第3章光纤的传输特性
光纤习题

第一章思考题与习题1、光通信的发展经历了那三个阶段?2、为什么说1970年是光纤通信的元年?高琨的主要贡献是什么?3、什么是光纤通信?光纤通信有哪些优缺点?4、光纤通信使用的波长和频率在什么范围?光纤通信采用的三个窗口是那三个?5、激光的特点是什么?6、光纤通信系统主要由哪几部分组成?简述各部分的主要作用。
7、光纤通信系统是怎样分类的?试简单比较数字光纤通信系统与模拟光纤通信系统的优缺点。
8、光纤通信向那些方面发展?8、我国“十五”863计划中提出的光时代计划的指导思想是什么?第二章习题与思考题1、光纤由那几层构成,各层的主要作用是什么?2、光纤是怎样分类的?3、光纤的制造主要有哪三个过程?4、分析光纤传光原理有哪些方法?使用这些方法的条件是什么?5、什么是子午光线、斜光线、螺旋光线?6、均匀光纤与包层的折射率分别为:n1=1.5、n2=1.45,试计算:(1) 光纤芯与包层的相对折射率差Δ=?(2) 光纤的数值孔径NA=?(3) 在1m长的光纤上,由于子午光线的光程差所引起的最大时延差Δτmax=?7、已知均匀光纤芯的折射率n1=1.5 ,相对折射率差Δ=0.01,芯半径a=25μm,试求:(1)LP01、LP02、LP11和LP12模的截止波长各为多少?(2)若λ0=1 μm,计算光纤的归一化频率V以及其中传播的模数量M各等于多少?8、均匀光纤,若n1=1.5 ,λ0=1.3 μm,计算:(1)若Δ=0.25,为了保证单模传输,其芯半径应取多大?(2)若取a=5 μm,为保证单模传输,Δ应取多大?9、目前光纤通信为什么采用以下三个作波长:λ0=0.85 μm,λ2=1.31 μm,λ3=1.55 μm?10、光纤通信为什么向长波长、单模光纤方向发展?11、光纤色散产生的原因及危害是什么?12、光纤损耗产生的原因及危害是什么?13、阶跃折射率光纤中,n1=1.52,n2=1.49(1)光纤浸入水中(n0=1.33),求光从水中入射到光纤输入端面的最大接收角;(2)光纤放置在空气中,求数值孔径。
第03章 光波系统中光信号的传输特性

23
(2) β3的影响。 当β3≠0,即高阶色散的影响不能忽略时, 经严格分析发现,高斯脉冲在传输过程中不 再保持原高斯脉冲形状,而是形成了一种振 荡 结 构 的 尾 部 。 这 种 脉 冲 就 不 能 用 T0 或 TFWHM 来确切描述其宽度,而通常用均方根 脉宽来描述,它定义为 σ=[<T2>-<T>2]1/2 角括号<>代表对强度分布的平均。
高斯形光脉冲的脉宽与谱宽光波通信系统中大都采用半导体激光器作为光源一般它产生的光脉冲信号是高斯形的而且均伴随不同程度的啁瞅分量可写为exp022100ttjcata?11啁啾?是通信技术有关编码脉冲技术中的一种术语是指对脉冲进行编码时其载频在脉冲持续时间内线性地增加当将脉冲变到音频地会发出一种声音听起来像鸟叫的啁啾声故名啁啾
20
图3-2啁啾高斯脉冲展宽因子T1/T0随传输距离z/ LD的变化曲线。(LD=T02/|β2|称为色散长度)。
21
对非啁啾脉冲,C=O,脉宽随 [1+(z/LD)2]1/2 成比例展宽,在z=LD处展宽为初始输入脉宽的√2 倍。 对C≠0的啁啾脉冲,在传输过程中,有可能展宽。 亦有可能压窄,这取决于β2与C是同号还是异号。
33
为防止色散展宽导致相邻脉冲重叠,展宽脉冲 应限制在所分配的比特时隙(TB)内,而TB =1/B, B为比特率,根据这一准则可求得σ与B的关系。 通常规定: σ≤TB/4或4Bσ≤1,这样至少有95% 的脉冲能量被限制在比特时隙内。 因此极限比特率为 B≤1/(4σ) 对于很窄的输入脉冲,σ≈σD=|D|Lσλ,则有 B≤l/(4L| D|σλ)
3
3A t
3
0
光纤技术及应用第三章

Optical Fiber Technology and Its Application
2021/7/22
.
1
第3章
光
纤
Optic fiber
2021/7/22
.
2
引言
1、光纤(optic fiber)----是指能够传导光波的圆柱形介质波 导。它利用光的全反射原理将光波能量约束在其界面内,并引 导光波沿着光纤轴线方向传播。
本章介绍光纤的结构与分类、光波在光纤中的传输原理。 第四章讲光纤的传输特性(损耗、色散、偏振、非线性效应)
2021/7/22
.
6
3、光纤的结构、分类 纤芯(芯层)core:其折射率较高 , (用来导光).
包层coating:其折射率较低,提供在纤芯内发生光全反射的条 件.
保护层jacket——保护光纤不受外界微变应力的作用、防水等作 用。 光纤横截面半径为几十至几百微米,长度从几十厘米到 上千千米。
所以梯度光纤中导模光线的 最大延迟时间为:
ma xmin2nc12
.
25
梯度光纤中导模光线的最大延迟 时间
ma xmin2nc12
与阶跃光纤的最大延迟时间相比较:
max12n c1n1n 2n2n c1
平方律光纤的色散小很多。 (3)梯度光纤的数值孔径 采用近似方法导出:
.
26
将光纤芯层分成许多薄层:每一层内,折射率可近似看成常 数,而且折射率沿径向向外逐层递减
2021/7/22
.
33
.
34
3.2 光纤的波动光学理论
光纤属于介质圆波导,分析导光原理很复杂, 可用两种理论进行:
w用波动理论讨论导光原理(复杂、精确) w采用射线理论分析导光原理(简单、近似)
光纤传输理论

当光纤纤芯直径很小时,光纤内对给定工 作波长只能传播一个模式,称为单模光纤 (Single Mode Fiber,SMF)。纤芯直径较 大的光纤可传输多个模式,称为多模光纤 (Multimode Fiber,MMF)。 单模光纤与多模光纤的外径(包层直径) 均为125μm,多模光纤芯径50μm或 62.5μm ,单模光纤芯径8—10μm。
关键的名词和概念
可传播的模式数
1 2 M V 2
阶跃折射率光纤中的传输模式数M取决于光纤纤芯半径a、纤芯折 射率n1、包层折射率n2和光波长λ。
单模传输条件
单模光纤只能传输一个模式,即HE11模,称为光纤的基模。基模不会截止。
V 2.405
单模条件
V (2 / )an1 2 2.405
光纤的衰减
• 造成光纤衰减的主要因素有:本征,弯曲,挤压, 杂质,不均匀和对接等。 • 本征:是光纤的固有损耗,包括:瑞利散射, 固有吸收等。 • 弯曲:光纤弯曲时部分光纤内的光会因散射 而损失掉,造成的损耗。 • 挤压:光纤受到挤压时产生微小的弯曲而造 成的损耗。 • 杂质:光纤内杂质吸收和散射在光纤中传播 的光,造成的损失。 • 不均匀:光纤材料的折射率不均匀造成的损 耗。 • 对接:光纤对接时产生的损耗,如:不同轴 (单模光纤同轴度要求小于0.8μm),端面与轴 心不垂直,端面不平,对接心径不匹配和熔接质 量差等。
极限情况下泵浦光都用于放大信号光,那么此时:
PCE Ps ,out Pp ,in
p 1 s
噪声指数为输入信噪比与输出信噪比的比值
SNR(0) NF SNR( L)
SNR (0) I
2
s2
( RP0 ) P0 2q ( RP0 )f 2hvf
光通信技术课后答案-第三章

第三章 光通信信道专业通信103班 代高凯 201027209 3-2.什么是阶跃光纤?什么是渐变光纤?答:光纤按照折射率的分布分类,可分为阶跃光纤和渐变光纤。
(1).阶跃光纤是指在纤芯和包层区域内,其折射率分布分别是均匀的,其值分别是n1与n2,但在纤芯与包层的分界处,其折射率的变化是阶跃的,折射率分布的表达式为⎪⎩⎪⎨⎧≤<≤=21)2()1()1()(a r a n a r n n r ,, 阶跃光纤是早起光纤的结构方式,后来在多模光纤中逐渐被渐变光纤取代,但是它用来解释光波在光纤中的传播还是比较形象的。
(2).渐变光纤是指光纤轴心处的折射率n1最大,而随沿剖面径向的增加而逐渐减小,其变化规律一般符合抛物线规律,到了纤芯与包层的分界处,正好降到与包层区域的折射率n2相等的数值;在包层区域中其折射率的分布是均匀的,即为n2⎪⎩⎪⎨⎧≤<≤∆-=2121211)()(21a r a n a r a r n n r ,, 式中,n1为光纤轴心处的折射率;n2包层区域的折射率;a1为纤芯半径;121n n n -=∆称为相对折射率差。
3-4.什么是单模光纤?什么是多模光纤?答:光纤按照传播的模式分类,可分为多模光纤和单模光纤。
(1).当光纤的几何尺寸(主要是纤径直径d1)远远大于光波波长(约1μm )时,光纤中会存在着几十种乃至几百种传播模式。
不同的传播模式会有不同的传播速度与相位,因此经过长距离的传输之后会产生时延,导致光脉冲变宽。
这种现象叫做光纤的模式色散(又叫模间色散)。
计算多模光纤中除传播模式数量的经典公式为4/2V N =,其中V 为归一化频率。
模式色散会使许多多模光纤的带宽变窄,降低其传输容量,因此多模光纤仅适用于较小容量的光纤通信。
多模光纤的折射率分布大都为抛物线分布,即渐变折射率分布,其纤芯直径d1大约为50μm 。
(2)根据电磁场理论与求解麦克斯韦方程组发现,当光纤的几何尺寸(主要是芯径)可以与波长相比拟时,如芯径d1在5~10μm 范围,光纤只允许一种模式(基模HE11)在其中传播,其余的高次模全部截止,这样的光纤叫做单模光纤,由于它只允许一种模式在其中传播,从而避免了模式色散的问题,故单模光纤具有极宽的带宽,特别适用于大容量的光纤通信,但是必须满足 归一化频率4048.221≤=NA a V λπ光纤的纤芯半径NAa πλ2024.11≤ 3-7.光纤损耗主要有几种原因?其对光纤系统有何影响?答:光纤损耗主要包括:(1)吸收损耗(Absorbtion)—由制造光纤材料本身及其中的过渡金属离子和氢氧根粒子(OH-)等杂质对光的吸收而产生的损耗,包括本征吸收损耗、杂质吸收损耗、原子缺陷吸收损耗。
光纤通信本科课程设计

光纤通信 本科课程设计一、课程目标知识目标:1. 理解光纤通信的基本原理,掌握光纤的传输特性和优势。
2. 学习光纤的组成结构,了解不同类型的光纤及其应用场景。
3. 掌握光发射器、光接收器的工作原理及其在光纤通信中的作用。
4. 理解光纤通信系统中常用的编码和解码技术。
技能目标:1. 能够运用光纤通信相关知识,分析并解决实际通信问题。
2. 学会使用光纤通信设备,进行简单的光纤连接和测试操作。
3. 能够设计简单的光纤通信系统,并进行性能评估。
情感态度价值观目标:1. 培养学生对光纤通信技术的好奇心和探究精神,提高学习兴趣。
2. 增强学生的团队合作意识,培养在光纤通信实验和项目中相互协作的能力。
3. 让学生认识到光纤通信在现代通信领域的重要地位,增强社会责任感和使命感。
课程性质:本课程为本科阶段的光纤通信课程设计,旨在帮助学生巩固光纤通信的基础知识,提高实践操作能力。
学生特点:本科学生具备一定的理论基础,具有较强的学习能力和动手能力,对新技术和新知识充满好奇心。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的实际操作能力和问题解决能力。
通过课程设计,使学生在掌握光纤通信基本知识的基础上,具备实际应用和创新能力。
教学过程中,将目标分解为具体的学习成果,以便于教学设计和评估。
二、教学内容1. 光纤通信原理- 光纤的结构与分类- 光纤的传输特性- 光的传播原理2. 光纤通信器件- 光发射器:LED、LD、光泵浦源- 光接收器:PIN光电二极管、APD- 光纤连接器、耦合器、波分复用器3. 光纤通信系统- 系统组成与工作原理- 常用编码解码技术- 光纤通信系统的性能指标4. 光纤通信网络- 网络结构及其应用- 光纤通信技术在现代通信网络中的应用- 光网络的发展趋势5. 光纤通信实验- 光纤的切割、熔接与测试- 光发射器与光接收器的性能测试- 光纤通信系统的搭建与性能评估教学内容根据课程目标制定,涵盖光纤通信的基本原理、器件、系统、网络及实验操作等方面。
《光纤通信技术》 课程大纲

《光纤通信技术》课程大纲《光纤通信技术》课程大纲课程名称:光纤通信技术课程类别:核心课学分:4学分适用专业:通信工程专业、计算机应用专业先修课程:数字通信原理、数据通信原理一、课程的教学目的《光纤通信技术》是信息与通信工程学科一门重要的专业课程。
课程定位为需要学习通信工程、计算机通信技术等专业,从事信息通信、计算机、网络等相关行业的学员。
光纤通信系统具有低的传输损耗和宽的传输频带的特点,成为高速数据业务的理想传输通道。
课程以光纤的导光原理和激光器的发光原理为基础内容,同时涵盖了各种实用光网络技术。
课程以提高学生基本技能素质与新技术、新手段的应用能力为目标,培养能满足光纤网络工程的规划建设、系统调测、电信核心网络和接入网络的工程等需要的应用型人才。
为了更好地掌握本课程的知识,每章后面均附有大量的习题,并对主要知识点进行了总结。
鉴于本课程是实践性很强的专业课程,其教学内容既包括理论学习内容,又涵盖与之相关的实践实验活动内容,为以后学习光纤通信工程新技术打下基础。
二、相关课程的衔接学习本课程需要先修《数字通信原理》、《数据通信原理》等专业基础课程以及《现代交换技术》、《宽带接入技术》等相关课程;后续课程包括《光网络》、《多媒体通信》等。
三、教学的基本要求要求掌握《光纤通信技术》的基本概念、工作原理,了解相关扩展知识。
熟练进行光纤通信技术的工程分析及工程计算。
熟悉实验原理及内容,能够利用所学基本知识完成简单电路的分析和设计。
四、课程教学方法下载教学内容导学、详解、实时辅导、教案、综合练习题等资料。
为了更好地掌握本课程的知识,每章后面均附有大量的习题,并对主要知识点进行了总结。
本课程含有实验,使本课程更多地与实践接轨,为以后学习光纤通信工程新技术打下基础。
五、课程考核方式本学期将安排4次阶段作业。
每次作业计10分,共计40分。
作业类型为客观题,可重复提交,直至分数满意为止。
考试:本课程的考试采用开卷的形式,由于本课程的计算量较大,建议学生熟练使用计算器。
光纤传输理论

ห้องสมุดไป่ตู้ 光纤的分类
• (1)工作波长:紫外光纤、可观光纤、近红外光 纤、红外光纤(0.85pm、1.3pm、1.55pm)。 • (2)折射率分布:阶跃(SI)型、近阶跃型、渐 变(GI)型、其它(如三角型、W型、凹陷型 等)。 • (3)传输模式:单模光纤(含偏振保持光纤、非 偏振保持光纤)、多模光纤。 • (4)原材料:石英玻璃、多成分玻璃、塑料、复 合材料(如塑料包层、液体纤芯等)、红外材料 等。按被覆材料还可分为无机材料(碳等)、金 属材料(铜、镍等)和塑料等。 • (5)制造方法:预塑有汽相轴向沉积(VAD)、 化学汽相沉积(CVD)等,拉丝法有管律法 (Rod intube)和双坩锅法等。
极限情况下泵浦光都用于放大信号光,那么此时:
PCE Ps ,out Pp ,in
p 1 s
噪声指数为输入信噪比与输出信噪比的比值
SNR(0) NF SNR( L)
SNR (0) I
2
s2
( RP0 ) P0 2q ( RP0 )f 2hvf
2
NF反比于光频率,980nm噪声系数小
1 最大比特率= 4t total
单模光纤
ttotal (tchromatic )2 (t polarizationmod e ) 2
tchromatic Dchromatic ( ) L
t polarizationmod e D polarizationmod e L
2nL m c vm m 2nL c / 2nL c/ c
81GHz
2
2
c
0.195nm
光纤的历史
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
G.652(常规SM)
G.653(DSF) G.655 (NZ-DSF)
1310
1550
(nm)
色散对通信容量限制的估算
高斯光脉冲的展宽因子
1 2 2 z 2 2 3 z 1 1 V 1 V 2 3 0 2 0 8 2 0
由于非线性折射率的存在,光波在传播过程中,其相位将受到自身的 调制(E2),产生相位滞后的现象,称之为自相位调制SPM (SelfPhase Modulation)
对光纤通信的负面影响
光脉冲前沿,相位滞后渐重,载波频率下啁啾,红移
光脉冲后沿,相位滞后渐轻,载波频率上啁啾,紫移 在光纤的正常色散区,此变化加重了信号脉冲展宽的程度
1
d 3 3 d 3
0
2 2 S 0 2D 2 (2c)
3.4 SM光纤的非线性传输特性
电介质的极化
电介质的极化通常用极化强度矢量 P 来描述
极化强度与电场强度的关系为
P 0 1 E 0 2 : EE 0 3 EEE
波长色散
群速度是表征光信号包络传播速度的量
d vg d
单位长度光纤上光信号的群时延:
1 d vg d
c 1/
0 0 , k0 0 0 / c 2 d k0 2 / 2c d
d dk0 1 d dk0 d c dk0
有益应用
光纤通信中色散的含义
一切导致因速度差造成光信号包络展宽的因素均被称为 色散
光纤色散对通信的影响
影响链:
色散导致传输的光脉冲展宽 光脉冲展宽导致码间串扰 码间串扰导致系统误码率增大
通信系统需要维持一个足够低的误码率,为此需要降 低码间串扰的程度,可以
减小信息速率,增大光脉冲间隔 减少传输距离,降低脉冲展宽程度 光纤的色散直接影响其传输带宽距离积 色散越大,带宽距离积越小
0.01
0.8
1.0
1.2 1.4 波长λ(um)
1.6
1.8
微弯损耗和宏弯损耗机理
宏弯损耗
曲率半径比光纤直径大得多的宏弯曲
微弯损耗
光纤成缆时产生,沿轴向的随机性弯曲 场分布
Cladding Core
< > c
消逝场
R
降低光纤损耗的方法
工作波长选择
选择在低损耗窗口
— 真空介电常数 (i) — 媒质的电极化率张量 (i)是i+1阶张量
对各向同性电介质,有
P 0 ( 1 E 2 E 2 3 E 3 )
极化的非线性
P PL PNL
PL 0 1 E
PNL 0 2 : EE 0 3 EEE
吸收损耗
本征吸收 杂质吸收
过渡金属离子 氢氧根离子
散射损耗
瑞利散射 米氏散射 宏弯和微弯
弯曲损耗
本征散射和本征吸收一起构成了损耗的理论最小值
光纤的损耗谱
100 50 损 耗 dB/km 10 5 1 0.5 0.1 0.05 瑞利散射 实验值
红外吸收
紫外吸收
OH-吸收
波导缺陷
超纯原料
降低过渡金属离子浓度
减小不均匀性 减小OH-离子的引入
生产工艺
光纤保护
光纤的典型损耗特性
850nm
3dB/km 0.3~0.4dB/km(典型值为0.35dB/km)
1310nm
1550nm
0.3dB/km以下(典型值为0.2dB/km)
(理论极限值0.154dB/km)
氟化物光纤,本征吸收区波长较石英光纤更长一些
最低损耗窗口在2550nm附近 最低损耗低达 0.01~0.001dB/km
难度
超纯原料 微晶体化
光纤损耗的测量
测量方法:剪断法、插入损耗法、背向散射法
剪断法、插入损耗法
偏置电路 被测光纤
P1 光源 注入装置
P2 检测器
放大器
电平测量
6 4 2 0
GIF
纤芯工艺要求更高,折射率不均匀性 减小
包层更厚,OH-离子更难入侵到纤芯中
0 .6 0 .8 1 .0 1 .2 1 .4 1 .6 1 .8 波长 / m (a)
纤芯小,弯曲损耗更低
超低损耗光纤
瑞利损耗与波长的关系
为什么工作波长不能选择得更长一些? 卤化物光纤
使用过程中光纤的损耗变化
变化趋势
损耗增大
原因
热胀冷缩 油膏特性变差 光纤受水分侵蚀
OH-吸收损耗增大 光纤分子缺陷增多
单模与多模光纤损耗对比
单模光纤损耗要小一些
10 SIF 8
-1 km 损 耗 /( dB· )
原因包括以下几点:
SMF
光能量主要在纤芯中传输 纤芯所需原料少,更易保证其纯度
各阶电极化率张量间的关系
1 2 Eat 2 Eat 2
其中, Eat
e 40 a
2
是原子内部的库仑场
通常外加电场E<<Eat,所以|PNL|<<|PL|,电介质的非线性不显著
极化强度与折射率
极化强度 P t 0 1 E 0 2 E 2 0 3 E 3
由于以下原因,光纤存在双折射现象
外加电磁场影响
光纤的双折射现象将导致LP01x 模和 LP01y模沿 z 轴的 传播速率不完全相同,即 x≠y,这将导致偏振模色散
偏振模色散图
偏振模色散(PMD)
光纤的双折射现象将导致LP01x 模和 LP01y模沿 z 轴的传 播速率不完全相同,即 x≠y,这将导致偏振模色散 偏振模色散对长途大容量光纤通信影响较为严重, 通常只能用统计推算的方法估算偏振模色散
模式色散可形象地解释为因光线多径传播导致的色散 显然,多模光纤中能够传播的模式越多,模式色散就 越严重,其带宽距离积就越小 消除方法:单模传输
单模光纤的双折射
单模光纤的实际工作模式
LP01x 模和 LP01y模 它们是空间正交的两个模,理想状态完全简并,即 xy 几何原因:例如光纤芯不圆,其特例椭圆光纤 应力原因:光纤横向受应力影响,导致各向异性
2 d 1 d 2 d 2 2 d 2c d d
波长色散
与光信号谱宽成比例的色散效应,称为波长色散或 GVD(Group Velocity Dispersion,群速度色散)或 色度色散
波长色散的组成
光纤的波长色散组成
材料色散 波导色散 折射率剖面色散
材料色散
材料色散是由构成光纤的纤芯和包层材料的折射率是 频率的函数引起的
Gi n n 1 2 2 i 1 i
2
1
2
v c/n
石英材料: G1=0.6961 G2=0.4079 G3=0.8974 1=0.0684m 2=0.1162m 3=9.8962m
1 2 2 3 3 电位移矢量 D 0 E P 0 ( E 0 E 0 E )
折射率
n2 1 1 2 E 3 E 2
光纤的非线性折射率
n 2 1 1 2 E 3 E 2
材料色散系数
vg d d
k0 n n 0 0 n / c
dn dn dn dn vg c n k0 c n n N n k0 dk 0 d dk 0 d
1 / vg
本章内容
光纤中信号的劣化
光纤的损耗特性
光纤的色散特性
单模光纤的非线性
光纤的制造工艺
3.1 光纤中信号的劣化
信号的损伤
任何传输信道均会对信号造成损伤
线性损伤
加性噪声
损耗
外部串扰 信道内部串扰
非线性损伤
信号畸变 乘性噪声
光纤中信号的损伤
线性损伤
加性噪声
多模光纤中可存在模式噪声,单模光纤中噪声可忽略不计
损耗 外部串扰,可忽略不计
色散造成的信号畸变
内部串扰,来源于光纤的非线性
非线性损伤
光纤非线性造成的信号畸变
乘性噪声,可忽略不计
3.2 光纤的损耗特性
损耗
即便是在理想的光纤中都存在损耗——本征损耗。 光纤的损耗限制了光信号的传播距离。
问题
如何表示光纤损耗?
d 1 dN d c d
2 d n Ym 2 d2
1 Ym c
1 材料色散系数: D - Ym c
波导色散
波导色散系数
2 1.5
DW
N1 N 2 d 2 bV V 0 2 c dV