新课标七年级数学下册知

合集下载

人教版七下数学新课标解读

人教版七下数学新课标解读

人教版七下数学新课标解读人教版七年级下册数学新课标(全称:义务教育数学课程标准)是指导初中数学教学的重要文件,它明确了教学目标、内容和方法,旨在帮助学生掌握数学基础知识和技能,培养数学思维和解决问题的能力。

以下是对新课标的一些解读:1. 教学目标:新课标强调数学教学不仅要让学生掌握数学知识,更要培养学生的数学素养,包括逻辑思维、抽象思维、创新思维等。

同时,鼓励学生在实际生活中应用数学,提高解决实际问题的能力。

2. 内容结构:新课标将数学内容分为数与代数、图形与几何、统计与概率、综合与实践四个领域。

每个领域都有其特定的教学内容和目标,旨在全面提高学生的数学能力。

3. 教学方法:新课标提倡探究式学习,鼓励教师引导学生通过观察、实验、讨论等方式主动探索数学知识。

同时,强调信息技术在数学教学中的应用,利用多媒体、网络等资源丰富教学手段。

4. 评价方式:新课标强调形成性评价与终结性评价相结合,不仅关注学生的最终成绩,更注重学习过程中的表现和进步。

评价方式多样化,包括平时作业、课堂表现、小组合作、项目研究等。

5. 课程资源:新课标鼓励教师和学校充分利用各种资源,包括教科书、教辅材料、网络资源等,以丰富教学内容,提高教学效果。

6. 跨学科学习:新课标提倡数学与其他学科的整合,鼓励学生在数学学习中联系其他学科知识,如物理、化学、生物等,以促进知识的综合运用。

7. 情感态度与价值观:新课标强调在数学教学中培养学生的积极情感和正确价值观,如对数学的兴趣、对学习的态度、对合作的重视等。

8. 数学文化:新课标注重数学文化的传承与创新,鼓励学生了解数学的历史、数学家的故事、数学的应用等,以增强数学学习的趣味性和文化性。

通过这些解读,我们可以看出新课标旨在通过全面、系统的改革,提高数学教学的质量,培养学生的综合数学素养,为学生的终身学习和未来发展打下坚实的基础。

5.1.3 同位角、内错角、同旁内角

5.1.3 同位角、内错角、同旁内角

新课标人教版初中数学七年级下册第五章《5.1.3 同位角、内错角、同旁内角》教学设计一.教学目标:(一)知识与技能:使学生明确构成同位角、内错角、同旁内角的条件,了解其命名的含义,并能在变式或在复杂的图形中正确地辨认出这些角,为以后学习平行线的判定和性质作好充分准备.(二)过程与方法:经历观察、操作、想象、交流等活动,进一步发展空间观念和有条理表达的能力,培养学生发现问题、提出问题的能力。

(三)情感态度与价值观:(1)在画图和探索的过程中,培养学生的问题意识和严谨科学的态度。

(2)在探索和交流的过程中,培养学生与人协作的习惯、质疑的精神。

(四)教学重点:经历探索发现“两直线平行的条件”的过程,发展学生发现问题、提出问题、分析问题和解决问题的能力。

(五)教学难点:从实践活动中抽象出三线八角,在较复杂的图形中辩认同位角、内错角、同旁内角。

前置作业:做一个三线八角学具(目的:通过操作学具来触发学生的思考,为重难点的突破打好基础。

)二.教学过程(一)引入课件出示一组生活中的相交线图片问题1:看完这组图片,你有什么发现吗?问题2:生活中有如此多的相交线、平行线,你有什么问题或想法吗? 问题3:你能根据上节课所学知识定义这些角吗?目的:学生能说出发现了很多相交线,在说问题和想法时,最好说出多条直线相交,所得到的角的关系又是怎样的呢?从而顺利引入新课。

师:我们已经学习了两条直线相交所成角的内容,今天要学习两条直线被第三条直线所截所成的角的内容.[开门见山地引出新课,让学生尽快地接触到本节课最本质、最重要的内容.]师:先请大家回答一个问题:若两条直线a和b被第三条直线l 所截,那么交点最少有几个?最多有几个?同学们可先作图,然后根据图形回答问题.(让学生互相交流作图情况,然后把大家所作的图抄录在黑板上,可能有下面几种情况.)师:图1是两条直线与第三条直线相交于一点,图2是直线a和直线b平行,直线a、b和直线l有两个交点,图3是直线a和b与直线l有三个交点.为了研究的方便,我们取图3的部分来研究.同学们看一看两条直线AB和CD被第三条直线EF所截而成的小于平角的角共有几个?(教师在黑板上画出图4.)生:8个角.师:对!因为这8个角是由两条直线被第三条直线所截而成的,所以简称这8个角为“三线八角”.这8个角中,有公共顶点的两个角都是什么角?举例说明.生:邻补角和对顶角,如∠1、∠2为邻补角,∠1、∠3为对顶角.师:数一数,对顶角共有几对?邻补角共有几对?生甲:对顶角共有4对,邻补角共有4对.生乙:不对,邻补角共有8对.师:邻补角应有8对:∠1,∠2;∠2,∠3;∠3,∠4;∠4,∠1;∠5,∠6;∠6,∠7;∠7,∠8;∠8,∠5.[新课题的引入,可让学生在旧知识的复习过程中,自然地引入新概念.](二)新课师:这节课,我们要专门研究三对具有特殊位置关系的角,而其中每对角都没有公共顶点.这些角对于今后研究平行线的问题是十分重要的,大家要认真学好它.[恰当地阐明一下教学目的,让学生明白学习新知识的必要性,可以激发学生的学习动机和兴趣.]师:这8个角中,我们先看∠1和∠5,(手指图4,并把这两个角的两边涂成红色.)这两个角各有一边在同一直线上,这是哪条直线?生:是截线EF.师:都在截线EF上的这一边是同向还是反向?生:同向.师:再看∠1和∠5另一边的位置怎样?生:另一边在截线EF的同旁,方向同向.师:总的看来,∠1和∠5这对角到底有些什么特点?生甲:都在截线上的一边是同向的,不在截线上的一边在截线的同旁,是具有相同位置的两个角.生乙:我认为∠1和∠5是具有相同方向的两个角.[学生在教师的启发引导下,积极地参加到观察对象的关键特征、寻求定义的发生过程的探索活动中去,主动地学习,积极地思考,变被动接受为主动探索,教师发挥了主导作用,学生提高了对概念的理解水平.]师:对!那么我们给∠1和∠5这对角起什么名称呢?生甲:同位角.生乙:同向角.(学生争论.)师:同学们说得都有一定的道理,认为应叫同向角的同学,有自己独立的见解,是从角的边的方向相同的角度上去考虑的.但是由于我们研究的是两个角的位置关系,所以,还是叫同位角为好.[学生在探索中,难免有不同的看法,教师要鼓励学生争论,及时作出正确的结论,并鼓励学生服从真理、修正错误.]师:我们把像∠1和∠5这样一边都在截线上而且同向,另一边在截线同旁的两个角叫做同位角.[对已探索到的对象的关键特征进行综合分析,用概括性的语言描述出来,使学生的认识从感性阶段上升到理性阶段.]师:图4中的同位角除∠1与∠5外,还有哪几对?生:还有∠2和∠6;∠3和∠7;∠4和∠8.(在图4的下方画出下表,每讲一种角后就由师生共同把结论填进表内的空白处.)师:请同学们看图5:(1)DE为截线,∠E与哪个角是同位角?(2)∠B和∠3是同位角,哪条直线是截线?(教师边问边在黑板上画出图5,并指定同学回答.)师:图5中,∠B和∠E是同位角吗?为什么?生:∠B和∠E不是同位角.因为只有三条直线相交才有可能构成同位角.而∠B和∠E是四条直线相交所成的角,所以∠B和∠E 不是同位角.[反例往往能加深学生对概念的理解,把握概念的本质特性.] 师:现在大家再来观察图4中∠3的两边和∠5的两边有什么关系?(用黄色粉笔画出这两个角的两边.)生:有一边都在截线上,另一边都在截线的两旁.师:对!都在截线上的边的方向是同向还是反向?生:反向.师:这两个角还有什么特点?它们都在两条直线AB、CD的哪个位置?生:∠3和∠5都在两条直线之间,∠3在CD的上方,∠5在AB的下方,并且两个角分别在截线EF的两旁.师:对!这两个角的位置是交错的.因此,我们把∠3和∠5这对角叫内错角.(把上述结论和图形填入上表.)师:大家再看一看,图4中还有哪对角是内错角?(指定同学回答.)师:图5中,∠1与哪个角是内错角?这时哪条直线是截线?生甲:∠1和∠B是内错角,BC是截线.生乙:还有∠1和∠E是内错角,ED是截线.师:对!∠B和∠1、∠E和∠1都是内错角.图5中,∠2和哪个角是内错角?∠4呢?(此问题引起同学们积极思考,热烈讨论.)师:图5中,与∠2、∠4成内错角的角不明显.但仔细观察,可知FE的延长线与DE所组成的角和∠2是内错角;AB的延长线与BC所组成的角和∠4是内错角.师:请同学们看图6,图中的内错角有哪几对?(教师边问边在黑板上画出图6,并指定一名学生上黑板写出答案,待同学们完成后出示小黑板.)小黑板:[在学生学习了内错角概念后,安排适当的练习是必要的.上述问题要求学生把复杂的图形解剖成各种基本的图形,要抓住内错角的基本特征,去找出所有的内错角,从而帮助学生加深对概念的理解.] 师:大家再看看图4中的∠3和∠6有什么特点?(用蓝色粉笔把这两个角的两边涂成蓝色,仍然从这两个角的两边的位置来研究.) 生:有一边都在截线EF上,而且相向,另一边在截线的同旁.师:对!∠3和∠6在两条直线AB和CD之间.那么,∠3和∠6叫什么名称呢?生:同旁内角.师:图4中还有哪对角是同旁内角?生:∠4和∠5.师:图5中的同旁内角有哪几对?生:有∠2和∠E,∠4和∠B.师:对!请同学们找出图6中以AB为截线的同旁内角.生甲:∠DAB和∠ABC.生乙:还有∠7和∠8.师:应该是两对.∠DAB和∠ABC是AB截AD、BC而得的同旁内角,∠7和∠8是AB截AC、BD而得的同旁内角.(三)小结师:现在大家回想一下,同位角、内错角、同旁内角是怎样形成的?生:两条直线被第三条直线所截而形成的.师:辨认这三种角的关键是什么?生:关键是三条直线相交.师:现在大家看我的左、右手的大拇指和食指各组成一个角,两食指相对成一条直线(图7).两个大拇指反方向的时候,这对角是什么角?注意两个角保持在同一个平面内.生:(齐喊)内错角.[学生兴趣盎然,纷纷动手学着比试、实验.]师:大家再来实验一下,大拇指为相同方向的时候,这对角是什么角?主:(齐喊)同旁内角(学生实验、比试,如图8.)师:大家想想看,用怎样的手势来表示同位角呢?(留出时间让学生比试,很快全班同学的手势都比成一样了.) [上概念课,学生往往死记硬背,枯燥无味,但是像这样采用多种方式调动学生的耳、眼、口、手多种感官共同参与活动,让学生既动手又动脑,实验体会,在活动中加深对概念的理解,学生感到其味无穷,兴趣倍增.](四)复习巩固师:若直线DE、BC被直线AB所截,那么∠1和∠2、∠1和∠3、∠1和∠4是什么角?(教师在黑板上画出图9,并指定较差同学回答.)生:∠1、∠4是同位角;∠1、∠2是内错角;∠1、∠3是同旁内角.师:如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?(学生互相讨论,各抒己见,教师适当引导.)师:由∠1=∠4,根据图9可得出∠4还与哪个角有相等关系?为什么?生:∠2=∠4,对顶角相等.师:那么∠1与∠2之间有什么数量关系?为什么?生:∠1=∠2,等量代换.师:同学们是否能用“∵”、“∴”的逻辑推理形式将上面的思考过程表示出来呢?生:∵∠1=∠4(已知),∠2=∠4(对顶角相等),∴∠1=∠2(等量代换).师:对!那么∠1和∠3互补是什么意思?怎样才能得到这个结论?如果一时还得不出这个结论,是否可以采取间接的办法来得到这一结果?如考虑∠3还与哪个角互补?这个角与∠1有什么关系?生:∠1与∠3互补,即∠1+∠3=180°.由于∠3和∠2、∠4都互补,都是邻补角,即有∠3+∠2=180°,∠3+∠4=180°.师:怎样得到∠1+∠3=180°?生:由已知得∠1=∠4,因此若把∠3+∠4=180°中的∠4换成∠1就可得到∠1+∠3=180°.师:正确.(指定一名同学将上述推理过程用“∵”和“∴”板演出来.)[推理论证虽不是本节课的重点,但适当地渗透综合分析的方法还是可取的.]师:最后请同学们进行课堂练习.(出示小黑板.)根据图10填空:(只填代号)(1)∠AEG和∠HGE是______;(2)∠HGE和∠EDC是______;(3)∠KAB和∠BDC是______;(4)∠ABC和∠ACB是______;(5)∠KAM和∠DAE是______;(6)∠FHC和∠DFI是______.(A)对顶角;(B)同位角;(C)内错角;(D)同旁内角;(E)以上都不是.(答案:C、B、E、D、E、D.)[进行巩固性的练习,及时了解学生掌握概念的程度,这是数学教学的一项重要工作.通过练习,目的是为了了解学生对概念的掌握是理解记忆还是机械记忆,是否掌握了概念的本质属性.因此,在编写课堂练习时要尽量避免书本上使用过的现成语言和现成例子.]。

7新课标人教版七年级数学下学期全册教案

7新课标人教版七年级数学下学期全册教案

7新课标人教版七年级数学下学期全册教案篇一:新人教版初中7七年级数学下册全册完整(最新)新人教版七年级数学下册全册教案〔新教材〕特别说明:本教案为最新人教版教材〔改版后〕配套教案,各单元教学内容如下:第五章相交线与平行线第八章二元一次方程组5.1 相交线 8.1 二元一次方程组5.2 平行线及其判定8.2 消元——解二元一次方程组5.3 平行线的性质8.3 实际问题与二元一次方程组5.4 平移 8.4 三元一次方程组的解法第六章实数第九章不等式与不等式组6.1 平方根 9.1 不等式6.2 立方根 9.2 一元一次不等式6.3 实数 9.3 一元一次不等式组第七章平面直角坐标系第十章数据的收集、整理与描述7.1 平面直角坐标系10.1 统计调查7.2 坐标方法的简单应用 10.2 直方图10.3 课题学习从数据谈节水1课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3.通过区分对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。

【学习难点】在较复杂的图形中准确识别对顶角和邻补角。

【自主学习】1.阅读课本P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化?. 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化?.3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所【合作探究】1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?_ C_ B_ D成的角的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征?_ A例如:〔1〕∠AOC和∠BOC有一条公共边.....OC,它们的另一边互为,称这两个角互为。

第一章 整式的乘除(单元小结)七年级数学下册(北师大版)

第一章 整式的乘除(单元小结)七年级数学下册(北师大版)
解:a3m-2n=a3m÷a2n=(am )3÷(an )2=43÷62 = .
考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。

二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。

2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。

3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。

三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。

难点:三角形性质的理解,三角形面积公式的推导。

四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。

学具:三角板、直尺、圆规、练习本。

五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。

2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。

(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。

(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。

3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。

4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。

六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。

2. 三角形的性质:内角和等于180°,两边之和大于第三边等。

3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。

4. 三角形周长和面积的计算方法。

七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。

2. 答案:见附页。

初一下数学知识点

初一下数学知识点

初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。

学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。

2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。

学生需要学会整式的合并同类项和去括号等基本运算。

3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。

4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。

5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。

以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。

人教版初中七年级上下册数学新旧教材内容对比

人教版初中七年级上下册数学新旧教材内容对比

人教版初中数学七年级上下册新旧教材、课标内容对比旧教材指:《代数》(1992)、《几何》(1992)/ 人民教育出版社新教材指:《数学》(2007-15)第3版 / 人民教育出版社新教材旧教材不同之处新课标旧课标不同之处代数部份几何部份代数部份几何部份四、图形认识初步一、代数初步知识六、线段、角多姿多彩的图形直线、射线、线段、角代数式列代数式代数式的值、公式简易方程直线射线、线段线段的比较和画法角(比较、度量、画法)一、有理数五、相交线与平行线二、有理数七、相交线、平行线正数与负数有理数数轴、相反数、绝对值)有理数的加减法有理数的乘除法有理数的乘方相交线平行线及其判定平行线的性质平移有理数的意义(正数与负数、数轴、相反数、绝对值)有理数的运算(加、减、乘、除、乘方、混合运算、近似数与有效数字、平方表与立方表)相交线、垂线(相交线、对顶角、垂线、同位角、内错角、同旁内角)平行线(平行线及平行公理、平行线的判定、平行线的性质、空间里的平行关系)命定理证明二、整式的加减七、平面直角坐标系三、整式的加减八、三角形整式整式的加减平面直角坐标系坐标方法整式同类项去括号三角形(有关概念、三的简单应用与添括号整式的加减边关系、内角和)全等三角形(判定、直角三角形全等的判定、解的平分线)尺规作图三、一元一次方程四、一元一次方程从算式到方程合并同类项移项去括号去分母实际问题从算式到方程合并同类项移项去括号去分母实际问题六、实数五、实数平方根立方根实数平方根立方根实数八、二元一次方程组二元一次方程组消元—解二元一次方程组实际问题与二元一次方程组九、不等式与不等式组不等式一元一次不等式一元一次不等式组。

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案【教学目标】1.让学生掌握本册教材的重点知识和技能。

2.培养学生的数学思维能力,提高解决问题的能力。

3.增强学生对数学的兴趣,激发学生的自主学习意识。

【教学内容】第一章:相交线与平行线第二章:平面图形的性质与证明第三章:数据的收集、整理与分析第四章:不等式与不等式组第五章:概率初步【教学重点与难点】一、相交线与平行线重点:相交线的性质,平行线的判定与性质。

难点:平行线性质的证明。

二、平面图形的性质与证明重点:三角形、四边形、圆的性质与证明。

难点:几何图形性质的证明。

三、数据的收集、整理与分析重点:数据的收集、整理与分析方法。

难点:数据分析的实际应用。

四、不等式与不等式组重点:不等式的解法,不等式组的解法。

难点:不等式组的解法及应用。

五、概率初步重点:概率的定义,概率的计算。

难点:概率的实际应用。

【教学步骤】一、相交线与平行线1.引入:通过生活中的实例,让学生感受相交线与平行线在实际中的应用。

2.讲解:讲解相交线与平行线的性质,以及判定方法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

二、平面图形的性质与证明1.引入:通过生活中的实例,让学生感受几何图形在实际中的应用。

2.讲解:讲解三角形、四边形、圆的性质与证明方法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

三、数据的收集、整理与分析1.引入:通过生活中的实例,让学生感受数据分析在实际中的应用。

2.讲解:讲解数据的收集、整理与分析方法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

四、不等式与不等式组1.引入:通过生活中的实例,让学生感受不等式与不等式组在实际中的应用。

2.讲解:讲解不等式的解法,不等式组的解法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

五、概率初步1.引入:通过生活中的实例,让学生感受概率在实际中的应用。

2.讲解:讲解概率的定义,概率的计算。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标七年级数学下册知识点总结七年级数学下册知识点总结满意答案网友回答 2014-09-27第一章整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn (a、b均不为零)。

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。

五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序.六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

※3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即。

¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八.完全平方公式¤1.完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,¤即;¤口决:首平方,尾平方,2倍乘积在中央;¤2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

九.整式的除法¤1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章平行线与相交线一.台球桌面上的角※1.互为余角和互为补角的有关概念与性质如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。

二.探索直线平行的条件※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。

三.平行线的特征※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

四.用尺规作线段和角※1.关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。

※2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

第三章生活中的数据※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。

¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

¤3.统计工作包括:①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

第四章概率¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。

※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。

※3.了解必然事件和不可能事件发生的概率。

必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1※4.了解几何概率这类问题的计算方法事件发生概率=第五章三角形一.认识三角形1.关于三角形的概念及其按角的分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

这里要注意两点:①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。

三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。

2.关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。

三角形三边关系的另一个性质:三角形任意两边之差小于第三边。

对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。

设三角形三边的长分别为a、b、c则:①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。

3.关于三角形的内角和三角形三个内角的和为180°①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

4.关于三角形的中线、高和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

二.图形的全等¤能够完全重合的图形称为全等形。

全等图形的形状和大小都相同。

只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

四.全等三角形¤1.关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角所谓“完全重合”,就是各条边对应相等,各个角也对应相等。

因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。

相关文档
最新文档