给水管网设计理念是什么
给水管网设计的理念是为了满足人们对高质量、可靠、安全的饮用水和生活用水的需求。
给水管网设计的理念包括以下几个方面:
1. 高质量:给水管网设计的首要目标是提供高质量的饮用水。
设计师应该根据当地水质的特点和人们的需求,选择合适的工艺和设备,确保供水的水质符合国家和地方的相关标准。
2. 可靠性:给水管网设计应该保证系统的可靠性和连续供水能力。
设计师需要通过合理的管网布局和供水系统的冗余设计,降低系统运行过程中的停水和故障的发生概率。
3. 安全性:给水管网设计应该注重供水的安全性。
设计师应该考虑到供水管网和周边环境的关系,防止外界污染物对供水的影响。
此外,给水管网的设计还应考虑到事件灾害的应对措施,确保在紧急情况下水质仍能保持稳定。
4. 节能高效:给水管网设计应该注重节能和高效水的利用。
设计师应该通过合理的管网布局、管径选择和阀门控制等手段,降低管道系统的阻力和泵站的能耗,提高给水系统的水平运营效率。
5. 可持续发展:给水管网设计应该注重可持续发展。
设计师应该利用新技术和新材料,提高管道系统的使用寿命,并考虑到系统的扩展性和维修便捷性,降低后期的运营成本和对环境的影响。
总之,给水管网设计的理念是以人为本,保障供水质量和供水可靠性,注重供水的安全性和节能高效,同时注重管网的可持续发展。
给水排水管路设计(给水部分)讲解

给水排水管网设计(给水部分)一、给水系统的布置(1)给水系统的给水布置给水系统有统一给水系统,分系统给水系统(包括分质给水系统、分区给水系统及分压给水系统),多水源给水系统和分地区给水系统。
本设计城市规模较小,地形较为平坦,其工业用水在总供水量所占比例较小,且城市内工厂位置分散,用水量少,故可采用同一系统供应生活、生产和消防等各种用水,即使其供水有统一的水质和水压。
鉴于城市规模小,且管道铺设所需距离较长,本设计选择单水源给水系统。
从设计施工费用等方面考虑,单水源统一给水系统的投资也相对较小,较为经济。
综上所诉,本设计采用单水源统一给水系统。
(2)给水管网布置形式城市给水官网的基本布置形式主要有环状与树枝状两种。
树状网的供水安全性较差,当管中某一段管线损坏时,在该管段以后的所有管线就会断水。
而且,由于枝状网的末端,因用水量已经很小,管中的水流缓慢,因此水质容易变坏,环状网是管线连接成环状,某一管段损坏时,可以关闭附近的阀门是和其余管线隔开,以进行检修,其余管线仍能够正常工作,断水的地区可以缩小,从而保证供水的安全可靠性。
另外,还可以大大减小因水锤作用产生的危害,在树状网中,则往往一次而是管线损坏。
但是其造价明显比树状网为高。
一般大中城市采用环状管网,而供水安全性要求较低的小城镇则可以猜用树状管网。
但是,为了提高城镇供水的安全可靠性以及保证远期经济的发展,本实例仍然采用环状网,并且是有水塔的环状网给水管网。
(3)二级泵房供水方式综合考虑居民用水情况以及具体地形情况,拟在管网末端设置对置水塔,由于水塔可调节水泵供水和用水之间的流量差,二泵站的供水量可以与用水量不相等,即水泵可以采用分级供水的办法,分级供水的原则是:(1)泵站各级供水线尽量接近用水线,以减小水塔的调节容积,分级输一般不多于三级:(2)分级供水时,应注意每级能否选到合适的水泵,以及水泵机组的合理搭配,尽可能满足今后和一段时间内用水量增长的需要。
给水管网工程设计

a. 枝状网 水流方向唯一,流量分配唯一,任一管段的
流量等于以后所有节点流量总和。
20
二级泵站
q45 Q5 q3 4 Q4 Q5
q23 Q3 Q4 Q5 Q8 Q11
21
b. 环状网 流量分配有多种组合方案 基本原则:满足供水可靠性前提下,兼顾经济性。
10
(2)沿线流量如何转换成节点流量
沿线流量划成节点流量公式
Q j 0.5 qy qi
(3)沿线流量转换成节点流量的依据
11
qt
假设沿线出流是均匀 的,则管道的任一断 面上的流量
qt
qx
qt
ql l
(l
x)
q t + q l1 x
qt
2 qt
沿程水头损失
h f
l
k (qt
l
l
x
ql
)n
绿地
Q=260L/s 17.50
1
600 5
7.95 7
居住区
27.05 600 6
500
30.22
居住区 居住区 居住区 居住区
800
800
800
57.5
62.28
57.5
2
600
工厂
3
600
工厂
4
17
3.沿线流量:
qy qcb li (l / s)
各管段沿线流量计算
管段编号
1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
多忽少;
➢ 可以起端开始或从末端,满足节点流量的平衡条
第6章-给水管网设计

K h Qd Qh 24
(m3/h)
(6.8)
图6.1 中,最高时用水量为全天用水量 的5.92%,时变化系数为1.42。若最高 日用水量Qd=45000m3/d,则最高时用水 量为:
K h Qd 1.42 45000 Qh 2663 24 24
图6.1 某城市最高日用水量变化曲线
6.1.1 最高日设计用水量(续1) 1)城市最高日综合生活用水量(包括公共设施生活用水量):
q1i N1i Q1 1000
q1i —城市各分区的最高日综合生活用水量定额,L /(Cap· d),见附录表1; N1i —设计年限内城市各用水分区的计划人口数,Cap; 2)工业企业生产用水量: 式中
(1)设计用水量变化规律 最高日用水量的时变化系数: 城市综合用水的时变化系数宜采用1.3~1.6 ;
工业企业内工作人员的生活用水时变化系数为2.5~3.0,淋浴用水量按每班延续 用水1小时确定变化系数;
工业生产用水量一般变化不大,可以在最高日内各小时均匀分配。
最高日用水量的时变化曲线:最高日各小时用水量曲线图。
(6.16)
如果存在误差,则应检查计算过程中的误差,可以直接调整某些项集中流量和 沿线流量,使流量达到平衡。 (2)节点设计流量计算 • 基本假设:即所有流量只能从节点处流出或流入。 • 供水泵站或水塔的供水流量也应从节点处进入系统,但应作为负流量。 • 节点设计流量是最高时用水集中流量、沿线流量(转移后)和供水设计流量之和, 假定流出节点为正向,则用下式计算:
在缺乏资料、不能进行水量调节计算的情况下,一般清水池容积可按最高日用水 量的10%~20%设计。工业用水可按生产上的要求确定清水池容积。
W W W
给水管网设计说明书

设计说明书一.原始资料设计任务为陕西中部A县给水系统。
1、设计年限与规模:设计年限为2020年,主要服务对象为该城区人口生活与工业生产用水,包括:居民综合生活用水,工业企业生产、生活用水,市政及消防用水,不考虑农业用水。
2、水文情况:本县地势较平缓,附近有地表水源,考虑城区发展及供水安全可靠,采用环状网得布置形式,管线遍布整个供水区,保证用户有足够得水量与水压。
3、气象情况:该地区一年中各种风向出现得频率见远期规划图中得风向玫瑰图,冬季冰冻深度0、5米。
4、用水情况:城区2011年现状人口13、5万人;人口机械增长率为5%。
,设计水平年为2020年。
城区最高建筑物为六层(要求管网干管上最不利点最小服务水头为28、00米)。
消防时最低水压不小于10、00米。
要求供水符合生活饮用水水质标准(无论生活用水与生产用水)。
无特殊要求。
采用统一给水系统。
用水普及率为100 %。
综合生活用水逐时变化表二.设计内容1、给水量定额确定(1)参照附表1 (a)选用得居民综合生活用水定额为240L/cap、d(2)工企业内工作人员生活用水量根据车间性质决定,一般车间采用每人每班25L,高温车间采用每人每班35L。
(3)浇洒街道用水量定额选用2、5L/m、d。
浇洒绿地用水量定额为2L/m2、d o(4)参照附表3该城市同一时间内可能发生火灾2次,一次用水量为45L/S。
2、设计用水量计算(1)最高日用水量计算城市最高日用水量包括综合用水、工业用水、浇洒道路与绿化用水、未预见用水与管网漏失水量。
(一)城市综合用水量计算:设计年限内人口为14、12万人,综合生活用水定额采用240L/cap d最高日综合生活用水量Q:Q1 =qNf城市最高日综合生活用水,m3/ d;q ----- 城市最高日综合用水量定额,L/(cap、d);N ----- 城市设计年限内计划用水人口数;f ――城市自来水普及率,采用f=100% 所以最高日综合生活用水为:Q1=qNf=0、24*141200*100%=33888m3/d=39、2 22L/s(二)工业用水量计算工业生产用水2000+1000+600=3600m3/d=4、1 7L/s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、给水系统的布置1、给水系统的给水布置2、给水管网布置形式3、二级泵房供水方式二、给水管网定线三、设计用水量1、最高日设计用水量2、最高日用水量变化情况3、最高日最高时设计用水量4、计算二泵房、水塔、管网设计流量5、计算清水池设计容积和水塔设计容积四、管材的选择五、管网水力计算六、校核水力计算给水管网课程设计一、给水系统的布置(1)给水系统的给水布置给水系统有统一给水系统,分系统给水系统(包括分质给水系统、分区给水系统及分压给水系统),多水源给水系统和分地区给水系统。
本设计城市规模较小,地形较为平坦,其工业用水在总供水量所占比例较小,且城市内工厂位置分散,用水量少,故可采用同一系统供应生活、生产和消防等各种用水,即使其供水有统一的水质和水压。
鉴于城市规模小,且管道铺设所需距离较长,本设计选择单水源给水系统。
从设计施工费用等方面考虑,单水源统一给水系统的投资也相对较小,较为经济。
综上所诉,本设计采用单水源统一给水系统。
(2)给水管网布置形式城市给水官网的基本布置形式主要有环状与树枝状两种。
树状网的供水安全性较差,当管中某一段管线损坏时,在该管段以后的所有管线就会断水。
而且,由于枝状网的末端,因用水量已经很小,管中的水流缓慢,因此水质容易变坏,环状网是管线连接成环状,某一管段损坏时,可以关闭附近的阀门是和其余管线隔开,以进行检修,其余管线仍能够正常工作,断水的地区可以缩小,从而保证供水的安全可靠性。
另外,还可以大大减小因水锤作用产生的危害,在树状网中,则往往一次而是管线损坏。
但是其造价明显比树状网为高。
一般大中城市采用环状管网,而供水安全性要求较低的小城镇则可以猜用树状管网。
但是,为了提高城镇供水的安全可靠性以及保证远期经济的发展,本实例仍然采用环状网,并且是有水塔的环状网给水管网。
(3)二级泵房供水方式综合考虑居民用水情况以及具体地形情况,拟在管网末端设置对置水塔,由于水塔可调节水泵供水和用水之间的流量差,二泵站的供水量可以与用水量不相等,即水泵可以采用分级供水的办法,分级供水的原则是:(1)泵站各级供水线尽量接近用水线,以减小水塔的调节容积,分级输一般不多于三级:(2)分级供水时,应注意每级能否选到合适的水泵,以及水泵机组的合理搭配,尽可能满足今后和一段时间内用水量增长的需要。
依据以上原则,本设计采用二泵房分二级供水。
二、给水管网定线城市管网定线取决于城市的平面布置,供水区的地形,水源和水塔的的位置,街区和用户特别是大用户的分布,河流,铁路,桥梁等的位置,管线一般敷设在街道下,以满足供水要求为前提,尽可能缩短管线长度;形状随城市总平面布置图而定;宜树状网和环状网相结合的形式,且使管线均匀地分布于整个给水区。
在定线前需熟悉地形图,明确水源、水厂、水塔设计位置以及各大用户的位置,由于管网定线不仅关系着供水安全,也影响着管网造价,因此定线时需要慎重考虑。
水塔应尽量置于城市较高地区。
以减少水塔高度;此外应尽可能靠近大用水户,以便在最大转输时减少水塔至该处的连接管中的水头损失,从而减少水塔高度,水塔在管网中有重要作用,它的目标又很明显,故选择水塔位置时,需考虑防空、整个城市规划及美观等问题。
管网定线的基本原则是:●干管应通过两侧负荷较大的用水区,并以最短距离向用户送水。
●靠近道路、公路,以便于施工及维修。
●利于发展,并考虑分期修建的可能性。
●干管尽量沿高地布置,使管道内压力较小,而配水管压力则更高些。
●注意与其他管线交叉时平面与立面相隔间距的规定与要求。
按照布管原则进行:干管的延伸和二泵房输水到水塔、大用水户的水流方向一致,以水流方向为基准平行布置干管,以最短的距离到达用水户;干管间距500-800米,联络管间距800-1000米;枝状和环状相结合;单管和双管相结合;给水管网定线草图如图所示:(记得加附图)三、设计用水量1、最高日设计用水量:城市最高日用水两包括综合用水、工业生产用水及职工生活用水及淋浴用水、浇洒道路和绿化用水、未预见用水和管网漏失水量。
①综合生活用水量:城北区近期规划人口8万人,用水普及率预计100%,综合用水量标准采用300L/c ap·d则最高日综合生活用水量:Q1=300×80000×100%=24000000L/d=24000(m3/d)②工业企业用水量:由资料知,甲企业用水量(含工业企业职工生活用水和生产用水)为3000m3/d,则Q2+Q3=3000m3/d=34.72L/s③浇洒道路和绿化用水量:由资料知:Q4=0。
④未预见水量和管网漏失水量:Q 5=(15%--25%)×(Q1+Q2+Q3+Q4),这里取20%,则Q5=20%×(24000+3000)m3/d=5400m3/d。
⑤消防用水量:根据《建筑设计防火规范》该城市消防用水量定额为35L/s,同时火灾次数为2次。
故城市消防用水量为:Q6=35×2=70L/s所以:最高日设计用水量为:Q d =Q1+Q2+Q3+Q4+Q5=24000+3000+0+5400=32400m3/d。
取Qd=33000 m3/d2、最高日用水量变化情况城市生活用水量变化情况如下表:时间0~1 1~2 2~3 3~4 4~5 5~6 6~7 7~8 8~9 9~10 10~1111~12用水量 1.10 0.70 0.90 1.10 1.30 3.91 6.61 5.84 7.04 6.69 7.17 7.31时间12~1313~1414~1515~1616~1717~1818~1919~2020~2121~2222~2323~24用水量 6.62 5.23 3.59 4.76 4.24 5.99 6.97 5.66 3.05 2.01 1.42 0.79 根据“用水量计算表”绘制最大日用水量变化曲线(见下图)3、最高日最高时设计用水量一级泵站全天运转,流量为最高日用水量的4.17﹪;二级泵站分两级供水:第一级从21时到5时,供水量为1.16%,第二级从5时到21时,供水量为5.67%,最高日泵站总的供水量为:1.16%×8+5.67%×16=100%,从表中可以得知,城市最高日用水有两个高峰:一是早上8:00--12:00,一是下午17:00--20:00,最高时用水量是在上午11:00--12:00,为全天的7.31%。
则时变化系数为Kh=7.31%/4.17%=1.75.故,最高日最高时用水量为:Qh=Kh ×Qd/86.4=1.75×33000/86.4=668.4L/s。
4、计算二泵房、水塔、管网设计流量由最高日设计用水量为33000m3/d,且管网中设置有水塔,则:二泵房的设计供水流量为:33000×5.67%×1000/3600=519.75L/s。
水塔的设计供水流量为:33000×(7.31%-5.67%)×1000/3600=150.3L/s。
5、计算清水池设计容积和水塔设计容积清水池与水塔调节容积计算时间给水处理供水量(%)二级(供水)泵站供水量(%)清水池调节容积计算设置水塔(%)水塔调节容积计算(%) 设置水塔不设水塔(1)(2)(3)(4)(2)-(3)∑(3)-(4)∑0-1 4.17 1.16 1.10 3.01 3.01 0.06 0.06 1–2 4.17 1.16 0.70 3.01 6.02 0.46 0.52 2–3 4.16 1.16 0.90 3.009.02 0.26 0.78 3–4 4.17 1.16 1.10 3.0112.03 0.06 0.84 4–5 4.17 1.16 1.30 3.0115.04 -0.14 0.70 5–6 4.16 5.67 3.91 -1.5113.53 1.76 2.46 6–7 4.17 5.67 6.61 -1.50 12.03 -0.94 1.52 7–8 4.17 5.67 5.84 -1.50 10.53 -0.17 1.35 8–9 4.16 5.67 7.04 -1.51 9.02 -1.37 -0.02 9–10 4.17 5.67 6.69 -1.50 7.52 -1.02 -1.04 10–11 4.17 5.67 7.17 -1.50 6.02 -1.50 -2.54 11–12 4.16 5.67 7.31 -1.51 4.51 -1.64 -4.18 12–13 4.17 5.67 6.62 -1.50 3.01 -0.95 -5.13 13-14 4.17 5.67 5.23 -1.50 1.51 0.44 -4.69 14-15 4.16 5.67 3.59 -1.51 0.00 2.08 -2.61 15-16 4.17 5.67 4.76 -1.50 -1.50 0.91 -1.70 16-17 4.17 5.67 4.24 -1.50 -3.00 1.43 -0.27 17-18 4.16 5.67 5.99 -1.51 -4.51 -0.32 -0.59 18-19 4.17 5.67 6.97 -1.50 -6.01 -1.30 -1.89 19-20 4.17 5.67 5.66 -1.50 -7.51 0.01 -1.88 20-21 4.16 5.67 3.05 -1.51 -9.02 2.62 0.74 21-22 4.17 1.16 2.01 3.01 -6.01 -0.85 -0.11 22-23 4.17 1.16 1.42 3.01 -3.00 -0.26 -0.37 23-24 4.16 1.16 0.79 3.00 0.00 0.37 0.00 合计100.0 100.00 100.00 调节容积=24.06 调节容积=7.59清水池中除了储存调节用水外还存放消防用水,则清水池有效容积W为:W=W1+W2+W3+W4其中:W-清水池总容积m3;W1-调节容积;m3;W2-消防储水量m3,按2小时火灾延续时间计算;W3-水厂冲洗滤池和沉淀池排泥等生产用水,取最高日用水量的10%计算,W4-安全贮量按W1+W2+W3取整后计算。
在缺乏资料时,一般清水池设计容积可按最高日用水量的10%--20%计算,这里取15%。
故本次设计的清水池容积为:W=33000×15%=4950m3水塔除了贮存调节容积用水量以外,还需贮存室内消防用水量,因此,水塔设计有效容积为: W=W1+W2其中: W1--水塔调节容积W2--室内消防贮备水量,按10分钟室内消防用水量计算。
在缺乏资料时,一般水塔容积可按最高日用水量的2.5%--3%至5%--6%计算,城市用水量最大时取低值。