热斑效应理解

合集下载

光伏热斑效应_概述及解释说明

光伏热斑效应_概述及解释说明

光伏热斑效应概述及解释说明1. 引言1.1 概述光伏热斑效应是指在光伏发电过程中,由于光照强度不均匀或材料表面特性等因素的影响,产生局部温度升高的现象。

这种现象对光伏发电系统的性能和寿命有着重要的影响。

因此,深入了解和解决光伏热斑效应问题具有重要的实际意义。

1.2 文章结构本文将首先概述光伏热斑效应的定义和原理,并分析其产生的主要影响因素。

其次,我们将探讨一些解决光伏热斑效应问题的方法,并讨论各种方案的优劣与适用性。

最后,在结论部分,我们将总结已经取得的研究成果并展望未来在该领域可能面临的挑战。

1.3 目的本文旨在提供一个综合而清晰地概述光伏热斑效应的文章。

通过对相关知识点进行介绍和讲解,读者可以更好地理解光伏热斑效应及其相关原理,进而为解决该问题提供一定参考。

同时,通过分析已有的研究成果和存在的问题,我们可以为未来的研究方向提出展望,并希望能够对光伏产业的发展和应用提供一定启示。

2. 光伏热斑效应概述:2.1 光伏效应简介:光伏效应是指当光辐射照射到半导体材料上时,产生的电荷对电流的响应。

光伏效应是太阳能电池转换太阳能为电能的基础原理,也是光伏热斑效应产生的前提条件之一。

2.2 热斑效应简介:热斑效应是指在高浓度光照射下,光伏组件表面形成的局部区域温度升高现象。

当太阳能辐射聚焦在一个小区域上时,该区域会受到更高的温度影响,并且可能降低整个光伏系统的性能和寿命。

2.3 光伏热斑效应定义与原理解释:光伏热斑效应是指在高浓度太阳能辐射条件下,由于光线聚焦导致局部区域温度增加,进而引发出现局部失效或性能降低现象。

当太阳能集中在一个小区域上时,这个小区域将吸收更多的能量并产生显著的局部温升,而其他部分的温度保持相对稳定。

这会导致光伏组件中电流产生不均匀分布,降低整个系统的效率。

光伏热斑效应产生的原理主要涉及两个方面。

首先是热载流子效应,高浓度光照射下,热载流子(由高能量光激发生成的载流子)在表面局部区域堆积并增加物质界面处的复合速率。

光伏组件中旁路二极管之关键作用资料讲解

光伏组件中旁路二极管之关键作用资料讲解

光伏组件中旁路二极管之关键作用光伏组件中旁路二极管之关键作用一、热斑效应一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。

被遮蔽的太阳电池组件此时会发热,这就是热斑效应。

这种效应能严重的破坏太阳电池。

有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。

为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。

二、Bypassdiode的作用:当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。

三、Bypassdiode选择原则:1、耐压容量为最大反向工作电压的两倍;2、电流容量为最大反向工作电流的两倍;3、结温温度应高于实际结温温度;4、热阻小;5、压降小;四、实际结温温度测量方法:把组件放在75度烘箱中至热稳定,在二极管中通组件的实际短路电流,热稳定后(例如1h),测量二极管的表面温度,根据以下公式计算实际结温:Tj=Tcase+R*U*I其中R为热阻系数,由二极管厂家给出,Tcase是二极管表面温度(用热电偶测出),U是二极管两端压降(实测值),I为组件短路电流。

计算出的Tj不能超过二极管规格书上的结温范围。

五、旁路二极管对电路影响示意图:当电池片正常工作时,旁路二极管反向截止,对电路不产生任何作用;若与旁路二极管并联的电池片组存在一个非正常工作的电池片时,整个线路电流将由最小电流电池片决定,而电流大小由电池片遮蔽面积决定,若反偏压高于电池片最小电压时,旁路二极管导通,此时,非正常工作电池片被短路。

六、每个旁路二极管并联电池片数目的计算1、旁路二极管电流容量最小应为:I=4.73×2=8.46A2、选用10SQ030型二极管最大返偏电压为:VRRM=30vIAV=10AVF=0.55VTJ=-55-200℃3、耐压容量为30Ⅴ的旁路二极管最多可保护125×125电池片数目为:N=30/(2×0.513)≈29.24即最多可保护29片125×125电池片;4、旁路二极管截止状态时存在反向电流,即暗电流,一般小于0.2微安;原则上每个电池片应并联一个旁路二极管,以便更好保护并减少在非正常状态下无效电池片数目,但因为旁路二极管价格成本的影响和暗电流损耗以及工作状态下压降的存在,对于硅电池,每十五个电池片可并联一个旁路二极管为最佳。

热斑效应

热斑效应

2、如何减轻、避免热斑效应?
• 为减轻、避免热斑效应,组件在 制备过程中会在相邻串之间反向 偏置并联一旁路二极管,如图所 示。在正常情况下,旁路二极管 处于反向偏置状态,当组件中某 一片单体电池或几片单体电池被 遮蔽时,如果组件工作电流大于 遮挡片电流时则该片电池将处于 反向偏置状态,当该电池片两端 的反向电压大于该串电池电压加 上二极管启动电压之和时,该旁 路二极管启动,故障串被隔离出 组件。
热 斑 效 应
1、什么是热斑效应? 热斑效应是指光伏组件处于工作状态 时,组件中某个单体电池或几个单体电池 由于遮光或本身原因导致电流降低,当工 作电流超过该单体电池或几个单体电池时 ,则该部分电池被置于反向偏置状态,在 电路中的功能由电源变为负载,消耗能量 ,从而在组件内部形成局部过热现象。
不同阴影遮挡下电池工作电压曲线
不同遮光比例下组件的IV曲线 Nhomakorabea• 从图中可以看出,电池遮挡25%、50%、75%时组件的IV曲线都 呈现阶梯状,三条IV曲线在台阶升高部分和遮挡100%的IV曲线 重合,且在台阶拐角处对应的电流分别约为未遮挡组件短路电 流的1/4、1/2、3/4。出现这种现象的原因为当组件工作电流 低于遮挡电池片的短路电流时遮挡电池片处于发电状态,相当 于直流电源。 • 而当组件工作电流大于遮挡电池片短路电流后,遮挡电池片开 始承受负压,此时并联在该串上的旁路二极管开始启动,当加 载在单片电池上的负压超过二极管启动电压和该串电池电压后 ,二极管相当于导线,问题组件串被短路隔离出组件,组件电 流升高并趋于稳定。 • 台阶区域重合部分的曲线为二极管的IV曲线,因此相一致。另 外,从图中还可以看出,单片电池遮挡25%、50%、75%时组件 的开路电压基本相同,而遮挡100%时组件的开路电压约为其它 情况的下的2/3。这是因为虽然遮光比例不同,但电池的开路 电压变化不大,而当单片电池全部遮挡时,组件的旁路二极管 启动,被遮光电池在内的电池串被旁路,组件电压减少1/3。

光伏发电站主要设备设施危险、有害因素辨识与分析

光伏发电站主要设备设施危险、有害因素辨识与分析

光伏发电站主要设备设施危险、有害因素辨识与分析一、光伏发电系统1.热斑效应太阳电池组件安装在地域开阔、阳光充足的地带。

在长期使用中难免落上飞鸟、尘土、落叶等遮挡物,这些遮挡物在太阳电池组件上就形成了阴影,由于局部阴影的存在,太阳电池组件中某些电池单片的电流、电压发生了变化。

其结果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升。

太阳电池组件中某些电池单片本身缺陷也可能使组件在工作时局部发热,这种现象叫“热斑效应”。

在一定条件下一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。

被遮蔽的太阳电池组件此时会发热,这种效应能严重的破坏太阳电池。

2.逆变器故障(1)逆变器质量不过关,运行过程中将导致逆变器损坏。

(2)逆变器主要元件绝缘栅双极型晶体管若失效,将导致逆变器损坏,其失效原因如下。

1)器件持续短路,大电流产生的功耗将引起温升,由于芯片的热容量小,其温度迅速上升,若芯片温度超过硅本征温度,器件将失去阻断能力,栅极控制就无法保护,从而导致绝缘栅双极型晶体管失效。

2)绝缘栅双极型晶体管为PNPN4层结构,因体内存在一个寄生晶闸管,当集电极电流增大到一定程度时,则能使寄生晶闸管导通,门极失去控制作用,形成自锁现象,这就是所谓的静态擎住效应。

发生擎住效应后,集电极电流增大,产生过高功耗,导致器件失效。

3)瞬态过电流绝缘栅双极型晶体管在运行过程中所承受的大幅值过电流除短路、直通等故障外,还有续流二极管的反向恢复电流、缓冲电容器的放电电流及噪声干扰造成的尖峰电流。

若不采取措施,瞬态过电流将增加IGBT的负担,可能会导致绝缘栅双极型晶体管失效。

4)过电压造成集电极发射极击穿或造成栅极发射极击穿。

(3)逆变器由于功率较大,发热亦大。

若逆变器散热设备损坏或安装不当,内部热量不能及时散出,轻则影响元器件寿命,重则有产生火灾的危险。

(4)逆变器接入的直流电压标有正负极,若光伏电池与逆变器相连输电线接错,将导致逆变器故障。

旁路二极管在光伏组件中的作用

旁路二极管在光伏组件中的作用

一、热斑效应一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。

被遮蔽的太阳电池组件此时会发热,这就是热斑效应。

这种效应能严重的破坏太阳电池。

有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。

为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。

二、Bypass diode的作用:当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。

二、Bypass diode 选择原则:1、耐压容量为最大反向工作电压的两倍;2、电流容量为最大反向工作电流的两倍;3、结温温度应高于实际结温温度;4、热阻小;5、压降小;三、实际结温温度测量方法:把组件放在75度烘箱中至热稳定,在二极管中通组件的实际短路电流,热稳定后(例如1h),测量二极管的表面温度,根据以下公式计算实际结温:Tj=Tcase + R*U*I其中R为热阻系数,由二极管厂家给出,Tcase是二极管表面温度(用热电偶测出),U是二极管两端压降(实测值),I为组件短路电流。

计算出的Tj不能超过二极管规格书上的结温范围。

四、旁路二极管对电路影响示意图:当电池片正常工作时,旁路二极管反向截止,对电路不产生任何作用;若与旁路二极管并联的电池片组存在一个非正常工作的电池片时,整个线路电流将由最小电流电池片决定,而电流大小由电池片遮蔽面积决定,若反偏压高于电池片最小电压时,旁路二极管导通,此时,非正常工作电池片被短路。

五、每个旁路二极管并联电池片数目的计算1、旁路二极管电流容量最小应为:I=4.73×2=8.46A2、选用10SQ030型二极管最大返偏电压为:V RRM=30vIAV=10AVF=0.55VT=-55-200℃J3、耐压容量为30Ⅴ的旁路二极管最多可保护125×125电池片数目为:N=30/(2×0.513)≈29.24即最多可保护29片125×125电池片;4、旁路二极管截止状态时存在反向电流,即暗电流,一般小于0.2微安;原则上每个电池片应并联一个旁路二极管,以便更好保护并减少在非正常状态下无效电池片数目,但因为旁路二极管价格成本的影响和暗电流损耗以及工作状态下压降的存在,对于硅电池,每十五个电池片可并联一个旁路二极管为最佳。

光伏组件热斑效应.

光伏组件热斑效应.
七、太阳能电池组件的“热斑 效应”
• 在一定的条件下,一串联支路中被遮藏的 太阳能电池组件将被当作负载消耗其他被 光照的太阳能电池组件所产生的能量,被 遮挡的太阳能电池组件此时将会发热,这 就是“热斑效应”。 • 这种效应会严重地破坏太阳能电组件。有 光照的电池组件所产生的部分能量或所有 能量,都可能被遮蔽的组件所消耗。
• (5)应当注意到,从c点到d点的工作区间, 电池组件2都处于接收功率的状态。 • 并联电池组处于开路或接近开路状态在实 际工作中也有可能, • 脉宽调制控制器要求只有一个输入端,当 系统功率较大,太阳能电池组件会采用多 组并联,在蓄电池接近充满时,脉冲宽度 变窄,开关晶体管处于临近截止状态,太 阳能电池组件的工作点向开路方向移动, 如果没有在各并联支路上加装阻断二极管, 发生热斑效应的概率就会很大。
• 为防止太阳能电池组 件由于热斑效应而被 破坏,需要在太阳能 电池组件的正负极间 并联一个旁路二极管, 以避免串联回路中光 照组件所产生的能量 披遮蔽的组件所消耗。 • 同样,对于每一个并 联支路,需要串接一 只二极管,以避免并 联回路中光照组什所 产生的能量被遮蔽的 组件所吸收,串接二 极管在独立光伏发电 系统中可同时起到防 止蓄电池在夜间反充 电的功能。
• 假定太阳能电池组件的串联回路中某一块被部分 遮挡,调节负载电阻R,可使太阳能电池组件的工 作状态由开路到短路。
• 从d、c、b、a四种工作状态进行分析: • (1)调整太阳能电池组的输出阻抗,使其工作在开路(d 点),此时工作电流为0,组开路电压UGd等于电池组件1 和电池组件2的开路电压之和。 • (2)当调整阻抗使电池组工作在c点,电池组件l郓电池组件2 都有正的功率输出。 • (3)当电池组工作在b点,此时电池组件1仍然工作在正功率 输出,而受遮挡的电池组件2已经工作在短路状态,没有 功率输出,但也还没有成为功率的接收体,还投有成为电 池组件1的负载。 • (4)当电弛组工作在短路状态(a点).此时电池组件1仍然 有正的功率输出,而电池组件2上的电压已经反向,电池 组件2成为电池组件1的负载,不考虑回路中串联电阻的话, 此时电池组件l的功率全部加到了电池组件2 t, • 如果这种状态持续时间很长或电j组件1的功率很大,就会 在被遮挡的电池组件2上造成热斑损伤。

组件热斑效应

组件热斑效应

组件热斑效应
组件热斑效应是一种基于组件温度不均匀性的电子设备故障模式。

当一个组件比其周
围的其他组件更加加热时,就会形成热斑。

这个热斑会导致温度差异,进而会导致设备出
现不稳定甚至损坏。

因此,在电子设备的设计和使用方面,对于组件热斑效应需要充分考
虑和处理。

组件热斑效应通常发生在设备的高功率部件附近,如CPU、GPU、放大器等。

这些部件在使用过程中会产生大量的热能,并且容易受到周围温度影响。

当一个组件比其周围组件
更容易加热时,就会产生热斑。

这个热斑会导致热量积累,从而导致设备的温度升高。

如果这样的问题没有得到解决,熵的增加会导致组件出现不稳定,加速组件的老化,
最终会导致完全损坏。

为了解决这个问题,需要对设备进行设计和改进。

一种解决组件热斑效应的方法是通过优化散热系统来提高设备的整体温度均匀性。


通常涉及到设计更高效的风扇和散热器,以更好地分散组件释放的热量,并使各个组件之
间的温度差异最小化。

此外,还需要在设计设备时考虑组件的散热配置和布局,以最大程
度减少热斑的出现。

在设备的使用方面,也需要注意组件的温度问题。

如果发现设备的某一部分温度异常高,则需要注意可能存在热斑效应的问题。

在这种情况下,可以通过改进散热系统来解决。

此外,还应该确保设备的散热系统清洁和顺畅,防止灰尘等杂物影响散热效果。

光伏组件的热斑效应和试验方法

光伏组件的热斑效应和试验方法

光伏电池是将太阳光辐射能量直接转换成电能的器件。

单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。

因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。

光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元。

为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。

在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。

失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。

这种现象称为热斑效应。

当组件被短路时,内部功率消耗最大,热斑效应也最严重。

一、热斑效应原理当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。

完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。

斜率越低,表明电池的并联电阻越大。

考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B类)。

A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。

二、热斑耐久试验热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。

因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。

热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4个步骤。

1、选定最差电池由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。

因此,正式试验之前先比较和选择热斑加热效应最显著的电池。

具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相信大多数光伏从业者都听说过“热斑效应”及其危害的宣传。

常见的资料对热斑效应解释为:
在一定条件下,光伏系统中的部分电池会被周围其它物体所遮挡,造成局部阴影,这将引起被遮挡某些电池发热,产生所谓“ 热斑” 现象。

但上述解释还不够完整,局部遮挡只是形成热斑的原因之一,另外一个原因是电池本身的缺陷。

因此,比较准确的定义应该是:
热斑是互相连接(主要是串联方式)的电池工作在不同的条件下或者没有相同的性能造成的,它的本质原因是电池之间的失配(对于光伏系统来说,组件之间的失配原理和此相同)。

换句话说,热斑产生的原理是:
一个串联电路中,电池由于某些原因,导致其所表现出的工作状态不一致。

这些原因包括遮挡(如周围物体的阴影、落叶、鸟粪等)导致部分电池所表现出的性能和其它电池)不同,或者是电池本身的性能就不同(比较严重的情况是部分电池存在明显缺陷)。

事实上,电池之间性能完全一致的可能性是很小的。

因此,从严格意义上来说,热斑效应是一种正常现象。

有权威检测机构基于大量数据积累和资料调研表明,在辐照度大于
800W/m2时,热斑最高温度与组件平均温度之间的温度差值小于10度是可以接受的;如果少数组件存在温差超过10℃的情况,只要这个比例不超过5%,系统
功率输出正常,也是可以接受的(例如组件上有直径3-125px的鸟粪,组件边缘有尘土积聚,轻微焊接问题,电池片轻微缺陷,盖板部分玻璃脏污等)。

那么产生热斑的基本机理是什么呢?
图1:理想太阳能电池和非理想太阳能电池比较图1所示是太阳电池的完整工作曲线,图中:
第一象限:是我们常见的电池发电时的IV曲线;
第二象限:代表给太阳电池加反向偏压时,电池由发电变为耗电(分界点是纵轴短路电流处);
第四象限:代表给太阳电池加正向偏压,正向电压产生的电流方向是从P 区流向N区,和光生电流方向相反,所以当正向偏压大于电池的开路电压时,电流反向,电池由发电变为耗电(分界点是横轴开路电压处)。

光伏系统中常见的热斑现象是因为电池的工作点位于第二象限!
从图1中很容易看出,反向偏压越大,流经电池的电流就越大(此电流虽和光生电流方向一致,但其大小已超过了电池的短路电流,本质是由其它电池所贡献),电池消耗的能量就越多,电池温度就会越高,可能会导致焊带熔断、EVA 黄变、背板鼓包烧穿等不可恢复的后果,严重影响系统的寿命和发电能力,更严重者能引起火灾等灾难性后果。

同时,也不难看出,如果电池工作在第一象限,那么它依旧充当发电的作用,而不是成为负载耗电。

上述描述很难理解?不妨这样假设,在公路上行驶的汽车,如果有一辆出现了问题,速度比别的车辆低很多,那么它就会整个交通产生障碍,其它车辆为了较快速度通过,必须推着问题车辆行驶,使问题车辆速度超过它的最高速度,但同时,完好车辆的行驶速度也会比正常速度要小,此时,问题车辆就是负载。

但如果路况不佳或受天气影响,所有车辆都要保持在较低的速度运行,那么问题车辆就不会对整体交通造成影响,但此时整体运输效率较低。

因此,即使存在阴影遮挡或电池性能缺陷,该部分电池也不一定就是负载,不一定就会发生热斑效应,要看电池所处的工作状态。

即便发生了热斑效应,其
严重程度也和多个因素有关,例如出现鸟粪之类的遮挡,系统只是会损失部分功率,为避免产生过大的反向偏压,现在的晶硅组件一般都会有两个或三个并联二极管,防止出现热斑的电池片温度过高,因为热斑发生温度过高甚至造成火灾的情况是很少的,这种情况下也是因为部分电池的性能存在严重缺陷,造成局部电流过高导致。

严格意义的热斑效应是正常现象。

我们既不必谈“热斑”色变,认为有热斑就会产生火灾;但也不该忽略它造成的不良影响,应尽可能减小或减弱热斑产生的可能性。

近年来,关于避免“热斑效应”相关的研究也有很多。

组件生产段的措施有:控制电池的逆电流、控制电池内部的杂质、组件采用并联二极管保护等。

应用端的措施有:采用性能一致性好的电池(或组件),安装时尽量保证组件不被遮挡,上面有污秽时及时清理和打扫等,使光伏系统保持良好的功率输出。

相关文档
最新文档