背包算法问题
算法导论16.2-20-1背包问题

算法导论16.2-20-1背包问题CLRS 16.2-2 请给出⼀个解决0-1背包问题的运⾏时间为O(nW)的动态规划⽅法,其中,n为物品的件数,W为窃贼可放⼊他的背包中的物品中的最⼤重量。
我们有n种物品,物品j的重量为w j,价格为p j。
我们假定所有物品的重量和价格都是⾮负的。
背包所能承受的最⼤重量为W。
如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。
可以⽤公式表⽰为:maximizesubject to⽅法⼀:采⽤最原始的递归⽅法,公式为V(1,...,n) = max(v k + V(1,...,k-1,k+1,...,n));时间复杂度为O(2n),很多⼦问题被重复计算。
View Code1 #include <stdio.h>2 #include <stdlib.h>34//每件物品的价值和重量5 typedef struct goods_t6 {7int weight;8int value;9 }goods;1011//删除第i个元素后的所有元素12 goods* remain_data(goods* data, const int n, const int i)13 {14 goods* remain = (goods*)malloc((n-1)*sizeof(goods));15int j;16int count = 0;17for (j = 0; j < n; j++)18 {19if (j != i)20 remain[count++] = data[j];21 }22return remain;23 }2425//递归26int recursive(goods* data, const int n, int weight)27 {28int max = 0;29int i;30for (i = 0; i < n; i++)31 {32if (data[i].weight <= weight)33 {34int tmp = data[i].value + recursive(remain_data(data, n, i), n - 1, weight - data[i].weight);35if (tmp > max)36 max = tmp;37 }38 }39return max;40 }4142int main()43 {44//输⼊最⼤重量45int max_weight;46 scanf("%d", &max_weight);47//输⼊物品件数及其重量和价值48int num;49 scanf("%d", &num);50int n = num;51 goods* data = (goods*)malloc(n*sizeof(goods));5253 goods g;54while (num--)55 {56 scanf("%d%d", &(g.weight), &(g.value));57 data[n-num-1] = g;58 }59 printf("%d\n", recursive(data, n, max_weight));60return0;61 }⽅法⼆:我们假定w1, ..., w n和W都是正整数。
背包问题的算法研究及应用

背包问题的算法研究及应用背包问题是一种经典的组合优化问题,常常被用来研究在有限的空间下如何使价值最大化。
背包问题可以分为 01 背包问题、完全背包问题、多重背包问题和混合背包问题等多种类型。
这些问题的求解方法也各有特点,需要根据具体问题进行选择。
本文主要介绍 01 背包问题和完全背包问题的求解算法及应用。
一、01 背包问题01 背包问题指的是在一个容量为 V 的背包中装入物品,每件物品都有自己的体积 vi 和价值 wi,问怎样装能使背包价值最大化,且物品不能重复使用。
01 背包问题可以用贪心算法或动态规划算法进行求解。
贪心算法的思想是每次选择当前最优的物品,直到背包无法继续装下为止。
但是贪心算法不能保证一定能获得最优解。
动态规划算法则是将问题分解为子问题,并通过递推关系式来求解。
具体来说,我们定义一个 dp[i][j] 表示将前 i 件物品放入容量为 j 的背包中所能获得的最大价值,则有:dp[i][j] = max(dp[i-1][j], dp[i-1][j-vi]+wi)其中 max 表示取两者中的最大值,dp[i-1][j] 表示不选择第 i 件物品,dp[i-1][j-vi]+wi 表示选择第 i 件物品放入背包中。
根据递推关系式,我们可以得到目标值为dp[n][V],其中 n 表示物品个数。
二、完全背包问题完全背包问题指的是在一个容量为 V 的背包中装入物品,每件物品都有自己的体积 vi 和价值 wi,问怎样装能使背包价值最大化,且每件物品可以无限使用。
完全背包问题和 01 背包问题类似,也可以用贪心算法或动态规划算法进行求解。
贪心算法的思想是每次选择当前最优的物品,并一直选择直到不能再在背包中装入为止。
但是贪心算法仍然不能保证获得最优解。
动态规划算法则是将问题分解为子问题,并通过递推关系式来求解。
与 01 背包问题相比,完全背包问题的递推关系式与之略有不同,具体来说,我们定义一个 dp[i][j] 表示将前 i 件物品放入容量为 j 的背包中所能获得的最大价值,则有:dp[i][j] = max(dp[i-1][j-k*vi]+k*wi)其中 max 表示取两者中的最大值,k 表示第 i 件物品中的物品数量。
贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
背包算法问题

背包问题贪心方法 实验日志实验题目:1)求以下情况背包问题的最优解:n=7,M=15,(71,,p p )=(10,5,15,7,6,18,3)和(71,,w w )=(2,3,5,7,1,4,1)。
实验目的:1. 掌握贪心方法算法思想;2. 熟练使用贪心算法之背包问题解决相应的问题。
实验思想:贪心方法是一种改进了的分级处理方法。
它首先根据题意,选取一种量度标准。
然后按这种量度标准对这n 个输入排序,并按排序一次输入一个量。
如果这个输入和当前已构成在这种量度意义下的部分最优解加在一起不能产生一个可行解,则不把此解输入加到这部分解中。
这种能够得到某种度量意义下的最优解的分级处理方法称为贪心方法。
1.背包问题(1)背包问题的描述:已知有n 种物品和一个可容纳M 重量的背包,每种物品i 的重量为i w 。
假定将物品i 的一部分i x 放入背包就会得到i i x p 的效益,这里,10≤≤i x , 0>i p 。
显然,由于背包容量是M ,因此,要求所有选中要装入背包的物品总重量不得超过M.。
如果这n 件物品的总重量不超过M ,则把所有物品装入背包自然获得最大效益。
现需解决的问题是,这些物品重量的和大于M ,该如何装包。
由以上叙述,可将这个问题形式表述如下:极 大 化∑≤≤n i i x p 1i约束条件 M x w n i i ≤∑≤≤1in i w p x i i i ≤≤>>≤≤1,0,0,10(2)用贪心策略求解背包问题首先需选出最优的量度标准。
不妨先取目标函数作为量度标准,即每装入一件物品就使背包获得最大可能的效益值增量。
在这种量度标准下的贪心方法就是按效益值的非增次序将物品一件件放到背包中去。
如果正在考虑中的物品放不进去,则可只取其一部分来装满背包。
但这最后一次的方法可能不符合使背包每次获得最大效益增量的量度标准,这可以换一种能获得最大增量的物品,将它(或它的一部分)放入背包,从而使最后一次装包也符合量度标准的要求。
背包问题解析(一)-贪心算法

背包问题解析(⼀)-贪⼼算法⼀、题⽬:有N件物品和⼀个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装⼊背包可使这些物品的重量总和不超过背包容量,且价值总和最⼤。
⼆、解决思路:本题刚开始的解题的时候,想采取贪⼼算法来解决,也就是将放⼊的物品的性价⽐按照从⾼到低进⾏排序,然后优先放优先级⾼的,其次优先级低的。
三、代码实现(python)1# 重量w=[5,4,3,2]2# 价值v=[6,5,4,3]3 b=[]4 m=int(input("请输⼊背包的最⼤重量:"))5 n=int(input("请输⼊商品的数量:"))6for i in range(n):7 a=input("请分别输⼊重量和价值,以空格隔开:")8 a=a.split("")9for i in range(len(a)):10 a[i]=int(a[i])11 b.append(a)12print("加载初始化:",b)13for i in range(len(b)):14for j in range(i+1,len(b)):15if b[i][1]/b[i][0]<b[j][1]/b[j][0]:16 b[i],b[j]=b[j],b[i]17print("性价⽐排序:",b)18 v=019 c=[]20for i in range(len(b)):21if m-b[i][0]>0:22 m=m-b[i][0]23 c.append(b[i])24 v+=b[i][1]25print("放⼊背包:",c)26print("最⼤价值为:",v)打印结果:四、算法分析:贪⼼选择是指所求问题的整体最优解可以通过⼀系列局部最优的选择,即贪⼼选择来达到。
0-1背包问题的枚举算法

0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。
目标是在不超过背包容量的情况下,选择物品使得总价值最大化。
然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。
二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。
对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。
如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。
最终得到的组合就是最优解。
三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。
c语言算法--贪婪算法---01背包问题

c语言算法--贪婪算法---0/1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。
从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。
对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。
约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。
在这个表达式中,需求出xt 的值。
xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。
0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。
货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。
例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。
店中有n 种不同的货物。
规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。
你的目标是使车中装载的物品价值最大。
当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。
这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。
0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。
在每一步过程中利用贪婪准则选择一个物品装入背包。
一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。
这种策略不能保证得到最优解。
例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。
当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。
而最优解为[ 0 , 1 , 1 ],其总价值为3 0。
另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。
背包问题的算法

背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。
以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。
2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。
3. 初始化:f[0][0]=0。
4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。
时间复杂度:O(n*m),其中n为物品数量,m为背包容量。
空间复杂度:O(n*m)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
背包问题贪心方法 实验日志
实验题目:
1)求以下情况背包问题的最优解:n=7,M=15,(71,,p p )=(10,5,15,7,6,18,3)和(71,,w w )=(2,3,5,7,1,4,1)。
实验目的:
1. 掌握贪心方法算法思想;
2. 熟练使用贪心算法之背包问题解决相应的问题。
实验思想:
贪心方法是一种改进了的分级处理方法。
它首先根据题意,选取一种量度标准。
然后按这种量度标准对这n 个输入排序,并按排序一次输入一个量。
如果这个输入和当前已构成在这种量度意义下的部分最优解加在一起不能产生一个可行解,则不把此解输入加到这部分解中。
这种能够得到某种度量意义下的最优解的分级处理方法称为贪心方法。
1.背包问题
(1)背包问题的描述:已知有n 种物品和一个可容纳M 重量的背包,每种物品i
的重量为i w 。
假定将物品i 的一部分i x 放入背包就会得到i i x p 的效益,这
里,10≤≤i x , 0>i p 。
显然,由于背包容量是M ,因此,要求所有选中
要装入背包的物品总重量不得超过M.。
如果这n 件物品的总重量不超过M ,
则把所有物品装入背包自然获得最大效益。
现需解决的问题是,这些物品重
量的和大于M ,该如何装包。
由以上叙述,可将这个问题形式表述如下:
极 大 化
∑≤≤n i i x p 1i
约束条件 M x w n i i ≤∑≤≤1i
n i w p x i i i ≤≤>>≤≤1,0,0,10
(2)用贪心策略求解背包问题
首先需选出最优的量度标准。
不妨先取目标函数作为量度标准,即每装入一件物品就使背包获得最大可能的效益值增量。
在这种量度标准下的贪心
方法就是按效益值的非增次序将物品一件件放到背包中去。
如果正在考虑中
的物品放不进去,则可只取其一部分来装满背包。
但这最后一次的方法可能
不符合使背包每次获得最大效益增量的量度标准,这可以换一种能获得最大
增量的物品,将它(或它的一部分)放入背包,从而使最后一次装包也符合
量度标准的要求。
算法如下所示。
算法2.1 背包问题的贪心算法
procedure GREEDY-KNAPSACK(P,W,M,X,n)
//P(1:n)和W(1:n)分别含有按P(i)/W(i)≥P(i+1)/ W (i+1)
排序的n件物品的效益值和重量。
M是背包的容量大笑,而X(1:n)
是解向量。
//
real P(1:n),W(1:n),X(1:n),M,cu;
integer i,n;
X←0 //将解向量初始化为零
cu←M //cu是背包剩余容量
for i←1 to n do
if W(i)>cu then exit endif
X(i) ←1
cu←cu-W(i)
repeat
if i≤n then X(i) ←cu/W(i)
endif
end GREEDY-KNAPSACK
实验代码:
#include<iostream>
using namespace std;
void beibao(double *w,double *v,double *x,double n,double *C) {
int i,j,temp;
for(i=0;i<n-1;i++)
for(j=i+1;j<n;j++)
if(v[i]/w[i]<v[j]/w[j])
{
temp=v[i];
v[i]=v[j];
v[j]=temp;
temp=w[i];
w[i]=w[j];
w[j]=temp;
}
for(i=0;i<n;i++)
x[i]=0;
for(i=0;*C!=0;i++)
{
if(w[i]<*C)
{
x[i]=w[i];
*C=*C-w[i];
}
else
{
x[i]=*C;
*C=*C-*C;
}
}
}
void main()
{
int i;
double *w,*v,n,C;
double *x;
cout<<"请输入物品数"<<endl;
cin>>n;
w=new double(n);//动态分配内存
v=new double(n);
x=new double(n);
cout<<"请输入背包的容量"<<endl;
cin>>C;
cout<<"请分别输入"<<n<<"个物品的重量:"<<endl; for(i=0;i<n;i++)
cin>>w[i];
cout<<"请分别输入"<<n<<"个物品的价值:"<<endl; for(i=0;i<n;i++)
cin>>v[i];
beibao(w,v,x,n,&C);
cout<<"装入的物品为:"<<endl;
for(i=0;i<n;i++)
{
if(x[i]!=0)
v1.0 可编辑可修改
cout<<"其装的重量为:"<<x[i]<<" 其价值为:"<<v[i];
}
cout<<endl;
}
}
实验结果:
心得体会:
通过本次使用让我了解了什么是贪心法,什么事背包问题以及如何运用背包问题解决问题。