北京大学数学分析考研试题及解答复习进程

合集下载

北京大学2019年数学分析试题及解答

北京大学2019年数学分析试题及解答
n→+∞
=
l, lim xn n→+∞
=
L,

{xn}
中有无穷项小于等于
l+c 2
,
有无穷项
大于
c.
从而
|xn+1 − xn|
有无穷多项大于等于
c−l 2
,
矛盾.
类似地,
存在
n2
> n1
使得
xn1 +c 2
< xn2
⩽ c.

此类推可取一个子列
{xnk }
,|xnk

c|

c−l 2k
,
此时
{xnk }
nπ 4
+
sin
nπ 4
)np
,
∑ +∞
sin
nπ 4
np
在 p > 1 时绝对收敛, 在 0 < p ⩽ 1 时条件收敛.
n=1
sin2
nπ 4
(np
+
sin
nπ 4
)np

sin2
nπ 4
n2p
=
1
− cos n2p
nπ 2
,
(n

+∞),
∑ +∞
sin2
nπ 4
因此 n=1
(np +sin
nπ 4
∫ +∞
这与
f ′(x) dx 有意义的 Cauchy 收敛原理矛盾.
1
注 裴礼文的《数学分析中的典型问题与方法》第二版第 249 页例 3.3.11 与本题几乎完全相同, 那里有另外一
种证明方法. 我写的这个解法是源于一个很经典的题目, 可以见《数学分析习题课讲义》上册第 396 页命题

北京大学2020年数学分析试题及解答

北京大学2020年数学分析试题及解答

注 这里的结论为裴礼文的《数学分析中的典型问题与方法》第二版第 168 页定理 4, 若想更为熟悉这方面的内 容, 可以翻阅该书. 解决这题的方法是想下连续函数的情形怎么证明, 做一个类比即可.
2. 记
∆(f, n, m)
=
f
(( n
+
)) 1
π 2

f
(( n
+
) 1
π 2
+
) 1 m
= =
( n
)

F
( ∑∑ni=ni=1 1x∫i x∫xixi− xii1−1ff(t()t)ddt t )

∑n
i=1
F (xi) F (1)
∫ xi
xi−1
f (t)
dt.
又因为 F (x) 在 [0, 1] 上一致连续, 故 ∀ ε > 0, ∃N > 0, 当 n > N 时, |F (xi) − F (xi−1)| < ε, 此时
,

M
= maxx0⩽x⩽2x0 |f (x)| ,

( ([ ] { })) ( ({ } )) ( ([ ] ))
x
x
f (x) = f x0
+
x0
x0
⩽f
x
x0 ([
x]0
+1 )
+ f x0
x −1
x0
⩽M+
x x0
−1
f
(x0)

M
+
x
− x0 x0
f
(x0),
再结合
limx→+∞
M x

北京大学研究生入学考试历年真题及答案

北京大学研究生入学考试历年真题及答案

2015年北京大学702数学基础全套资料点击蓝色字体查看原文按住Ctrl+H搜索所需科目本专业课考试科目的全套资料主要包括:1.历年真题本全套资料提供北京大学1996—2001、2005—2010年数学分析考研真题,供参考。

·北京大学2010年数学分析考研真题·北京大学2009年数学分析考研真题·北京大学2008年数学分析考研真题·北京大学2007年数学分析考研真题·北京大学2006年数学分析考研真题·北京大学2005年数学分析考研真题(含答案)·北京大学1996—2001年数学分析考研真题注:考研真题或答案如有补充,会第一时间予以上传,并在详情中予以标注,请学员留意。

2.指定教材配套资料北京大学702数学基础近年不指定参考书目,但根据往年指定教材情况,建议参考书目为:①《数学分析新讲》(张筑生,北京大学出版社);②《数学分析》(一、二、三册)(方企勤等,北京大学出版社)。

·教材:方企勤《数学分析(第一册)》(PDF版)·教材:方企勤《数学分析(第三册)》(PDF版)·《数学分析习题集》(林源渠方企勤等著)·教材:张筑生《数学分析新讲》(第一、二、三册)(PDF版)3.北京大学老师授课讲义(含指定教材高校老师授课讲义)本全套资料提供北京大学老师的授课资源,及建议参考书目的相关课件。

具体包括:·北京大学彭立中老师《数学分析》教学资源汇总(含电子教案、例题习题等,仅提供免费浏览网址)·《数学分析》教学课件(上册)4.兄弟院校考研真题详解本全套资料提供的兄弟院校历年考研真题(含详解)部分,提供其他同等高校历年考研真题详解,以便学员复习备考。

所列的高校考研真题非常具有参考性!这部分内容包括:·中山大学数学分析与高等代数考研真题:2011 2010 2009 2008 2006 2005 2004 2003·华东师范大学数学分析与高等代数考研真题:2005 2004·华东师范大学数学分析考研真题:2010 2009 2008(含答案) 2007(含答案) 2006 2005(含答案) 2004 2003(含答案) 2002 2001(含答案) 2000(含答案) 1999 1998 1997·华东师范大学高等代数考研真题:2008(含答案) 2007 2006 2005 2004 2003 2002 2001 2000·北京师范大学数学分析与高等代数考研真题:2007 2006·浙江师范大学数学分析与高等代数考研真题:2011 2006 2005 2004整理:夺魁考研网5.其他相关精品资料·数学分析同步辅导及习题全解(华东师大第三版)(上、下册)(PDF版,586页)附注:全套资料尤其是真题会不断更新完善,待更新完善后会及时上传并予以说明标注,学员可下载学习!2015年北京大学664行政学原理全套资料◇资料构成说明:北京大学664行政学原理中664是2013年的学科代码,2012年之前的几年学科代码为659。

北京大学2001年研究生入学考试试题数学分析

北京大学2001年研究生入学考试试题数学分析

北京大学2001年研究生入学考试试题
考试科目:数学分析
一、(10分)求极限:22lim 1n
n
n a a →∞+。

二、(10分)设()f x 在点a 可导,()0f a ≠,求极限:1()lim ()n n f a n f a →∞ + 。

三、(10
分)证明函数()f x x =在[1,)+∞上一致连续。

四、(10分)设D 是包含原点的平面凸区域,(,)f x y 在D 上可微,0f f x
y x y ∂∂+=∂∂,证明:(,)f x y 在D 上恒为常数。

五、(10分)计算第一型曲面积分d x S Σ∫∫,其中Σ
是锥面z
=
被柱面22x y ax +=
(0)a >割下的部分。

六、(10
分)求极限22224
01
lim d d t x y z t f x y z t →+++≤∫∫∫,其中f 在[0,1]上连续,
(0)0,(0)1f f ′==。

七、(10分)求常数λ,使得曲线积分22d d 0L
x x r x r y y y λλ−
∫(r =对上半平面的任何光滑闭曲线L 成立。

八、(10分)证明函数1
1()x n f x n ∞==∑在(1,)∞上无穷次可微。

九、(10分)求广义积分220arctan()arctan()d bx ax x x

−∫,0b a >>。

十、(10分)设()f x 是以2π为周期的周期函数,且(),f x x x ππ=−≤<,求()f x 与|()|f x 的Fourier 级数,它们的Fourier 级数是否一致收敛(给出证明)?。

北大 数学 考研真题

北大 数学 考研真题

北大数学考研真题
在北大数学考研真题中,有一道关于微积分的题目,要求计算定积分∫[0,1] (x^2 - 2x + 1) dx。

这道题目考察的是对函数的积
分运算和求解定积分的技巧。

另外一道题目是关于线性代数的,要求求解线性方程组
⎧ 2x - y + z = 1
⎪ 3x + y + z = 2
⎪ x - 3y + 2z = -3
通过高斯消元法或矩阵的逆运算等方法,得出方程组的解。

此外,还有一道题目涉及到概率论,要求计算一个朴实的概率,例如一个正六面的骰子掷出的点数等等。

需要注意的是,在北大数学考研真题中,题目的标题是不会重复出现的,每一道题目都有独立的题目描述和要求。

因此,同一篇文章中不会存在相同的标题相同的文字。

2011年北京大学数学分析试题解答

2011年北京大学数学分析试题解答

2011年北京大学研究生入学考试数学分析试题解答SCIbird说明:印象中根据当初论坛上的讨论,北大2011年试题的回忆版与原题多少有些出入,这里根据自己的理解来确定试题。

因为对试卷回忆版第5题搞不清楚,所以略去此题。

其它试题解答,比较基础的试题就写得相对简略一些,难一些的试题就写得详细一些。

试题后的评注是个人对试题的看法。

1. 用确界存在定理证明,如果函数()f x 是区间I 上的连续函数,则()f I 是一个区间。

证明:为证明()f I 是一个区间,实际上只需要证明连续函数具有价值性质即可。

不妨只考虑()()f a f b <情形,其它情况同理。

任取实数c ,满足()()f a c f b <<下面利用确定存在定理证明(,)a b ξ∃∈,使得()f c ξ=. 所用方法非常经典,读者最好熟记此方法。

记集合[,]:{()}S t f a b t c ∈=<,因为()f a c <,所以a S ∈,因此如此定义的集合非空。

由确界存在定理知,上确界sup S ξ=存在且。

由()f x 连续函数,所以()f c ξ≤且a b ξ<<. 下证()f c ξ=:采用反证法。

假设()f c ξ<,因为ξ是内点,所以由连续函数的局部保号性可知存在ξ的一个邻域(,)[,]U a b ξδξδ=−+⊂,使得在U 上满足()f x c <,特别地12()f c ξδ+<,这与sup S ξ=是上确界的定义矛盾!所以()f c ξ=.评注:上面的证明是标准的,读者应该熟练掌握“连续函数取上确界”这种技巧,2009年北大数学分析压轴题的证明方法也取上确界。

印象中北大考研的数学分析试题必有一道试题涉及实数系那几个基本定理的等价性证明或者应用,属于送分题,但前提是你认真准备过。

实数系基本定理有好几个,但在解题或科研中,最常用的是确界存在原理和闭区间套定理。

特别在处理涉及连续函数的1维问题时,确界存在原理往往起到奇兵作用。

2022北大考研数学

2022北大考研数学

2022北大考研数学2022年北大考研数学真题全面分析,精彩内容详述在2022年北大考研数学真题中,我们可以看到一些新的考察方向和题型,这些内容对于考生来说都是新的挑战和机遇。

下面将对2022年北大考研数学真题进行全面分析。

首先,考题中涉及到的知识点广泛而深入。

包括线性代数、概率统计、微积分和复变函数等。

考生需要对这些知识点有全面的掌握和深入的理解才能够顺利解题。

例如,在线性代数方面,考题可能涉及到矩阵的特征值、特征向量和矩阵对角化等内容;在概率统计方面,考生需要熟悉概率分布、随机变量、参数估计和假设检验等;在微积分方面,考生需要掌握一元函数和多元函数的极限、导数和积分等;在复变函数方面,考生需要理解复数的运算规则、复变函数的连续性和解析性等。

其次,考题难度适中,融合了基础知识和灵活运用的能力。

考题不仅考察了考生对知识点的记忆和理解,还要求考生能够运用所学的知识解决实际问题。

例如,可以出现一些综合性的题目,需要考生能够将不同的知识点进行结合,并给出合理的解决方法。

这就需要考生在备考过程中,不仅要掌握各个知识点的基本概念和定理,还要进行大量的题目练习,提高解题的能力。

另外,考生应注重形式化的数学推导和严谨的思维过程。

由于考试时间有限,考生在解答题目时需要快速抓住关键点,并进行简洁明了的推导和证明。

在备考过程中,考生应注重对数学思维的培养,提高数学问题的抽象和形式化能力。

同时,要注重对解题过程的详细分析,理清思绪,避免漏洞和错误,保证解题的准确性和可读性。

最后,考生应充分利用考前的复习时间,进行重点知识的巩固和习题的练习。

通过对历年真题的分析和模拟考试,了解到自己的薄弱环节,并有针对性地进行强化练习。

同时,要养成良好的做题习惯,注重解题的方法和思路的总结,提高解题的效率和准确性。

总之,2022年北大考研数学真题不仅考察了考生对基础知识的掌握和理解,还注重考察考生的综合应用能力和解题思维的培养。

通过深入研究真题,提高解题的技巧和水平,相信每一位考生都能够在考试中取得优异的成绩。

北京大学601数学基础考试1 (数学分析)考研参考书、历年真题、复试分数线

北京大学601数学基础考试1 (数学分析)考研参考书、历年真题、复试分数线

北京大学601数学基础考试1(数学分析)考研参考书、历年真题、复试分数线一、课程介绍又称高级微积分,分析学中最古老、最基本的分支。

一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。

它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。

这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。

微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。

后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。

二、北京大学601数学基础考试1(数学分析)考研复试分数线根据教育部有关制订分数线的要求,我校按照统考生、联考生等不同类型分别确定复试基本分数线。

考生能否进入复试以各院系所规定的各项单科成绩和总成绩确定的复试名单为准。

我校将按照德、智、体全面衡量,择优录取,保证质量,宁缺毋滥的精神和公开、公正、公平的原则进行复试与录取工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京大学数学分析考研试题及解答判断无穷积分1sin sin()xdx x+∞⎰的收敛性。

解 根据不等式31|sin |||,||62u u u u π-≤≤,得到 33sin sin 1sin 11|sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x xdx x x +∞-⎰绝对收敛,因而收敛,再根据1sin xdx x +∞⎰是条件收敛的,由sin sin sin sin sin()(sin())x x x x x x x x =-+, 可知积分1sin sin()xdx x+∞⎰收敛,且易知是是条件收敛的。

例5.3.39 设2()1...2!!nn x x P x x n =++++,m x 是21()0m P x +=的实根,求证:0m x <,且lim m m x →+∞=-∞。

证明 (1)任意*m N ∈,当0x ≥时,有21()0m P x +>;当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。

(2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞=>,所以21()m P x +的根m x →-∞,(m →∞)。

因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。

则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-);21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞→+∞<=-≤=,矛盾。

例、 设(1)ln(1)nn p a n -=+,讨论级数2n n a ∞=∑的收敛性。

解 显然当0p ≤时,级数2n n a ∞=∑发散;由 20011ln(1)1limlim 2x x x x x xx→→--++=011lim 21x x →=+ 12=,得221ln(1)4x x x x ≤-+≤,(x 充分小), 于是2211(1)14n np p pa n n n -≤-≤,(n 充分大) (1) 当1p >时,221p n n ∞=∑,2(1)np n n ∞=-∑收敛,2(1)n n p n a n ∞=--∑收敛,(1)1n n n p pa a n n -≤-+, 2nn a∞=∑收敛,2n n a ∞=∑绝对收敛;(2) 当112p <≤时,221p n n∞=∑收敛,2(1)n p n n ∞=-∑收敛,于是2(1)nn pn a n ∞=--∑收敛,从而2(1)()n n p n a n ∞=--∑收敛,2n n a ∞=∑收敛, 而21p n n ∞=∑发散,由1(1)n n n p pa a n n -≤-+,得2(1)(||)nn n p n a a n ∞=--+∑发散,所以2nn a ∞=∑发散,故此时2n n a ∞=∑条件收敛。

(3) 当102p <≤时,2(1)()n n p n a n ∞=--∑发散,而2(1)n p n n ∞=-∑收敛,此时2n n a ∞=∑发散。

北京大学2007年数学分析考研试题及解答1、 用有限覆盖定理证明连续函数的介值定理。

证明 这里只证明连续函数的零点定理,由此即可推证介值定理。

命题:若()f x 在[,]a b 上连续,且()()0f a f b <,那么必然存在一点(,)a b ξ∈, 满足()0f ξ=。

采用反正法,若对于任意点(,)x a b ∈,有()0f x ≠,那么显然对于任意[,]x a b ∈,仍然有()0f x ≠。

由于f 的连续性,我们对于任意一点[,]x a b ∈,可以找到一个邻域()x O x δ,使得()f x 在()[,]x O x a b δ⋂中保号,那么[,]a b 区间被以上形式的()x O x δ,[,]x a b ∈开区间族所覆盖,由有限覆盖定理,可得存在有限个开区间1212(),(),...,()x x x nn O x O x O x δδδ就能覆盖闭区间[,]a b ,再由覆盖定理的加强形式可得,存在0ε>,满足当12,[,]y y a b ∈,12y y ε-<时,存在1212(),(),...,()x x x nn O x O x O x δδδ中的某个开集同时覆盖12,y y 。

那么我们就证明了当12y y ε-<时,有12(),()f y f y 同号; 现取正整数m ,满足b a m ε-<,令()i b a iz a m-=+,0,1,...,i m =,那么我们有1i i z z ε+-<,()i f z 与1()i f z +同号,从而证明了0()f z 与()m f z 同号,即()f a 与()f b 同号,这与题目中的()()0f a f b <矛盾,证明完毕。

2、 设(),()f x g x 在有限区间(,)a b 内一致连续,证明:()()f x g x 也在(,)a b 内一致连续。

证明 首先证明(),()f x g x 都在(,)a b 上有界,因为()f x 在有限区间(,)a b 内一致连续,从而存在10δ>,满足当此12,(,)x x a b ∈,121x x δ-<时,有 12()()1f x f x -<, 现取正整数m ,满足1b a m δ-<,令()i b a iz a m-=+,1,2,...,1i m =-; 对任意(,)x a b ∈,存在j z ,使得 1j b ax z mδ--<<, ()()()()j j f x f x f z f z ≤-+ 1()j f z ≤+ 111max ()i i m f z ≤≤-≤+,即得()f x 在(,)a b 上是有界的;同理()g x 在(,)a b 上也是有界的;下面证明,若(),()f x g x 在区间I 上有界,且都一致连续,则()()f x g x 在区间I 上一致连续。

设0M >,满足(),()f x M g x M ≤≤,x I ∈; 那么由(),()f x g x 得一致连续性得到,对于任意0ε>,存在0δ>,使得当,x y I ∈,x y δ-<时,有 ()()f x f y ε-<,()()g x g y ε-< 从而()()()()f x g x f y g y -()()()()()()()()f x g x f x g y f x g y f y g y =-+- ()()()()()()f x g x g y f x f y g y ≤-+- 2M ε≤,即得()()f x g x 在I 上一致连续。

3、 已知()f x 在[,]a b 上有四阶导数,且有(4)(3)()0,()0,(,)f f a b βββ≠=∈, 证明:存在12,(,)x x a b ∈,使得1212()()()()f x f x f x x β'-=-。

证明 不妨设()()0f f ββ'==(这是因为否则可以考虑()()()()()g x f x f f x βββ'=---,而()g x 的三、四阶导数与()f x 的相同)。

从而我们要证明存在12,(,)x x a b ∈,使得12()()0f x f x -=。

下面分两种情形来证明之,(1)()0f β''≠,当()0f β''>,由带Peano 余项的Taylor 展开式,我们得到 22()()()()(())2f f x f x o x ββββ''=+-+-,那么在β足够小的邻域内有()0f x >,取12y y β<<,满足12()0,()0f y f y ><,不妨设12()()f y f y <,由于()0f β=,那么存在22(,)x y β∈,使得21()()f x f y =,从而取1122,x y x x ==,12()()0f x f x -=; 当()0f β''<时,同理可得;(2)()0f β''=,那么有(3)()0f β=,(4)()0f β≠,可以同样Taylor 展开,(4)44()()()()(())4!f f x f x o x ββββ=+-+-, 做法与(1)相同,证毕。

4 、构造一个函数在R 上无穷次可微,且(21)(0)n f n +=,(2)(0)0n f =,0,1,2,...,n =并说明满足条件的函数有任意多个。

解 构造函数项级数()1(0)!n n n f x n ∞=∑211(21)!n n nx n ∞+==+∑, 显然此幂级数的收敛半径为+∞,从而可以定义函数: 211()(21)!n n nf x x n ∞+==+∑,容易验证此函数满足:(21)(2)(0),(0)0n n f n f +==,0,1,2,...n =,考虑到函数21,0()0,0x e x g x x -⎧⎪≠=⎨⎪=⎩,由我们熟知的结论知,()g x 在R 上无穷次可微,且()(0)0n g =,(0,1,2,...)n =, 对任意()h x 在R 上无穷次可微的函数,从而()()()f x h x g x +也满足题目要求条件, 结论得证。

5 、设[0,1][0,1]D =⨯,(,)f x y 是D 上的连续函数,证明满足(,)(,)Df x y dxdy f ξη=⎰⎰的(,)ξη点有无穷多个。

证明 设 11min{(,):(,)}(,)m f x y x y D f x y =∈=,22max{(,):(,)}(,)M f x y x y D f x y =∈= 。

那么我们有(,)Dm f x y dxdy M ≤≤⎰⎰,(,)m f x y M ≤≤,(,)x y D ∈, 下面分两种情况讨论:(1) 若(,)Dm f x y dxdy =⎰⎰或(,)Df x y dxdy M =⎰⎰有一个成立时,当(,)Dm f x y dxdy =⎰⎰,我们有((,))0Df x y m dxdy -=⎰⎰,(,)0f x y m -≥,从而有(,)0f x y m -=,(,)x y D ∈,从而(,)f x y m =为常数,此时结论显然成立; 当(,)Df x y dxdy M =⎰⎰时,我们有((,))0DM f x y dxdy -=⎰⎰,(,)0M f x y -≥,从而(,)f x y M =为常数,此时结论显然成立; (2)(,)Dm f x y dxdy M <<⎰⎰我们可以选取无穷多条连接11(,)x y 和22(,)x y 的不相交的连续曲线12(),(),x x t y y t t t t ==≤≤,((),())x t y t D ∈;显然()((),())F t f x t y t =连续,111222()(,),()(,)F t f x y F t f x y ==, 由连续函数的介值定理,存在12(,)t t τ∈,((),())(,)x y ττξη=,使得 ()(,)DF f x y dxdy τ=⎰⎰,即(,)(,)Df f x y dxdy ξη=⎰⎰,结论得证。

相关文档
最新文档