直流电机的基本知识

合集下载

直流电机基本知识

直流电机基本知识
(1)主磁极 作用:建立主磁场。
构成:主极铁心和套装 在铁心上的励磁绕组。
第二十一页,编辑于星期五:十七点 二十一分。
15.1直流电机的工作原理、主要结构、额定值
二、直流电机主要结构 (一)定子各部件安装结构
(2)换向极
作用:用于改善换向
构成:换向极常用整块钢或厚钢板制成。换向极的数目 一般与主磁极相等。在小功率直流电机中,换向极数量 通常只有主磁极的一半,或不设置换向极
15.1直流电机的工作原理、主要结构、额定值
二、直流电机主要结构 (二)转子各部件安装结构
(3)换向器
作用:整流(发电机)或逆变(电动机)。
构成:由许多鸽形尾的换向片排列成一个圆筒片间
用V形云母绝缘,两端再用两个形环夹紧而 构成。
第三十页,编辑于星期五:十七点 二十一分。
15.1直流电机的工作原理、主要结构、额定值
作用:电枢绕组——功率绕组。当电枢绕组在磁场中旋转 时将感应电势,当电枢绕组中流通电流时,电流和气隙磁 场相互作用将产生电磁转矩。通过电枢绕组直流电机进行 电功率和机械功率的转换。 特点:直流绕组是闭合绕组。每个元件的两端点分别连接在两
换向片上,每个换向片连接两个元件,各元件依一定规律依次连 接,形成闭合回路。
件串联起来,象波浪式的前进。波绕组,又分为单波和复波
绕组。 (3)混合绕组。
第三十八页,编辑于星期五:十七点 二十一分。
15.2直流电机电枢绕组
一、电流电枢绕组基本知识
绕组是由元件构成的.放在槽内的元件边,能切割磁力线产 生感应电动势,叫有效边;放在槽外,不切割磁力线,仅
第九页,编辑于星期五:十七点 二十一分。
15.1直流电机的工作原理、主要结构、额定值
一、直流电机工作原理

第1章 直流电动机基本理论及结构

第1章 直流电动机基本理论及结构

上一页 下一页 返回
1.1 直流电动机的原理与结构
电动机铭牌上所标的数据为额定数据.具体含义有以下几点。 电动机铭牌上所标的数据为额定数据 具体含义有以下几点。 具体含义有以下几点 1.型号 型号 电动机的型号一般采用大写印刷体的汉语拼音字母和阿拉伯 数字表示。 数字表示。 2.直流电动机的额定值 直流电动机的额定值 (1)额定功率 N是指电动机在额定状态下运行时轴上输出的 额定功率P 额定功率 机械功率.又称为额定容量 又称为额定容量(W) 机械功率.又称为额定容量(W) 。它等于额定电压和电流的 乘积再乘上电动机的效率. 乘积再乘上电动机的效率 (2)额定电压 N是指电动机寿命期内安全工作的最高电压 额定电压U 额定电压 (V). (3)额定电流 N是指电动机轴上带有额定机械负载时的输人 额定电流I 额定电流 电流(A). 电流 (4)额定转速 N是指在额定电压、额定电流和额定输出功率 额定转速n 额定转速 是指在额定电压、 的情况下电动机运行时的旋转速度(r/min) . 的情况下电动机运行时的旋转速度
上一页 下一页 返回
1. 2 直流电动机电枢绕组
1.2.2 电枢绕组的基本要求及绕制规则
对电枢绕组的基本要求是:一方面能够产生足够大的电动势 对电枢绕组的基本要求是 一方面能够产生足够大的电动势. 一方面能够产生足够大的电动势 通过一定大小的电流.产生足够的转矩 产生足够的转矩;另一方面要尽可能节 通过一定大小的电流 产生足够的转矩 另一方面要尽可能节 约材料.结构简单 结构简单。 约材料 结构简单。 绕组是由元件构成的一个元件由两条元件边和端接线组成。 绕组是由元件构成的一个元件由两条元件边和端接线组成。 元件边放在槽内.能切割磁力线产生感应电动势 称为“‘ 能切割磁力线产生感应电动势.称为“‘有 元件边放在槽内 能切割磁力线产生感应电动势 称为“‘有 效边” 端接线放在槽外 不切割磁力线.仅作为连接线使用 端接线放在槽外.不切割磁力线 仅作为连接线使用。 效边”;端接线放在槽外 不切割磁力线 仅作为连接线使用。 为了便于嵌线.每个元件的一个边放在某一个槽的上层 每个元件的一个边放在某一个槽的上层.称为 为了便于嵌线 每个元件的一个边放在某一个槽的上层 称为 上层边.另一个边则放在另一个槽的下层 称为下层边。 另一个边则放在另一个槽的下层.称为下层边 上层边 另一个边则放在另一个槽的下层 称为下层边。绘图 为了表达清晰.将上层边用实线表示 时.为了表达清晰 将上层边用实线表示,下层边用虚线表示。 为了表达清晰 将上层边用实线表示,下层边用虚线表示。

直流电机介绍

直流电机介绍
定义:直流电机的空载是指电枢电流等于零或者很小,且 可以不计其影响的一种运行状态,此时电机无负 载,即无功率输出。所以直流电机空载时的气隙磁 场可以看作就是主磁场,即由励磁磁通势单独建立 的磁场。
一、直流电机的磁路
图1.16 直流电机空载时的磁场分布示意图 1— 极靴;2—极身;3—元子磁轭;
4—励磁绕组;5—气隙;6—电枢齿;7—电枢磁轭
0
考虑到电机的运行性能 和经济性,直流电机额定运 行的磁通额定值的大小取在 磁化曲线开始弯曲的地方图 中的a点(称为膝部)。
N
A
If0 If
0
I fN F f 0 IN
图1.18 电机的磁化曲线
§1.3.2 直流电机负载时的磁场
负载时的气隙磁场将由励磁磁通势和电枢磁通势共同作 用所建立。
一、电枢磁通势和电枢磁场
图1.2 直流发电机原理模型
Hale Waihona Puke 从图看出,和电刷 A接触的导体永远位于 N极 下,同样,和电刷 B接触的导体永远位于S 极下。因 此,电刷 A始终有正极性,电刷 B始终有负极性, 所以电刷端能引出方向不变的但大小变化的脉振电 动势。如果电枢上线圈数增多,并按照一定的规律 把它们连接起来,可使脉振程度减小,就可获得直 流电动势。这就是直流发电机的工作原理。
长期过载或欠载运行都不好。为此选择电机时 ,应根据负载的要求,尽量让电机工作在额定状 态。
直流电动机的铭牌举例
§1.2
§1.2.1 直流电枢绕组基本知识 §1.2.2 单迭绕组 §1.2.3 单波绕组简介
§1.2.1 直流电枢绕组基本知识
电枢绕组是直流电机的一个重要部分,电机中机电能量的转换就是通 过电枢绕组而实现的,所以直流电机的转子也称为电枢。

直流电机电压范围

直流电机电压范围

直流电机电压范围直流电机是一种常见的电动机,它能够将直流电能转化为机械能,广泛应用于工业、农业、交通等领域。

在使用直流电机时,需要考虑其电压范围,本文将对此进行详细介绍。

一、直流电机的基本原理直流电机是由定子和转子两部分组成的。

定子是由绕有线圈的铁芯构成的,线圈中通有直流电源,形成了磁场。

转子是由磁性材料制成,当通有电流时会受到磁力作用而旋转。

二、直流电机的分类根据不同的结构和工作方式,直流电机可以分为多种类型。

其中最常见的包括永磁式直流电机、励磁式直流电机和复合励磁式直流电机等。

1.永磁式直流电机永磁式直流电机是利用永久磁铁产生固定磁场,在定子线圈中通以交变或者恒定方向的电源来产生旋转力矩。

2.励磁式直流电机励磁式直流电机是通过在定子中加入一个励磁线圈,通过电流产生磁场,再在转子中加入一个电枢线圈,通过与定子磁场相互作用来产生旋转力矩的。

3.复合励磁式直流电机复合励磁式直流电机是在永磁式直流电机的基础上加入了一个励磁线圈,通过调节励磁线圈的电流大小来改变转子的旋转速度。

三、直流电机的电压范围直流电机的工作需要一定的电压范围支持。

通常情况下,直流电机的工作电压范围可以分为以下几种类型。

1.低压直流电机低压直流电机通常指额定工作电压在24V以下的直流电机。

这种类型的直流电机主要应用于家用或者小型设备中。

2.中压直流电机中压直流电机通常指额定工作电压在24V~220V之间的直流电机。

这种类型的直流电机应用比较广泛,包括家居、农业、交通等领域。

3.高压直流电机高压直流电机通常指额定工作电压在220V以上的大功率直流马达。

这种类型的直流电机主要应用于工业生产中,例如钢铁、水泥等行业。

四、直流电机的优缺点直流电机具有以下几个优点:1.启动转矩大由于直流电机的转子是通过磁场作用而旋转的,因此具有很大的启动转矩。

2.调速性能好由于直流电机可以通过调节励磁线圈电流大小来改变旋转速度,因此调速性能比较好。

3.反应灵敏由于直流电机的工作原理是基于磁场作用而实现的,因此反应比较灵敏。

直流电机的基本原理与应用

直流电机的基本原理与应用

直流电机的基本原理与应用直流电机是一种广泛应用于现代电力工业中的电机类型,其具有结构简单、控制方便、运行稳定等优点,在汽车、空调、风扇、灯具等各种电动机设备中得到了广泛应用。

本文将从直流电机的基本原理、结构、工作模式等多个方面进行阐述,以便读者对直流电机的基础知识有一个全面的了解,并且掌握其应用技巧。

一、直流电机的基本原理直流电机可以将电能转换为机械能,其工作原理基于电磁感应和磁场原理,直流电机主要由电枢、磁极、联轴器和机壳四个部分构成。

电枢由绕组和集电器组成,磁极分为永磁体式和电磁式两种,不同磁极对电枢的影响也不一样。

在直流电机中,通过电枢和磁场之间的相互作用可以产生力矩,从而实现机械输出。

其中,电枢作为承受电流的磁铁,相互作用于磁极上,制动磁极转动的动力。

在实际应用中,直流电机的主要优点有以下几个方面:1. 速度可以方便地控制,可以通过调节转子电流和电磁力等来实现。

2. 直流电机的起动时间短,通常在毫秒级别,比其它传统电机起动时间要快。

3. 直流电机的效率高,可达到80%至90%以上,与交流电机相比具有更高的效率。

二、直流电机的基本结构直流电机的结构比较简单,其主要由转子、定子、集电器、永磁体等部分组成。

直流电机常采用永磁体和电磁体两种方式实现磁场产生。

永磁体主要应用于小功率直流电机,电磁体应用于大功率直流电机,双极永磁体系直流电机是现在最流行的直流电机结构。

直流电机具有轴流式和径流式之分,其中轴流式又可分成单级、两级和三级等型号,径流式也可分成电刷和无刷两种。

单级轴流式直流电机具有结构紧凑、运行平稳等优点,两级直流电机则具有电能使用效率高、可靠性强等特点,而三级直流电机体积较大,适用于大功率马达。

无刷直流电机是过去几十年中电机技术的重大进步之一,其利用永磁体转子和定子差式轮换所产生的同频脉冲信号来控制电机,具有维护成本低、寿命长、效率高等优点,现在已广泛应用于各种高端马达。

三、直流电机的工作模式直流电机的工作模式主要分为两种类型:电动式和发电式。

直流电机的基本理论

直流电机的基本理论

交轴磁势和直轴磁势
发电机 电动机
β
发电机 电动机

发电机 电动机

电枢磁势
交轴分量
Faq
直轴分量
Fad
分析直流电动机电刷移位
N N
电动机

逆向移刷
顺向移刷
电刷偏移对主磁场的作用
电刷顺转向偏移 发电机 电动机 直轴去磁 直轴助磁 电刷逆转向偏移 直轴助磁 直轴去磁
以直流电机为例思考电枢反应
N
N
3-5 电磁转矩和电磁功率
一、电磁转矩
电枢绕组中有电枢电流流过时, 电枢绕组中有电枢电流流过时,在磁场内受 电磁力的作用,该力与电枢铁心半径之积称为电 电磁力的作用,该力与电枢铁心半径之积称为电 磁转矩。 磁转矩。
一根导体的平均电磁力: 一根导体的平均电磁力:
fav = Bav ⋅ l ⋅ ia
1、当电刷在几何中性线上时
将主磁场分布和电枢 磁场分布叠加, 磁场分布叠加,得到 的负载电机磁场分布 情况如图。 情况如图。
合成磁势曲线
饱和时磁阻 不为常数不 能简单叠加
电枢磁场磁通 密度分布曲线
Bδx
主磁场的 磁通密度 分布曲线 不饱和两条曲线逐点叠 加后得到负载时气隙磁 场的磁通密度分布曲线
直流电机的损耗 损耗和 3-6 直流电机的损耗和基本方程 一、直流电机中的损耗
轴承摩擦/ 机械损耗 pm :轴vs轴承摩擦/电刷 换向器摩擦/通风损耗等。 轴承摩擦 电刷vs 换向器摩擦/通风损耗等。 这些损耗主要与转速有关,转速变化不大时,基本为常量。 这些损耗主要与转速有关,转速变化不大时,基本为常量。 电枢铁心中磁场交变, 铁心损耗 pFe :电枢铁心中磁场交变,会产生涡流损耗和磁滞损 铁耗近似与磁密的平方及转速的1.2~1.5次方成正比。 次方成正比。 耗。铁耗近似与磁密的平方及转速的 次方成正比 2 励磁损耗 pf : pf = U f I f = I f Rf

第1章 直流电机的基础知识

第1章 直流电机的基础知识

C m = 9.55C e
直流电动机额定转矩:
TN
PN = 9 . 55 nN
TN:额定转矩(N.m) PN:额定功率(W) nN:额定转速(r/min)
补充:直流电动机中,转子旋转起来会切割磁力线,产生感 补充 应电动势,这被称为电枢电动势Ea,判断它的方向与电源输 入的电流方向相反,称为反电动势 直流发电机中,电枢绕组中有了感应电流,在磁场中又 会受到电磁力的作用,电磁力所形成的电磁转矩T与转子的 运动方向相反,阻碍运动,被称为制动转矩(或阻转矩) 在工作原理中重要的两个参数的不同作用 : 直流电动机 直流发电机 T 驱动转矩 阻转矩 Ea 反电动势 相当于直流电源
1.2 直流电机的励磁方式和铭牌
一、直流电机的励磁方式 1.励磁方式:直流电机的励磁绕组的供电方式。 2.直流电机种类:按励磁方式分为有(1)他励直流电机; (2)并励直流电机;(3)串励直流电机;(4)复励直流 电机等四种。
二、直流电机的铭牌 每台直流电机的机座上都有一个铭牌,其上标有电机型 号和各项额定值,用以表示电机的主要性能和使用条件。
2.直流电动机输入的电功率为: P1=UIa=(Ea+IaRa)Ia=EaIa+Ia2Ra=Pm+ Pcu 上式说明:输入的电功率一部分被电枢绕组消耗 (电枢铜损)一部分转换成机械功率(电磁功率)。 3.直流电动机输出的机械功率为: P2=Pm-PFe-Pem-PS=Pm-P0-PS=P1-∑P 4.直流电动机的效率为:
3、电机的特点: 可逆性——看外部条件 ,发电机一般接负载;电 动机一般接电源。
4、直流电机转子电动势 1)概念 转子电动势:转子绕组切割磁力线而产生的感应电动势。 2)表达式 每根导体的感应电动势: e = BLv e:感应电动势(V) B:电磁感应强度(T) L:每根导体的有效长度(m) v:转子转动线速度(m/s)

DC电机讲解

DC电机讲解
极身 极靴
几何中性线

(a)气隙形状
1.3 直流电机的电枢反应
1.3.1 直流电机的空载磁场
空载时的气隙磁通密度为一平 顶波,如下图(b) 所示。
Bx
(b)气隙磁密分布

空载时主磁极磁通的分布情况, 如右图(c) 所示。
1.3 直流电机的电枢反应
1.3.1 直流电机的空载磁场
为了感应电动势或产生电磁转 矩,直流电机气隙中需要有一定量 的每极磁通 0 ,空载时,气隙磁 通 0 与空载磁动势F f 0 或空载励磁 电流 I f 0 的关系,称为直流电机的空 载磁化特性。如右图所示。 为了经济、合理地利用材料, 一般直流电机额定运行时,额定磁 通 N 设定在图中A点,即在磁化特 性曲线开始进入饱和区的位置。
1.1 直流电机的基本工作原理和结构
1.1.2 直流电动机的工作原理
二、直流电动机工作原理 直流电动机是将电能转变成机 械能的旋转机械。 把电刷A、B接到直流电源上, 在磁场作用下,N极性下导体 电刷A接正极,电刷B接负极。此时 ab受力方向从右向左,S 极下导体 电枢线圈中将电流流过。如右图。 cd受力方向从左向右。该电磁力形 成逆时针方向的电磁转矩。当电磁 转矩大于阻转矩时,电机转子逆时 针方向旋转。
1.3 直流电机的电枢反应
1.3.2 直流电机负载时的负载磁场
如果认为直流电机电枢上 有无穷多整距元件分布,则电 枢磁动势在气隙圆周方向空间 分布呈三角波,如图中 Fax 所 示。 由于主磁极下气隙长度基 本不变,而两个主磁极之间, 气隙长度增加得很快,致使电 枢磁动势产生的气隙磁通密度 为对称的马鞍型,如图中Bax 所示。
y y1 y2 y y1 y2
换向节距 ky :同一元件首末端连接的换向片之间的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流电机的基本知识
1 直流电机的工作原理
永磁式直流电机是应用很广泛的一种。

只要在它上面加适当电压。

电机就转动。

图是这种电机的符号和简化等效电路[1]。

工作原理图:
图直流电机的符号和等效电路
这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。

转于是在定子磁场作用下,得到转矩而旋转起来。

换向器及时改变了电流方向,使转子能连续旋转下去。

也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。

当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。

图给出了等效电路。

Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。

永磁式换流器电机的特点:
当电机负载固定时,电机转速正比于所加的电源电压。

当电机直流电源固定时,电机的工作电流正比于转予负载的大小。

加于电机的有效电压,等于外加直流电压减去反电动势。

因此当用固定电压驱动电机时,电机的速度趋向于自稳定。

因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。

当转子静止时,反电动势为零,电机电流最大。

其最大值等于V/Rw(这儿V是电源电压)。

最大·电流出现在刚起动的条件。

转子转动的方向,可由电机上所加电压的极性来控制。

体积小、重量轻、起动转矩大。

由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。

对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。

2 电机的起/停控制
电机的起/停控制,最简单最原始的方法是在电机与电源之间,加一机械开关。

或者用继电器的触点控制。

现在比较流行的方法,是用开关晶体管来代替机械开关,无触点、无火花干扰,速度快。

电路如图所示。

当输入端为低电平时,开关晶体管Q1截止,电机无电流而处于停止状态。

如果输入端为高电平时,Q1饱和导通,电机中有电流,因此电机起动运转。

图中二极管D1和D2是保护二极管,防止反电动势损坏晶体管。

电容C1是消除射频干扰而外加的。

R1基极限流电阻,限制Q1的基极电流。

在6V电源时,基极电流不超过52mA。

在这种情况下,
Q1提供电机的最大电流为1A左右。

图用晶体管控制电机启停,(b)增强灵敏度
图的电路,因基极电流需外部驱动电路。

如果再增加一级缓冲放大,如图的电路,驱动电流减少到2mA。

R3限制Q1的基极电流到安全值。

其他元件作用与(a)图中相同。

3 电机的方向控制
水磁式换流器电机的转动方向,可以用改变电源极性的方法,使电机反转。

如果用正、负双极性电源,可用一个单刀进行转换,如图所示。

因为电机的电流直接通过开关,容易烧坏开关接点。

所以可以改用功率开关晶体管来代替机械开关,就可以克服上述缺点。

电路如图所示。

图电机方向控制
电路工作原理:当开关SW1置于“正转”位时,Q1和Q3的基极加上偏流;Q2和Q4的偏置电路被断开。

所以Q1和Q3导通,Q2和Q4截止。

电流从V+→Q3发射极→Q3集电极→电机正端→电机负端→地形成回路,此时电机正转。

同理,如果SW1置于“反转’位置时,Q2和Q4得到偏流而导通;01和Q3截止。

电流从电源地端→电机负端→电机正端→Q4集电极→Q4发射极→电源负端形成回路,故电机电源与上述情况相反,因此电机反转。

而SW1置于断时,电机停止转动。

图电路中SW1要转接正、负电源。

在接口电路的应用中,用电子开关来代替SW1就比较困难。

为了克服这个缺点,可用图的电路加以改进。

图中的SW1就很容易用电子开关来代替。

在这个电路中,SW1置于“正转”位置时,Q1和Q3导通,Q2和Q4截止。

SW1置于“反转”
位置时,Q2和Q4导通,Q1和Q3截止。

4 电机的速度控制
直流电机的转速与所加的电压有效值成正比。

图是12V直流电机的可变电压速度控制。

图中Q1和Q2是复合管射极跟随器,电机的直流电压可从0V变到12v。

这种电路的特点是:在中速和高速时,速度的控制和自动调节的性能很好。

但是低速和慢启动特性比较差。

用开关方式或脉宽调制,可以获得非常好的速度控制性能。

电路图如所示:
图电机速度控制
图直流电机开关方式速度控制
图中IC1作为50Hz的无稳多谐振荡器,它产生一个矩形波输出,占空比可变从20比1到1比20,由RV1进行调节。

这个波形经过Q1和Q2送到电机,电机上的电压有效值是随RV1的调节而变化的(总的周期是50HZ)。

不过电机上所加上的电压,是具有峰值电压为12V的功率脉冲。

因此在整个调速范围内;性能都非常好。

即使在很低的速度,转矩也很大。

速度控制的程度,正比于所加电压的有效值。

相关文档
最新文档