大学物理第三章题目答案

合集下载

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

大学物理教程第3章习题答案

大学物理教程第3章习题答案

⼤学物理教程第3章习题答案思考题3.1 什么是连续性⽅程?答:若以闭合表⾯内既⽆源,⼜⽆负源,则根据质量守恒,进⼊该闭合表⾯的净流量等于闭合表⾯内物质的增加率,应⽤在稳定流动的流管中,我们得到连续性⽅程:ρ1A1v1=ρ2A2v2。

其中,ρ为密度,假设它在截⾯积A处是均匀的;v为经过截⾯积A 处的平均速度(v与A垂直)。

若流体⼜是不可压缩的,连续性⽅程简化为A1v1=A2v2。

3.2 什么是伯努利⽅程?答:流体是稳定的,⾮黏性的,不可压缩的,伯努利⽅程给出同⼀流线任两点处的压强p,流速v,⾼度y满⾜p1+12ρv12+ρgy1= p2+12ρv22+ρgy2注意伯努利⽅程中每⼀项都是取的单位⾯积的内的量值。

⽅程指出:压⼒沿流线所作的功等于动能和势能的改变(都指单位⾯积)。

3.3 在定常流动中,流体是否可能加速运动?答:定常流动是指宏观上流体在空间某位置的流速保持不变,对某个流体质点⽽⾔,它在空间各点速度可能不同,也就是说,它可能是加速运动。

3.4 从⽔龙头徐徐流出的⽔流,下落时逐渐变细,为什么?答:据连续性原理知,,流速⼤处截⾯积⼩,所以下落时⽔的流速逐渐增⼤,⾯积逐渐减少变细。

3.5 两船平⾏前进时,若靠的较近,极易碰撞,为什么?答:两船平⾏前进时,两条流线⽅向相同,,如果靠的较近,两船之间的流速将⼤于两船外侧的流速,这样两船都将受到⼀个指向对⽅的⼀个压⼒的作⽤,极易造成两船碰撞,稍有晃动,流线重合,船体就会相撞。

3.6 两条流线不能相交,为什么?答:如果两条流线相交,那么焦点处就会出现两个速度,这个结论是错误的,所以两条流线不能相交。

3.7 层流和湍流各有什么特点?引⼊雷诺数有哪些意义?答:流线是相互平⾏的流动称层流。

流体微团作复杂的⽆规则的运动称为湍流。

⽆量纲的量雷诺数是层流向湍流过渡的⼀种标志。

以临界雷诺数为准,⼩于它为层流,⼤于它为湍流。

习题3.1若被测容器A 内⽔的压强⽐⼤⽓压⼤很多时,可⽤图中的⽔银压强计。

大学物理第3章习题解答

大学物理第3章习题解答

第三章 刚体的定轴转动3-1掷铁饼运动员手持铁饼转动1.25圈后松手,此刻铁饼的速度值达到125-⋅=s m v 。

设转动时铁饼沿半径为R=1.0 m 的圆周运动并且均匀加速。

求: (1)铁饼离手时的角速度; (2)铁饼的角加速度;(3)铁饼在手中加速的时间(把铁饼视为质点)。

解:(1)铁饼离手时的角速度为(rad/s)250125===.//R v ω(2)铁饼的角加速度为)(rad/s 83925122252222..=⨯⨯==πθωα(3)铁饼在手中加速的时间为(s)628025251222..=⨯⨯==πωθt3-2一汽车发动机的转速在7.0s 内由2001min -⋅r 均匀地增加到3001min -⋅r 。

(1)求在这段时间内的初角速度和末角速度以及角加速度; (2)求这段时间内转过的角度和圈数;(3)发动机轴上装有一半径为r=0.2m 的飞轮,求它的边缘上一点在第7.0s 末的切向加速度、法向加速度和总加速度。

解:(1)初角速度为(rad/s)9206020020./=⨯=πω末角速度为(rad/s)3146030002=⨯=/πω角加速度为)(rad/s 9410792031420...=-=-=tωωα(2)转过的角度为)186(rad 1017172314920230圈=⨯=⨯+=+=..t ωωθ(3)切向加速度为)(m/s 388209412t ...=⨯==R a α法向加速度为)(m /s 10971203142422n ⨯=⨯==..R a ω总加速度为)(m/s 10971)10971(378242422n 2t ⨯=⨯+=+=...a a a总加速度与切向的夹角为9589378101.97arctan arctan 4t n '︒=⨯==.a a θ3-3 如图所示,在边长为a 的六边形顶点上分别固定有质量都是m 的6个小球(小球的直径a d <<)。

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
t1
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n

i内
0

设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为

(完整版)大学物理学(课后答案)第3章

(完整版)大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。

3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。

3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。

由于作匀速圆周运动,因此合外力不为零。

答案选C。

3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。

由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。

大学物理第3章作业解答

大学物理第3章作业解答

第三章刚体的定轴转动选择题3-1 如图所示,四个质量相同、线度相同而形状不同的物体,它们对各自的几何对称轴的转动惯量最大的是( A )(A) (B) (C) (D)3-2 在上题中,它们对各自的几何对称轴的转动惯量最小的是( C )3-3 如图所示,P、Q、R、S是附于刚体轻细杆上的四个质点,它们的质量分别为4m、3m、2m和m,PQ QR RS l===,该系统对O O'轴的转动惯量为( A )(A) 29m l.10m l; (D) 214m l; (C) 250m l; (B) 23-4 均匀细棒O A,可绕通过点O与棒垂直的光滑水平轴转动,如图所示.如果使棒从水平位置开始下落,在棒到竖直位置的过程中,下列陈述正确的是( A )(A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.3-5 几个力同时作用在一个具有固定转轴的刚体上.如果这几个力的矢量和为零,则下列陈述正确的是( D )(A) 刚体必然不会转动; (B) 刚体的转速必然不变;(C) 刚体的转速必然会变; (D) 刚体的转速可能变,也可能不变.3-6 在光滑的桌面上开一个小孔,把系在绳的一端质量为m的小球置于桌面上,绳的另一端穿过小孔而执于手中.设开始时使小球以恒定的速率v 在水平桌面上作半径为1r 的圆周运动,然后拉绳使小球的轨道半径缩小为2r ,新的角速度2ω和原来的角速度1ω的关系为( B ) (A) 1212r r ωω⎛⎫ ⎪⎝⎭=; (B) 21212r r ωω⎛⎫⎪⎝⎭=;(C) 2211r r ωω⎛⎫ ⎪⎝⎭=; (D) 22211r r ωω⎛⎫⎪⎝⎭=.3-7 在上题中,新的动能和原来的动能之比为 ( A )(A) 212r r ⎛⎫ ⎪⎝⎭; (B) 12r r ; (C) 21rr ; (D) 221r r ⎛⎫ ⎪⎝⎭.3-8 刚体绕定轴高速旋转时,下列陈述正确的是 ( D )(A) 它受的外力一定很大; (B) 它受的外力矩一定很大;(C) 它的角加速度一定很大; (D) 它的角动量和转动动能一定很大. 3-9 芭蕾舞演员绕通过脚尖的竖直轴旋转,当她伸长手臂时的转动惯量为J ,角速度为ω.她将手臂收回至前胸时,转动惯量减小为3J ,此时她的角速度为 ( A )(A) 3ω; (D) 13ω.3-10 三个完全相同的转轮绕一公共轴旋转.它们的角速度大小相同,但其中一轮的转动方向与另外两个轮相反.今沿轴的方向施力,将三者靠在一起,使它们获得相同的角速度.此时靠在一起后系统的动能与原来三转轮的总动能相比是 ( B )(A) 减少到13; (B) 减少到19;(C) 增大到3倍; (D) 增大到9倍.计算题3-11 一电动机的电枢转速为11800r min -⋅,当切断电源后,电枢经20s 停下.求:(1) 切断电源后电枢转了多少圈;(2) 切断电源后10s 时,电枢的角速度以及电枢边缘上一点的线速度、切向加速度和法向加速度(设电枢半径为10cm ).解 (1) 切断电源时,电枢的转速为11018002πrad s60πrad s60ω--⨯=⋅=⋅电枢的平均角加速度为22060πrad s3.0πrad s20tωα----==⋅=-⋅∆由2202ωωαθ-=∆,且0ω=,可得切断电源后电枢转过的角度为()()22060πrad 600πrad 223πωθα--∆===⨯-转过的圈数为600πr 300r 2π2πN θ∆===(2) 切断电源后10s 时,电枢的角速度为()11060π 3.0π10rad s30πrad s t ωωα--=+=-⨯⋅=⋅此时电枢边缘上一点的线速度、切向加速度和法向加速度分别为()111222t 222222n 0.1030πm s3.0πm s9.42m s0.10 3.0πm s0.30πm s0.942m s0.1030πm s90πm s888m sr a r a r ωαω---------==⨯⋅=⋅=⋅==-⨯⋅=-⋅=-⋅==⨯⋅=⋅=⋅v3-12 一飞轮由直径为0.30m 、厚度为22.010m -⨯的圆盘和两个直径为0.10m 、长为28.010m -⨯的圆柱体组成.设飞轮的密度为337.810kg m -⨯⋅,求飞轮对转轴的转动惯量.解 飞轮上的圆盘的半径为10.15m r =,圆柱体的半径为20.05m r =. 飞轮上的圆盘质量为2322111π7.810π0.15 2.010kg 11.0kg m r h ρ-==⨯⨯⨯⨯=圆柱体的质量为2322222π7.810π0.058.010kg 4.90kgm r h ρ-==⨯⨯⨯⨯⨯=飞轮的转动惯量是圆盘和两个圆柱体的转动惯量之和为22222211221111.00.15 4.900.05kg m 0.136kg m 22J m r m r ⎛⎫=+=⨯⨯+⨯⋅=⋅ ⎪⎝⎭3-13 如图所示,质量分别为2m 、3m 和4m 的三个小球,用长均为l 、质量均为m 的三根均匀细棒相连,如图所示(小球的半径r l <<,可视为质点).求该物件对通过点O 垂直于图面的转轴的转动惯量.解 该物件的转动惯量是三个小球和三根细棒的转动惯量之和为2222212343103J m l m l m l m l m l =+++⨯=3-14 细棒长为l ,质量为m ,设转轴通过棒上离中心为h 的一点并与棒垂直.求棒对此轴的转动惯量.解 由平行轴定理,细棒的转动惯量为22222c 111212J J m h m l m h m l h ⎛⎫=+=+=+ ⎪⎝⎭3-15 一个半径为R 质量为m 的均匀圆盘,挖去直径为R 的一个圆孔,如图所示.求剩余部分对通过圆心O 且与盘面垂直的轴的转动惯量.解 开孔圆盘的转动惯量等于完整圆盘的转动惯量减去位于圆孔部位的被挖去的小圆盘的转动惯量:2222111322424232m R m R J m R m R ⎡⎤⎛⎫⎛⎫=-+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 3-16 如图所示,某飞轮的直径为0.50m 、转动惯量为22.4k g m ⋅、转速为311.010r min-⨯⋅.如果制动时闸瓦对轮的压力为490N ,闸瓦与轮之间的滑动摩擦因数为0.4,求制动后飞轮转多少圈才停止.解 制动前,飞轮的转速为31102π 1.010rad s105rad s60ω--⨯⨯=⋅=⋅飞轮所受的制动力矩为n 0.44900.25N m 49N m M F R μ=-=-⨯⨯⋅=-⋅根据转动定律,M J α=,可得制动后飞轮的角加速度为2249rad s20.4rad s2.4M J α---==⋅=-⋅由2202ωωαθ-=∆,且0ω=,可得制动后飞轮转过角度为220105rad 270rad 22(20.4)ωθα--∆===⨯-转过的圈数为270r 43.0r 2π2πN θ∆===3-17 如图所示,一物体质量为5kg ,从一倾角为o 37的斜面滑下,物体与斜面的摩擦因数为0.25.一滑轮装在固定轴O 处,轻绳的一端绕在滑轮上,另一端与物体相连.若滑轮可视为是实心圆盘,其质量为20kg 、半径为0.2m ,绳与轮间无相对滑动,且轮轴的摩擦阻力矩忽略不计.求:(1) 物体沿斜面下滑的加速度; (2) 绳中的张力.解 物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T T F F '=.O x 轴沿斜面向下,Oy 垂直于斜面.设物体的质量为1m ,滑轮的质量为2m ,滑轮的半径为r .对物体,根据牛顿第二定律,在O x 和Oy 方向分别有o1T r 1sin 37m g F F m a --=oN 1cos 370F m g -=重力2P 和轮轴对滑轮的压力N 2F 均通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T T M F r F r '=⋅=⋅.对滑轮,根据转动定律,有T F r J α⋅=而a r α=r N F F μ=2212J m r =联立解以上方程,可得物体沿斜面下滑的加速度和绳中的张力分别为()oo11222sin 37cos 3712345 0.259.8 m s 1.31 m s1555202m a gm m μ--=-+⎛⎫=-⨯⨯⨯⋅=⋅ ⎪⎝⎭+⨯T 21120 1.31 N 13.1 N 22F Jm a rα===⨯⨯=3-18 如图所示,长为l 、质量为m 的均匀细棒可绕点O 转动.此棒原先静止在竖直位置,受微小扰动而倒下.若不计摩擦和空气阻力,求细棒倒至与竖直位置成θ角时的角加速度和角速度.解 细棒的倒下,可看成定轴转动,其转轴通过地面上细棒端点,垂直于细棒的转动平面.在细棒倒下的过程中,细棒与地球组成的系统机械能守恒.以地面为势能零点,设细棒倒至与竖直方向成θ角时,角速度为ω,有21cos 222l l J m gm gωθ+=而213J m l =由此可得,角速度为ω=只有细棒所受的重力对转轴有力矩.以垂直纸面向里为正方向,细棒倒至与竖直方向成θ角时,重力对转轴的力矩为sin 2l M m g θ=.设此时的角加速度为α,则对细棒,根据转动定律,有sin 2l m gJ θα= 将213J m l =代入上式,可得角加速度为3sin 2g lαθ=3-19 如图所示,两个物体质量分别为1m 和2m .定滑轮的质量为m 、半径为R ,可视为圆盘.已知2m 与桌面间的摩擦因数为μ.设轻绳与轮间无相对滑动,且可不计滑轮轴的摩擦力矩,求1m 下落的加速度和滑轮两边绳中的张力.解 两个物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T1T1F F '=,T 2T 2F F '=.O x 轴水平向右,Oy 轴竖直向下.两个物体的加速度虽方向不同,但大小相同,12a a a ==.对物体1m ,根据牛顿第二定律,在Oy 方向有1T 11m g F m a -=对物体2m ,根据牛顿第二定律,在O x 方向有T 2r 2F F m a -=滑轮所受的重力和转轴对滑轮的压力都通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T 1T 2M F R F R =-.对滑轮,根据转动定律,有T 1T 2F R F R J α-=而212J m R =a R α=r 2F m gμ=联立解以上方程,可得物体的加速度与绳中的张力分别为()1212222m m a g m m mμ-=++()2T 11122122m m F m gm m m μ++=++()1T 22122122m m F m gm m mμ++=++3-20 一圆盘状的均匀飞轮,其质量为100kg 、半径为0.5m ,绕几何中心轴转动.在30s 内,由起始转速13000r m in-⋅均匀地减速至11000r m in -⋅.求阻力矩所做的功.解 飞轮初、末角速度分别为1102π3000rad s100πrad s60ω--⨯=⋅=⋅112π1000100rad sπrad s603ω--⨯=⋅=⋅飞轮的转动惯量为2222111000.5kg m 12.5kg m 22J m R ==⨯⨯⋅=⋅根据动能定理理,外力矩对飞轮所做的功等于飞轮转动动能的增量,可得在飞轮减速的过程中,阻力矩对飞轮所做的功为()222200225111()2221100π 12.5100πJ 5.4810J23A J J J ωωωω=-=-⎡⎤⎛⎫=⨯⨯-=-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3-21 质量为m '、半径为R 的转台,可绕过中心的竖直轴转动.质量为m 的人站在转台的边缘.最初人和转台都静止,后来人在转台的边缘开始跑动.设人的角速度(相对于地面)为ω,求转台转动的角速度(转台可看成质量均匀分布的圆盘,并忽略转轴处的摩擦力矩和空气的阻力).解 人和转台组成的系统对中心轴角动量守恒.以人的角速度的方向为正方向,设转台的角速度为1ω,有210J m R ωω+=而212J m R '=由此可得12m m ωω-='式中的负号表明,转台的转动方向与人的转动方向相反.3-22 如图所示,一个转动惯量为J 、半径为R 的圆木盘,可绕通过中心垂直于圆盘面的轴转动.今有一质量为m 的子弹,在距转轴2R 的水平方向以速度0v 射入,并嵌在木盘边缘.求子弹嵌入后木盘转动的角速度.解 子弹和木盘组成的系统,对转轴角动量守恒.以垂直于纸面向外为正方向,设子弹嵌入后,木盘转动的角速度为ω,有2()2R J m R m ω+=v由此可得022()m R J m R ω=+v3-23 如图所示,一均匀细棒长为l 、质量为m ,可绕经过端点O 的水平轴转动.棒被拉到水平位置由静止轻轻放开,下落至竖直位置时,下端与放在地面上的静止物体相撞.若物体的质量也为m ,物体与地面间的摩擦因数为μ,物体滑动s 距离后停止.求: (1) 棒与物体碰撞后,物体的速度;(2) 棒与物体碰撞后,棒的角速度.解 (1)根据动能定理,摩擦力对滑块所做的功等于滑块动能的增量.设物体因碰撞而获得的速度为v ,有2102m gs m μ-=-v由此可得=v (2) 细棒下落的过程中,细棒与地球组成的系统机械能守恒定律.以地面为势能零点,设细棒下落至竖直位置时的角速度为0ω,有20122l J m gω=而213J m l =由此可得0ω=.碰撞过程中角动量守恒.以垂直纸面向外为正方向,设碰撞后,细棒的角速度为ω,有0J m l J ωω+=v将213J m l =、=v 和0ω=代入上式,可得lω=若0ω>,碰撞后细棒继续向右转动, 若0ω<,碰撞后细棒向左转动.。

大学物理第三章练习及答案

大学物理第三章练习及答案

大学物理第三章练习及答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、判断题1. 刚体是质点与质点之间的相对位置保持不变的质点系。

………………………………[√]2. 刚体中任意质点都遵循质点力学规律。

…………………………………………………[√]3. 定轴转动的刚体上的每一个质点都在作圆周运动,都具有相同的角速度。

…………[√]4. 刚体对轴的转动惯量越大,改变其对轴的运动状态就越困难。

………………………[√]5. 刚体质量一定,其转动惯量也就一定。

…………………………………………………[×]6. 当作用在刚体上的两个力合力矩为零时,则它们的合力也一定为零。

………………[×]7. 当作用在刚体上的两个力合力为零时,则它们的合力矩也一定为零。

………………[×]8. 平行于转轴的力对刚体定轴转动没有贡献。

……………………………………………[√]9. 刚体所受合外力矩为零时,刚体总角动量守恒。

………………………………………[√] 10. 刚体对某一轴的角动量守恒,刚体的所受合外力矩为零。

……………………………[×] 二、填空题11. 质量为m 的质点沿半径为r 的圆周以速率v 运动,质点对过圆心的中心轴转动惯量J =2mr ,角动量L =;质量为m 的质点沿着直线以速率v 运动,它相对于直线外距离为d 的一点的角动量为L =mdv 。

12. 长度为l 的均匀细棒放在Oxy 平面内,其一端固定在坐标原点O 位置,另一端可在平面内自由转动,当其转动到与x 轴正方向重合时,在细棒的自由端受到了一个34F i j =+牛顿的力,则此力对转轴的力矩M =4l 。

13. 在Oxy 平面内有一个由3个质点组成的质点系,其质量分别为1m 、2m 、3m ,坐标分别为()11,x y 、()22,x y 、()33,x y ,则此质点系对z 轴的转动惯量J =()()()222222*********m x y m x y m x y +++++。

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由③式得
由①式

由②式

所以
求得
(2)相碰时小球受到的冲量为
由①式求得
负号说明所受冲量的方向与初速度方向相反.
3.16一个质量为M、半径为 并以角速度 转动着的飞轮(可看作匀质圆盘),在某一瞬时突然有一片质量为 的碎片从轮的边缘上飞出,见题3.16图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上.
(1)问它能升高多少?
(2)求余下部分的角速度、角动量和转动动能.
题3.16图
解: (1)碎片离盘瞬时的线速度即是它上升的初速度
设碎片上升高度 时的速度为 ,则有
令 ,可求出上升最大高度为
(2)圆盘的转动惯量 ,碎片抛出后圆盘的转动惯量 ,碎片脱离前,盘的角动量为 ,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即


对滑轮运用转动定律,有

又, ④
联立以上4个方程,得
题3.13(a)图题3.13(b)图
3.15如题3.15图所示,质量为 ,长为 的均匀直棒,可绕垂直于棒一端的水平轴 无摩擦地转动,它原来静止在平衡位置上.现有一质量为 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度 30°处.
(1)设这碰撞为弹性碰撞,试计算小球初速 的值;
(2)相撞时小球受到多大的冲量?
题3.15图
解: (1)设小球的初速度为 ,棒经小球碰撞后得到的初角速度为 ,而小球的速度变为 ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:


上两式中 ,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度 ,按机械能守恒定律可列式:
第三章
3.10平板中央开一小孔,质量为 的小球用细线系住,细线穿过小孔后挂一质量为 的重物.小球作匀速圆周运动,当半径为 时重物达到平衡.今在 的下方再挂一质量为 的物体,如题3.10图.试问这时小球作匀速圆周运动的角速度 和半径 为多少?
题3.10图
解: 在只挂重物时 ,小球作圆周运动的向心力为 ,即
式中 为破盘的角速度.于是
得 (角速度不变)
圆盘余下部分的角动量为
转动动能为
故小球对圆心的角动量守恒.


联立①、②、③得
3.13计算题3.13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 ,半径为 ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设 =50kg, =200kg,M=15kg, =0.1m
解: 分别以 , 滑轮为研究对象,受力图如图(b)所示.对 , 运用牛顿定律,有
相关文档
最新文档