灰色综合评价操作步骤
灰度评价法

本文研究的城市广场旅游功能的评价系统即属于一个灰色系统。
首先,由于关于广场旅游功能的影响要素、层级分类及指标选定均具有“信息不完全性”;其次,所选取的评价指标数据,有些是已知的,即可以从现有的统计资料中获得,而另一些数据却是未知的,无法从统计资料中获得;再则,本文建立的评价指标中既有定性(灰色)指标,也有定量(白化)指标,各因素指标之间本质上是一种灰色关系。
因此,该系统具有信息不完全的“灰色”特征。
鉴于该系统的灰色特征,本文拟采用灰色模型对城市广场旅游功能进行综合评价。
灰色综合评价方法的原理为:首先将各评价指标分为不同的灰类型,然后建立隶属于各灰类的权函数,以定量地描述某一评价对象隶属于某个灰类的程度。
对具有多层次评价指标的体系,在子系统评价的基础上再对上一层次加权综合,以反映系统的整体状况。
运用这种方法进行综合评价的课题有物流中心选址、风险企业投资价值综合评价、商业银行竞争力综合评价、科研项目综合评价等,该方法取得了比较好的评价效果。
具体计算步骤如下:1(l)确定评价指标集根据设计的指标体系,有两层指标集,U=(U1,U2,U3,U4,U5,U6),其中U1=(U11,U12,U13),U2=(U21,U22,U23,U24,U25,U26),U3=(U31,U32,U33,U34,U35,U36),U4=(U41,U42,U43,U44,U45),U5=(U51,U52),U6=(U61,U62,U63)(2)确定指标评分等级在本文中,所有指标分为很好(大)、较好(大)、一般、较差(小)四个等级,分别为4、3、2、1分,指标等级介于两相邻等级之间,相关评分为3.5、2.5、1.5分,具体等级标准由专家根据经验确定。
(3)层次分析法确定各评价指标的权重常见的确定权重的方法有,德尔菲法、层次分析法、熵值法、模糊聚类分析法等。
本文采用层次分析法确定权重,本文在运用层次分析法时做了两点优化:①采用9/9-9/1标度法。
多层次灰色综合评价

多层次灰色综合评价原理
进行复杂系统的综合评价时,要考虑的因素很多,需要用 多个指标来衡量,指标间还可划分为不同层次,所以需要进行 多层次综合评价。评价需要信息才能做出结论,但评价信息的 全面与准确受评价人员的知识水平、认识能力、个人经验和偏 好制约。我们可以用“黑”表示评价信息缺乏,“白”表示评 价信息充足,而介于白与黑之间的“灰”表示评价信息不甚全 面、不甚确切。也就是说部分信息已知,部分信息未知,具有 灰色性。因此,可以利用灰色理论来分析与综合某个评价系统 各指标的实现程度,根据评价标准得出综合性的评价结论。灰 色理论是多层次灰色综合评价的原理。
多层次灰色综合评价
多层次灰色综合评价的步骤
4、确定评价方案的评价值矩阵
设有 p 个评价人员,即 k = 1,2,…,p;
q 个评价方案,即 s = 1,2,…, q;
m 个一级(大类)指标,即 i =1,2,…,m;
第 i 大类指标下设ni个二级(具体)评价指标, 即 j =1,2,…,ni。
评价人员按指标 vij 的评分等级标准给某个方案打分。设 第 k 个评价人员对第 s 个方案按指标 vij 的评分等级标准给
多层次灰色综合评价
多层次灰色综合评价的步骤
3.确定各评价指标的权重
可以利用层次分析法(AHP法)确定其相对权重。
假设求得一级(大类)指标 ui 相对于目标 G 的权重为 α i,(i =1,2,…,m),则大类指标的权重分配向量为
α =(α 1, α 2,…,α m)。
设二级评价指标 vij 相对于一级指标 ui 的相对权重为 α ij,(i=1,2…,m;j=1,2,…,ni),则 ui 所属的二级评 价指标的相对权重分配向量为 Ai=(α i1, α i2,…,α ini)。
第七章灰色系统综合评价方法

( )
于是,灰色聚类系数(即加权合成值)为:
( )
第五步:进行灰色系统聚类评价。
记 ,则与模糊聚类评价类似,可以根据“最大隶属原则”进行聚类。若
则该单位被判别为“c灰类”。但当“最大隶属原则”失效时,采用点值进行灰类识别更加合理。
第六步:若需要进行综合评价排序,则将B转化为点值y,即
式中,tj为第j灰类的“灰水平”赋值。根据每个单位的y值大小就可以进行综合评价排序,其赋值原则与模糊综合评价类似。
第四步:计算聚类系数bj,确定聚类向量。
第j类的聚类系数定义为:
( )
即为第j灰类各指标的白化权函数值的加权算术平均。
若将各指标在各灰类之下的白化权函数值用矩阵表示,记为R,即
基于层次分析法的灰色关联度综合评价模型

基于层次分析法的灰⾊关联度综合评价模型第1章基于层次分析法的灰⾊关联度综合评价模型灵活型公共交通系统是⼀个复杂的综合性系统,单⼀的常规评价⽅法不能够准确对系统进⾏全⾯评价【39】,这就要求在进⾏灵活型公共交通系统评价时,结合系统固有特点,根据各种评价⽅法的优缺点,构建适合该系统的综合评价模型。
本章以灵活型公共交通系统评价指标体系为基础,参考常规型公共交通系统评价⽅法,建⽴了基于层次分析法的灰⾊关联度综合评价模型。
1.1评价⽅法适应性分析灰⾊关联度分析法基于灰⾊系统理论,是⼀种多指标、多因素分析⽅法,通过对系统的动态发展情况进⾏定量化分析,考察系统各个要素之间的差异性和关联性,当⽐较序列与参考序列曲线相似时,认为两者有较⾼关联度,反之则认为它们之间关联度较低,从⽽给出各因素之间关系的强弱和排序【50】。
与传统的其它多因素分析法相⽐【80】【81】【82】,灰⾊关联度分析法对数据量要求较低,样本量要求较少,计算量较⼩,可以利⽤各指标相对最优值作为参考序列,为最终综合评价等级的确定提供依据,⽽不必对⼤量实践数据有过⾼要求,能够较好解决灵活型公共交通系统作为新型辅助式公系统没有⾜够的经验数据⽀撑其模型参数的问题。
此外,灵活型公共交通系统评价体系是基于乘客、公交企业、政府三⽅主体的综合评价体系,涉及因素较多,指标较为复杂,部分指标之间存在关联性和重复性,信息相对不完全,⽽灰⾊系统的差异信息原理以及解的⾮唯⼀性原理,可以很好的解决这⼀问题【79】。
综上所述,认为灰⾊关联度分析法⽐较适合于灵活型公共交通系统的综合评价。
然⽽灰⾊关联度分析法将所有指标对于总⽬标的影响因素⼤⼩视作等同,没有考虑指标权重的影响,评价值可信度较低,应当通过科学的⽅法,确定指标权重,将其与关联度系数相结合,增加评价结果的科学性和有效性【83】。
常见的权重确定⽅法包括,专家打分法、等权重法、统计试验法、熵值法等。
等权重法不能很好的体现不同指标影响程度的差异性,并且在综合评价值相差不⼤时不利于⽅案的选择【84】;专家打分法、统计试验法评价的主观性较⾼,并且不适⽤于指标较多的情况【85】;⾏和正规化法、列和求逆法等指对判断矩阵的⼀部分数据进⾏利⽤,结果可信度不⾼【86】;最⼩偏差法、对数回归法等,利⽤同⼀指标不同⽅案值,认为变化程度较⼤的指标传递更多信息,应具有较⾼权重,然⽽对于灵活型公共交通系统单⽅案综合⽔平等级评价的情况,并不适⽤。
多指标加权灰靶的决策模型

多指标加权灰靶的决策模型灰色关联分析是一种多指标加权的决策模型,常用于多因素综合评价和决策分析等领域。
本文将介绍灰色关联分析的基本原理、方法步骤以及应用案例,以帮助读者更好地理解和运用这一决策模型。
一、灰色关联分析基本原理灰色关联分析是一种基于灰色数学理论的综合评判方法,通过建立数学模型,对多个指标之间的关联程度进行综合度量和分析。
其基本原理是在有限信息下,通过借用灰色关联度的概念,实现对多指标的加权处理和排序,从而确定最佳的决策方案。
二、灰色关联分析方法步骤1. 数据预处理:首先需要进行数据的标准化处理,将各指标的取值范围统一到[0,1]之间,以确保各指标具有可比性。
2. 构建关联矩阵:将标准化后的指标数据构建成关联矩阵,其中每个元素的值表示第i个指标与第j个指标之间的关联程度。
3. 确定权重系数:根据决策需求和实际情况,确定各指标的权重系数。
可以根据专家判断、层次分析法等方法确定权重系数。
4. 计算关联度:利用灰色关联度计算公式,计算各指标与决策方案的关联程度。
关联度的计算过程中,将权重系数引入,起到对各指标进行加权处理的作用。
5. 确定相对关联度:通过对各指标的关联度进行排序,确定各指标与决策方案的相对关联度。
关联度越大,则指标与决策方案的关联程度越高。
6. 综合评价和排序:最后,根据各指标的相对关联度,对决策方案进行综合评价和排序,确定最佳的决策方案。
三、灰色关联分析应用案例以某电子产品为例,假设需要对其外观、功能、性能、价格等多个指标进行评价和排序,确定最佳的产品设计方案。
具体步骤如下:1. 数据预处理:对外观、功能、性能、价格等指标进行标准化处理,将其取值范围统一到[0,1]之间。
2. 构建关联矩阵:根据标准化后的指标数据,构建4×4的关联矩阵,其中每个元素的值表示某两个指标之间的关联程度。
3. 确定权重系数:根据决策需求和实际情况,确定各指标的权重系数。
假设外观权重为0.3,功能权重为0.2,性能权重为0.3,价格权重为0.2。
灰色综合评价操作步骤

灰色综合评价操作步骤步骤一:明确评价的对象和目标。
确定需要进行灰色综合评价的对象是什么,以及评价的目标是什么。
比如,可以选取一个产品、一个项目、一个公司或者一个个人作为评价对象,然后明确评价的目标是对其综合各方面进行评价。
步骤二:确定评价指标和权重。
根据评价的对象和目标,确定需要考虑的评价指标,这些指标应该涵盖事物或者人的各个方面,如质量、性能、创新能力、市场影响力等。
然后给每个指标设定相应的权重,以反映其在整体评价中的重要性。
步骤三:收集数据和信息。
收集评价对象相关的数据和信息,包括定量数据和定性信息。
通过市场调研、问卷调查、访谈等方式来收集和获取所需的数据和信息。
步骤四:数据处理和分析。
对收集到的数据和信息进行整理、分类和处理,以便于后续的分析和评价。
可以使用统计方法、模型分析等工具来对数据进行处理和分析,得出相应的结果。
步骤五:综合评价和分等级。
根据所确定的评价指标和权重,对得到的评价结果进行综合计算和评估。
根据评估结果,对评价对象进行分等级,如优秀、良好、一般、不及格等。
步骤六:结果解读和建议提供。
对评价结果进行解读,说明各个方面的优势和不足之处,并提出相应的改进建议和措施。
这些建议应该针对评价对象的具体情况,具有可行性和可操作性。
步骤七:结果反馈和跟踪。
将评价结果反馈给相关的人员和决策者,并跟踪评价结果的执行情况和效果。
根据反馈和跟踪结果,及时进行调整和改进。
步骤八:定期复评和持续改进。
定期对评价对象进行复评,以了解其发展和改进情况,评估其综合评价的变化和趋势。
同时,不断改进评价方法和指标体系,提高评价的准确性和有效性。
以上就是灰色综合评价的操作步骤。
通过这些步骤,可以全面客观地评价一个事物或者一个人,发现其优势和不足之处,并提供改进的方向和措施,以促进其进一步的发展和提升。
第三节灰色综合评价法

二、灰色综合评价法的模型和步骤
对事物的综合评价,多数情况是研究多对象的排序问题,即在各个评价对象之间排出优选 顺序
灰色综合评判主要是依据以下模型:R=E×W
式中:R=[r,r2,…,rm]'为m个被评对 象的综合评判结果向量;W=[w,W2,…, Wm]为n个评价指标的权重分配向量,其中 ∑w=1;E为各指标的评判矩阵 (k)为第i种方案的第k个指标与第k个最优指 标的关联系数 根据R的数值,进行排序
三、灰色综合评价法的实例分析
若k为指标或观测对象序号, 而且X也为单项,对于X项目的 运动员来说,应以X为最重要
的辅助训练项目
而对于学生来说,在X项目成 绩比较好的情况下,为提高其 身体素质的全面发展,应抓住 弱势,积极进行X和X项目的锻
炼
灰色关联分析主要着重研究" 外延明确、内涵不明确"的对 象,解决"小样本、贫信息、 不确定"问题,是一种解决不
三、灰色综合评价法的实例分析
某个体或某群体的行为数据如下(表12-5) (二)计算步骤 第
一步:求初值像(或均值像) 第二步:求差序列 第三步:求两极差 第四步:求关联系数(表12-6) 第五步:计算关联度(表12-7) (三)结果与分析 若k为时间序号,X与X(总分)的关联度最 大,为0.717,它们关联度程度的大小顺 序依次为X>X>X,这说明三个项目成绩的 好差排序也应如此,体育工作者在教学 或运动训练中,应根据具体情况进行针 对性教学或训练
第三节灰色综合 评价法
第三节灰色综合评价法
目录
二、灰色综合评价法的模型和步骤 三、灰色综合评价法的实例分析
模糊评价--灰色评价

模糊评价一、模型的建立设系统有n 个待优选的对象组成备择对象集,有m 个评价因素组成系统的评价指标集。
每个评价指标对每一备择对象的评判用指标特征量表示,则系统有n m ⨯阶指标特征量矩阵:n m ij mn m m n n mxn x x x x x x x x x x X ⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)(212222111211,;,,2,1m i =)2(3,,2,1 n j = 式中ij x 为第j 个备择对象的第i 个评价因素的指标特征量,一般情况下,它具有两种类型:(1)“越大越优”型,其隶属度计算式为:)3(3maxx x r ij ij =式中max x 为n j m i x ij ,,1;,,1, ==中的最大值。
(2)“越小越优”型,其隶属度计算式为:)4(3min ijij x x r =式中min x 为n j m i x ij ,,1;,,1, ==中的最小值。
优化的任务在于根据指标特征量矩阵选择出最优对象或对象的最优排序。
事实上,优与次(或劣)这一对立的概念之间不存在绝对分明的界限,这是优化的模糊性。
另一方面,优化是依据指标特征量在备择对象集中进行,优或次是相对于备择对象集中的元素间比较而言,这是优化的相对性。
通过3(3)、3(4)式,可将指标特征量矩阵3(2)转变为指标隶属度矩阵3(5)(例如可用适当的计算隶属度公式等):),(212222111211ij mn m m n n mxnr r r r r r r r r r R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= ;,,2,1m i =)5(3,,2,1 n j = 根据优化的模糊性与相对性概念,可以给出下面定义: 定义1 设系统有指标隶属度矩阵3(5)若)6(3),,,(),,,(21222211121121Tmn m m n n Tm r r r r r r r r r g g g G ∨∨∨∨∨∨∨∨∨==称为系统的优向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色综合评价操作步骤
第一步,设定评价对象
对象可以是某一相同年份下的不同的地区,也可以是某一地区的不同年份
第二步,建立评价指标体系
选取相应的指标以达到评价目的
第三步,为每个评价指标设定相应的权重W
该权重可以有评价者直接输入,也可以运用AHP计算得到
第四步,灰色关联度分析
1.确定最优指标集
若某一指标取极大值为好,则取该指标在各方案中的最大值;若取极小值为好,则取各方案中的最小值。
2.指标的规范化处理
由于原始数据矩阵指标相互之间具有不同量纲和不同的数量级,因此有必要对原始指标值进行无量纲化处理。
处理公式如下:
这样就把原始矩阵中的原始值转化为无量纲值y ij,y ij属于[o,1],于是原始数据矩阵X变为决策矩阵Y,Y=(y ij)nxm。
也可以是使用其他的归一化处理方法
3.计算关联度系数
4.计算综合评判结果
综合评判结果R=E×W=(r1,r2,……,r m),即关联系数r i越大越好,可以据此排列次序。