传感器论文

合集下载

传感器 毕业论文

传感器 毕业论文

传感器毕业论文本文将探讨传感器在工业自动化中的应用,具体分析其结构和原理、分类以及在不同领域的应用案例。

本文共分为三部分,第一部分介绍传感器的基础知识;第二部分详细介绍传感器的分类和原理;第三部分介绍传感器在不同领域的应用案例。

一、传感器的基础知识传感器是指能够将非电学量转换为电学信号输出的一种装置,是自动化控制系统的主要组成部分之一。

传感器的功能是将被测物理量转换成电信号,然后再经过一系列处理从而得到所需的信号。

传感器的应用范围非常广泛,包括机械、化工、航空等领域。

传感器的主要目的是实现对环境的感知和控制,使得环境可以更好的适应人类的需求。

传感器的工作原理是利用物理效应使被测量的物理量转化成器件可检测的电信号。

目前,常见的传感器有磁电传感器、光电传感器、声波传感器、电容传感器等多种类型。

不同类型的传感器根据所应用的物理效应可以细分为多种不同的类型。

二、传感器的分类和原理传感器的分类通常分为接触式传感器和非接触式传感器。

接触式传感器需要与被测物理量直接接触,然后将物理量通过接头传送到传感器。

非接触式传感器则不需要与被测物理量接触,因此无需使用接头,可以进行无损检测。

1. 接触式传感器接触式传感器是指需要与被测物理量直接接触的传感器,它们共同之处是需要同被测物理量接触以采集信号。

接触式传感器包括接触式温度传感器、接触式压力传感器、接触式流量传感器等。

这些传感器的原理是通过接触来测量被测量的物理量。

2. 非接触式传感器非接触式传感器是指不需要与被测物理量接触,直接在被测物理量周围测量物理量的传感器。

它们利用光、声、磁、电场等物理效应直接或间接来测量物理量。

非接触式传感器常见的有光电传感器、声波传感器和磁电传感器等。

3. 光电传感器光电传感器是一种非接触式传感器,通过光学原理检测被测物理量。

光电传感器包括光敏传感器、红外传感器和激光传感器等。

4. 声波传感器声波传感器是一种可以将物理量转换成声波信号并输出的传感器。

传感器的原理及其应用论文范文

传感器的原理及其应用论文范文

传感器的原理及其应用1. 介绍本文将介绍传感器的原理和其在各个领域的应用。

传感器是一种用于检测和测量环境中各种物理量的设备。

它们广泛应用于工业、医疗、环境保护、军事等领域。

本文将首先介绍传感器的工作原理,然后详细讨论传感器在不同领域的应用。

2. 传感器的工作原理传感器的工作原理基于各种物理现象,如光电效应、热敏效应、压电效应等。

以下是几种常见的传感器工作原理:2.1 光电传感器光电传感器利用光电效应测量光的强度和特性。

当光照射到光电传感器上时,光会激发光电元件内的电子,产生电流。

通过测量电流的大小,可以得知光的强度和特性。

光电传感器广泛应用于自动化控制、安防和光通信等领域。

2.2 温度传感器温度传感器根据物质的热敏性质来测量温度。

常见的温度传感器包括热电偶和热电阻。

热电偶利用两种不同金属的电极在不同温度下产生电势差,从而测量温度。

热电阻则根据电阻值随温度变化的特性来测量温度。

温度传感器广泛应用于气象、工业过程控制和家用电器等领域。

2.3 压力传感器压力传感器用于测量压力的大小。

它们通过将压力转化为力或位移,再测量这些参数来得知压力。

常见的压力传感器包括电阻应变式传感器和压电传感器。

电阻应变式传感器根据压力引起的电阻变化来测量压力。

压电传感器则利用压电效应,将压力转化为电荷来测量压力。

压力传感器广泛应用于工业自动化、汽车、航空航天等领域。

2.4 气体传感器气体传感器用于检测环境中的气体浓度。

常见的气体传感器包括气敏传感器和红外线传感器。

气敏传感器基于物质与气体之间的化学反应来测量气体浓度。

红外线传感器利用气体对红外线的吸收特性来测量气体浓度。

气体传感器广泛应用于空气质量监测、工业过程控制和燃气检测等领域。

3. 传感器的应用传感器在各个领域都有广泛的应用。

以下是几个领域中传感器的应用示例:3.1 工业控制在工业控制中,传感器被用于监测和控制生产过程中的各种参数。

例如,温度传感器可用于监测设备和物料的温度,以确保生产过程的稳定性。

传感器原理以及应用的论文

传感器原理以及应用的论文

传感器原理以及应用1. 介绍传感器是一种能够感知和测量环境中各种物理量和化学量的设备或装置,广泛应用于工业、农业、医疗和消费电子等领域。

本文将介绍传感器的工作原理以及其在不同领域的应用。

2. 传感器的工作原理传感器的工作原理基于不同的物理效应,常见的工作原理包括电阻、电容、电感、磁阻、热敏、光敏、声敏和化学敏感等。

2.1 电阻传感器电阻传感器是基于材料的电阻随外界物理量变化而变化的原理工作的。

常见的电阻传感器包括压力传感器、温度传感器和光敏电阻等。

2.2 电容传感器电容传感器是基于材料的电容随外界物理量变化而变化的原理工作的。

常见的电容传感器包括湿度传感器和接近传感器等。

2.3 电感传感器电感传感器是基于材料的电感随外界物理量变化而变化的原理工作的。

常见的电感传感器包括接近传感器和速度传感器等。

2.4 磁阻传感器磁阻传感器是基于材料的磁阻随外界物理量变化而变化的原理工作的。

常见的磁阻传感器包括磁力传感器和角度传感器等。

2.5 热敏传感器热敏传感器是基于材料的电阻随温度变化而变化的原理工作的。

常见的热敏传感器包括温度传感器和热流量传感器等。

2.6 光敏传感器光敏传感器是基于材料的电阻或电压随光线强度变化而变化的原理工作的。

常见的光敏传感器包括光电传感器和光纤传感器等。

2.7 声敏传感器声敏传感器是基于材料的电阻或电压随声音强度变化而变化的原理工作的。

常见的声敏传感器包括声压传感器和声音传感器等。

2.8 化学敏感传感器化学敏感传感器是基于材料的电阻或电压随化学物质浓度变化而变化的原理工作的。

常见的化学敏感传感器包括气体传感器和化学传感器等。

3. 传感器的应用传感器在各个领域都有广泛的应用,以下列举了一些常见的应用场景。

3.1 工业自动化•温度传感器用于监测和控制工业过程中的温度变化。

•压力传感器用于测量液体或气体的压力,用于流量控制和工艺控制。

•光电传感器用于检测和计数生产线上的物体,实现自动包装和分拣。

传感器 毕业论文

传感器 毕业论文

传感器毕业论文传感器毕业论文近年来,随着科技的快速发展和人们对智能化生活的追求,传感器作为一种重要的技术手段,逐渐成为了人们生活中不可或缺的一部分。

传感器可以将各种物理量、化学量或生物量转化为电信号,从而实现对环境的感知和监测。

在工业、医疗、农业等领域,传感器的应用越来越广泛,其重要性也日益凸显。

一、传感器的概念和分类传感器是一种能够感知并测量物理量、化学量或生物量的装置。

根据其测量原理和应用领域的不同,传感器可以分为多种类型,如温度传感器、压力传感器、光学传感器、生物传感器等。

每种传感器都有其独特的特点和应用场景。

二、传感器的工作原理和应用传感器的工作原理主要包括感知、转换和输出三个环节。

感知环节通过感知元件将被测量的物理量转化为电信号;转换环节将电信号转化为可供测量的形式;输出环节将测量结果以可读取或可处理的形式输出。

传感器的应用非常广泛,例如在工业生产中,传感器可以用于测量温度、压力、流量等参数,实现对生产过程的监控和控制;在医疗领域,传感器可以用于监测患者的生命体征,如心率、血压等,为医生提供准确的数据支持;在农业领域,传感器可以用于监测土壤湿度、气候变化等,帮助农民科学管理农田。

三、传感器的发展趋势和挑战随着科技的不断进步,传感器也在不断发展和演进。

未来的传感器将更加小型化、智能化和多功能化。

例如,微纳传感器的出现使得传感器可以更加精确地感知微小的物理量;智能传感器的出现使得传感器可以进行数据处理和分析,实现自动化控制和决策;多功能传感器的出现使得传感器可以同时感知多种物理量,提高传感器的综合性能。

然而,传感器的发展也面临着一些挑战。

例如,传感器的功耗问题,尤其是对于无线传感器网络而言,如何降低传感器的功耗,延长其使用寿命,是一个亟待解决的问题;另外,传感器的数据安全问题也需要引起重视,如何保护传感器所采集的数据不被恶意攻击和篡改,是一个重要的研究方向。

四、传感器在智能城市建设中的应用随着城市化进程的加快,智能城市建设成为了未来城市发展的重要方向。

温度传感器论文 (2)

温度传感器论文 (2)

温度传感器论文摘要本论文研究了温度传感器在工业自动化领域中的应用。

首先介绍了温度传感器的原理和分类。

然后详细讨论了温度传感器在自动化控制系统中的作用。

接着探讨了温度传感器的性能指标以及影响温度传感器精度的因素。

最后,通过实验验证了温度传感器的可靠性和精度。

引言温度是一个重要的物理量,在工业生产和实验研究中具有广泛的应用。

温度传感器作为测量温度的主要工具,其在工业自动化领域中起到了至关重要的作用。

本论文旨在研究温度传感器的原理和应用,以及其在自动化控制系统中的作用。

温度传感器的原理和分类温度传感器是一种能够将物理量(温度)转换成电信号的装置。

根据原理的不同,温度传感器可以分为电阻式温度传感器、热电偶和热敏电阻等多种类型。

电阻式温度传感器电阻式温度传感器是利用材料的温度对电阻值产生影响的原理来测量温度的。

常见的电阻式温度传感器有铂电阻温度传感器(PT100)、铜电阻温度传感器(CT100)等。

其中,PT100是一种常用的高精度温度传感器,广泛应用于温度测量领域。

热电偶热电偶是利用两种不同金属的热电效应来测量温度的。

它由两段不同金属的导线组成,两段导线的接触处称为冷端,另一端则称为热端。

当热电偶的热端与被测温度相接触时,产生的温差会在电压表上显示出热电动势,进而推算出温度。

热敏电阻热敏电阻是指在不同温度下电阻值发生变化的电阻。

常见的热敏电阻有二极管热敏电阻和热敏电阻。

热敏电阻的工作原理是基于半导体材料的特性,通过测量电阻值来间接反映温度。

温度传感器在自动化控制系统中的作用温度传感器在自动化控制系统中扮演着非常重要的角色。

它可以实时感知环境温度,并将温度信号转换为电信号输送给控制器。

控制器根据温度传感器的反馈信号来调整系统的工作状态,以达到设定温度的目标。

温度传感器的准确性和稳定性对系统的控制精度至关重要,因此选择合适的温度传感器对系统性能至关重要。

温度传感器的性能指标精度精度是指温度传感器输出值与真实温度之间的误差。

传感器的基本原理及应用领域论文

传感器的基本原理及应用领域论文

传感器的基本原理及应用领域一、传感器的基本原理传感器是一种能够感知和测量某种物理量并将其转化为可用信号的设备。

传感器的工作原理通常基于不同的物理现象,如电磁感应、压力变化、声波传播等。

以下是几种常见的传感器工作原理:1. 光电传感器光电传感器利用物体对光的反射、散射或吸收的变化来检测物体的存在、位置或其他属性。

光电传感器包括光敏电阻、光电二极管和光电晶体管等。

它们通过光敏元件的电阻、电流或电压的变化来感知光的强度或改变。

2. 温度传感器温度传感器是测量物体的温度变化的设备。

常用的温度传感器有热电偶、热电阻和半导体温度传感器。

热电偶通过两个不同金属的焊接点之间产生的温差来测量温度变化。

热电阻则是通过材料的电阻随温度变化而产生的变化来测量温度。

半导体温度传感器利用半导体材料的电阻随温度的变化来测量温度。

3. 压力传感器压力传感器是测量物体受力或气体液体压力的设备。

它们根据物体受力或压力改变导致的变形或变量来测量压力。

常见的压力传感器有电阻式、电容式和压阻式传感器。

电阻式传感器是将变形或变量转化为电阻改变来测量压力。

电容式传感器则是将变形或变量转化为电容改变来测量压力。

压阻式传感器则是测量物体受力产生的压阻值来获得压力信息。

二、传感器的应用领域传感器在各个领域都有广泛的应用,以下列举了几个常见的应用领域:1. 工业自动化传感器在工业自动化中发挥着关键作用。

例如,温度传感器可以用于监测和控制工业过程中的温度变化。

压力传感器可以用于监测液体或气体管道中的压力变化。

光电传感器可以用于检测物体的存在和位置,实现自动化的装配和分拣。

2. 医疗健康传感器在医疗健康领域的应用越来越广泛。

例如,心率传感器可以测量人体的心跳情况,用于心率监测和心脏疾病检测。

血压传感器可以测量人体的血压水平,用于高血压和低血压的监测和治疗。

体温传感器可以测量人体的体温,用于发热疾病的检测和监测。

3. 环境监测传感器在环境监测中发挥着重要作用。

传感器与测试技术的论文

传感器与测试技术的论文

传感器与测试技术的论文传感器与测试技术是现代科技领域中的重要研究领域之一、传感器的发展与应用推动了各个领域的技术创新和产业进步,而测试技术则是确保传感器的性能和可靠性的重要手段。

本文将从传感器与测试技术的现状和发展两个方面进行论述。

首先,传感器是一种能够感知和测量环境中各种物理量的器件或设备。

随着科学技术的不断进步,传感器的种类和应用范围日益扩大。

目前常见的传感器包括温度传感器、压力传感器、光传感器、湿度传感器等。

其中,温度传感器是应用最广泛的传感器之一、它可以用于工业生产、环境监测、医疗设备等领域。

随着纳米技术的发展,新型的纳米温度传感器逐渐兴起,其具有体积小、响应速度快、精度高等特点。

另外,压力传感器也是应用广泛的一类传感器。

它通常用于汽车制造、航空航天、工业自动化等领域。

新一代的压力传感器正朝着体积小、功耗低、可靠性高的方向发展。

光传感器在现代科技中也起到重要作用。

它可以用于光学通信、光学测量、生物医学等领域。

最新的光传感技术已经实现了对不同光波长的高灵敏度检测,为光电子学领域的发展提供了新的可能性。

湿度传感器被广泛应用于农业、气象、建筑等领域。

其关键技术是如何准确测量空气中的湿度,目前一些新型的纳米湿度传感器已经取得了突破。

然而,传感器的性能和可靠性是决定其应用能力的重要因素。

测试技术是确保传感器质量的关键手段。

测试技术包括传感器的校准、稳定性测试、精度测试等。

其中,传感器的校准是提高其测量准确度的关键步骤。

稳定性测试可以评估传感器在长时间使用中的稳定性。

而精度测试则是判断传感器测量结果与真实值之间的偏差大小的关键方法。

随着科技的进步,传感器与测试技术也在不断发展。

未来的发展趋势包括集成化、智能化和多功能化。

集成化是指将多种传感器集成到一个器件中,从而提高系统的整体性能。

智能化是指传感器能够自动识别和适应环境变化,进一步提高其应用范围和灵活性。

多功能化是指传感器具有多种测量能力,可以同时对多种物理量进行测量。

传感器的原理及其应用论文

传感器的原理及其应用论文

传感器的原理及其应用论文摘要本论文主要介绍了传感器的原理及其在各个领域中的应用。

首先,论文阐述了传感器的定义和基本原理。

接着,详细讨论了各种类型传感器的工作原理,包括光学传感器、压力传感器、温度传感器等。

随后,论文探讨了传感器在环境监测、医疗领域、智能交通系统、工业生产等领域的应用案例。

最后,论文总结了传感器的发展趋势和未来的研究方向。

1. 引言传感器是一种能够感知环境中各种物理量并将其转化为可用信号的设备。

它是现代科技中不可或缺的一部分,广泛应用于各个领域。

本章将介绍传感器的基本概念,以及其在不同领域中的重要性和应用前景。

2. 传感器的定义和基本原理2.1 定义传感器是一种能够感知并感知环境中某种物理量,并将其转化为可以用来测量、监测或控制的其他形式的信号的设备。

2.2 基本原理传感器的基本原理是通过感受外部物理量的变化,并将其转化为可测量的电信号或其他形式的输出信号。

传感器通常包括感受部件、转换部件、输出部件和电路部分。

3. 传感器类型及其工作原理3.1 光学传感器光学传感器是一种利用光学原理检测并测量环境物理量的传感器。

它通过感受环境中光线的变化来判断目标物体的位置、颜色、形状等特征。

光学传感器工作原理可分为透射式光电传感器、反射式光电传感器和光纤传感器等。

3.2 压力传感器压力传感器是用于测量系统中气体或液体压力的传感器。

它通过感受被测介质对传感器施加的力来转化为电信号输出。

按其测量原理可分为机械式压力传感器、电阻式压力传感器和微电子压力传感器等。

3.3 温度传感器温度传感器是用于测量环境中温度变化的传感器。

常见的温度传感器有热电偶、热电阻和半导体温度传感器等。

这些传感器通过测量物体的温度并将其转化为电流或电压信号来实现温度测量。

4. 传感器的应用案例4.1 环境监测传感器在环境监测中起着重要的作用。

例如,大气压力传感器可以用于气象学研究和天气预报,土壤温湿度传感器可以用于农业生产监测,水质传感器可以用于水环境监测等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力传感器的温控系统的研究
班级:学号: 姓名:
摘要:针对压力传感器易受温度影响,产生零点漂移、测量误差增大,从而产生测量误差等问题,本文设计了一种温度控制系统,根据科恩-库恩公式建立了系统的数学模型,采用参数自整定PID控制算法,克服了纯 PID 控制有较大超调量的缺点,从而减少了温度漂移对于测量值的影响,实现了一个温度控制系统。

同时利用仿真软件建立系统的仿真模型,通过仿真和测试验证系统满足设计要求。

很大程度上补偿了温度所应起的温漂对于测量值影响产生的误差,是压力传感器在高温工作情况下的稳定性的得到极大的提高。

关键字:温度传感器,温漂腔体仿真操作
0 引言
针对我国当对于压力传感器材料的研究的现进成果以及压力传感器技术在我国生产技术,社会生活,军事医学等方面的广泛运用,对于传感器各方面的研究就有极大的意义,同时也为我们研究传感器提供了有力的基础。

sic的耐高温,抗腐蚀,抗辐射性能,因而使用SiC 来制作压力传感器,能够克服Si器件高温下电学、机械、化学性能下降的缺陷,稳定工作于高温环境,具有光明的应用前景。

但是界温度较大时,压力传感器受温度影响精度不高,会产生零点漂移等问题,从而增大测量误差。

于是尝试加工一个腔体,把压力传感器和温度传感器放置在里面形成一个小的封闭腔体,在外界温度较高或较低的情况下,用加热装置先升温到几十度并维持这一温度,给压力传感器做零点补偿,提高压力传感器的测量精度。

这样就克服了在大温度范围难以补偿的问题。

本文对这个温度控制系统提出了解决方案,采用了PID参数自整定控制,模糊控制属于智能控制方法,它与 PID 控制结合,具有适应温控系统非线性、干扰多、时变等特点[1-3]。

1 硬件系统
用放置在腔体内的温度传感器测量恒温箱内的温度,产生的信号经过放大后输出反馈信号,再用单片机进行采样,由液晶显示恒温箱内的温度,并通过温度控制算法控制加热装置。

所使用的单片机为STC125408AD,自带A/D转换、EPROM功能,内部集成MAX810专用复位电路(外部晶振20 MHz以下时,可省外部复位电路),ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器可通过串口(P3.0/ P3.1) 直接下载用户程序,数秒即可完成一片。

2 系统的控制模型
电加热装置是一个具有自平衡能力的对象,可用 一阶 惯性环节描述温控对象的数学模型[5-8] 。

G(S)=K/(t′S+1) (1)
式中: K为对象的静增益;t′为对象的时间常数。

目前工程上常用的方法是对过程对象施加阶跃输入信号,测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。

具体用科恩-库恩(cohen-coon)公式确定近似传递函数。

cohn-coon 公式如下:
K= Δ C/ Δ M
t′=1.5(t 0.632 -t 0.28 )
式中:Δ M 为系统阶跃输入;Δ C 为系统的输出响应; t 0.28 为对象上升曲线为0.28Δ C 时的时间(单位:min); t 0.632 为对象上升曲线为0.632Δ C 时的时间(单位:min);从而求得 K =0.96, t′ =747 s。

所以恒温箱模型为:
G(S)=0.96/(747S+1) (2)
3 系统的控制模型仿真及实验结果
纯 PID 控制有较大超调量;而纯模糊控制由于自身结构的原因又不能消除稳态误差,稳态误差较大。

所以,考虑把它们两者相结合,实现优势互补。

本论文采用参数模糊自整 PID 控制[9-10]。

使用该模糊控制器在 Simulink 中构建整个控制系统,
从上面的仿真结果表明:调节时间 ts约为460 s,稳态误差ess=0,超调量 σ %=0。

虽然仿真环境不可能与实际情况完全相同,但它的结果还是具有指导意义的。

在实际测试中前10 min每30 s采样一次,后 10 min 每200 s采样一次,测得实验结果如表1所示。

表1 测试结果
时间 /s 温度 /℃时间 /s 温度/℃
0 17.1 360 78.0
30 19.3 390 78.9
60 26.2 420 80.0
90 33.3 450 80.0
120 42.6 480 80.2
150 54.3 510 80.1
180 64.7 540 80.2
210 72.3 570 80.1
240 83.1 600 80.0
270 82.3 800 80.0
300 80.0 1 000 79.9
330 79.1 1 200 80.0
再Matlab软件处理表1中的测试数据,绘制成变化趋势图,
实验结果表明,在实际操作测量中虽然仍然较小的超调量和稳态误差,但误差已基本接近我们的仿真结果,实施演说允许的,本可以忽略不计仿真毕竟是在理想的环境下进行的。

4 结语
本文设计了一种用于压力传感器的温度控制系统,针对高温条件下,压力传感器容易产生的温度漂移等问题,因此通过加工恒温封闭腔体,把压力传感器置入其中,通过控制系统控制腔体内的温度,解决了高温压力传感器大温度范围难以补偿的问题,从而可以提高测量精度,通过仿真和实验相印证,本方案是可行的。

参考文献
孙凤玲,于海超,王金文,等.硅压阻式压力传感器温度补偿建模与算法研究[ J] .微纳电子技术,2007,44(7):48-50.
覃博彬,赖康生.基于DSP的压力传感器信号采集与温度补偿设计[ J] .中国仪器仪表,2010(4):91-94.
叶丹,齐国生,洪强宁,等.基于单片机的自适应温度控制系统[ J] .传感器技术,2002,21(3):27-30.
[5]徐桂华.硅压阻式压力传感器的温度补偿[ J] .数据采集与处理,1994(3):11-13.
[6]刘大伟,李绪友,郑波祥,等.基于DSP 的多路温度控制系统的设计[ J] .仪表技术与传感器,2004(8):51-52,54.。

相关文档
最新文档