第三章灰色综合评价
多层次灰色综合评价

多层次灰色综合评价原理
进行复杂系统的综合评价时,要考虑的因素很多,需要用 多个指标来衡量,指标间还可划分为不同层次,所以需要进行 多层次综合评价。评价需要信息才能做出结论,但评价信息的 全面与准确受评价人员的知识水平、认识能力、个人经验和偏 好制约。我们可以用“黑”表示评价信息缺乏,“白”表示评 价信息充足,而介于白与黑之间的“灰”表示评价信息不甚全 面、不甚确切。也就是说部分信息已知,部分信息未知,具有 灰色性。因此,可以利用灰色理论来分析与综合某个评价系统 各指标的实现程度,根据评价标准得出综合性的评价结论。灰 色理论是多层次灰色综合评价的原理。
多层次灰色综合评价
多层次灰色综合评价的步骤
4、确定评价方案的评价值矩阵
设有 p 个评价人员,即 k = 1,2,…,p;
q 个评价方案,即 s = 1,2,…, q;
m 个一级(大类)指标,即 i =1,2,…,m;
第 i 大类指标下设ni个二级(具体)评价指标, 即 j =1,2,…,ni。
评价人员按指标 vij 的评分等级标准给某个方案打分。设 第 k 个评价人员对第 s 个方案按指标 vij 的评分等级标准给
多层次灰色综合评价
多层次灰色综合评价的步骤
3.确定各评价指标的权重
可以利用层次分析法(AHP法)确定其相对权重。
假设求得一级(大类)指标 ui 相对于目标 G 的权重为 α i,(i =1,2,…,m),则大类指标的权重分配向量为
α =(α 1, α 2,…,α m)。
设二级评价指标 vij 相对于一级指标 ui 的相对权重为 α ij,(i=1,2…,m;j=1,2,…,ni),则 ui 所属的二级评 价指标的相对权重分配向量为 Ai=(α i1, α i2,…,α ini)。
基于熵权的矿井通风系统灰色综合评价

l() Z( ) 1 m 2
l( ) n
() 5 确定评价指标的熵权。信 息熵是随机变 量不确定度 的量度 , 其计算 式是
三
日( = 一 y1y , On 竹) # o . . l n O&O
() 3
式 中 , 为评价对象 的个数 。 m
综合评价 中各指标 的指 标 值 变 异 程 度 越 大 , 息 熵 信 日( ) y 越小 , 指标 提供 的信 息 量越 大 , 指标 的权 重 也越 该 该 大; 反之 , 该指标的权重就越小 。利用各指标 的信 息熵 , 以 可 计算其熵权 。
何形状 的接近程度来 判断其 联 系紧密 程度 , 一般 来说 , 几何 形状越 接近 , 变化趋势也就越接近 , 关联度就愈大 , 反之就愈
式中, }() 『 V0 |为第. )l } 个指标的第k 个数据, ” k为均值 V}()
化后第 - 『 个指标的第 k 个数据 , 为第 个指标所有指标值
图1 矿井通风系统评价指标体系
表 1 城郊 、 车集、 新桥煤矿的通风 系统原始数据
的平均 。
m
,一
小 。灰 色综合评价利用灰 色关 联度作为测度 , 计算参考数列 和比较数列 的灰色关 联度 , 优势 分析 , 进行 得到 评价 对象 的 优劣顺 序。
() 1确定评价指标 。评价 指标 反映 出评价对 象的多种属 性 和性 能 , 是对评价对象进行 比较 的依 据 。
技术可行性l
l 经济合理性 I
主 矿 通 吨 通 井 风 煤 风 外 井 主 机 部 巷 通 效 漏 工 风 蛊 益 风 程 机 素 费 耗 电 量
l 安全可靠性
抗 灾 能 力
基于层次分析法的灰色关联度综合评价模型

基于层次分析法的灰⾊关联度综合评价模型第1章基于层次分析法的灰⾊关联度综合评价模型灵活型公共交通系统是⼀个复杂的综合性系统,单⼀的常规评价⽅法不能够准确对系统进⾏全⾯评价【39】,这就要求在进⾏灵活型公共交通系统评价时,结合系统固有特点,根据各种评价⽅法的优缺点,构建适合该系统的综合评价模型。
本章以灵活型公共交通系统评价指标体系为基础,参考常规型公共交通系统评价⽅法,建⽴了基于层次分析法的灰⾊关联度综合评价模型。
1.1评价⽅法适应性分析灰⾊关联度分析法基于灰⾊系统理论,是⼀种多指标、多因素分析⽅法,通过对系统的动态发展情况进⾏定量化分析,考察系统各个要素之间的差异性和关联性,当⽐较序列与参考序列曲线相似时,认为两者有较⾼关联度,反之则认为它们之间关联度较低,从⽽给出各因素之间关系的强弱和排序【50】。
与传统的其它多因素分析法相⽐【80】【81】【82】,灰⾊关联度分析法对数据量要求较低,样本量要求较少,计算量较⼩,可以利⽤各指标相对最优值作为参考序列,为最终综合评价等级的确定提供依据,⽽不必对⼤量实践数据有过⾼要求,能够较好解决灵活型公共交通系统作为新型辅助式公系统没有⾜够的经验数据⽀撑其模型参数的问题。
此外,灵活型公共交通系统评价体系是基于乘客、公交企业、政府三⽅主体的综合评价体系,涉及因素较多,指标较为复杂,部分指标之间存在关联性和重复性,信息相对不完全,⽽灰⾊系统的差异信息原理以及解的⾮唯⼀性原理,可以很好的解决这⼀问题【79】。
综上所述,认为灰⾊关联度分析法⽐较适合于灵活型公共交通系统的综合评价。
然⽽灰⾊关联度分析法将所有指标对于总⽬标的影响因素⼤⼩视作等同,没有考虑指标权重的影响,评价值可信度较低,应当通过科学的⽅法,确定指标权重,将其与关联度系数相结合,增加评价结果的科学性和有效性【83】。
常见的权重确定⽅法包括,专家打分法、等权重法、统计试验法、熵值法等。
等权重法不能很好的体现不同指标影响程度的差异性,并且在综合评价值相差不⼤时不利于⽅案的选择【84】;专家打分法、统计试验法评价的主观性较⾼,并且不适⽤于指标较多的情况【85】;⾏和正规化法、列和求逆法等指对判断矩阵的⼀部分数据进⾏利⽤,结果可信度不⾼【86】;最⼩偏差法、对数回归法等,利⽤同⼀指标不同⽅案值,认为变化程度较⼤的指标传递更多信息,应具有较⾼权重,然⽽对于灵活型公共交通系统单⽅案综合⽔平等级评价的情况,并不适⽤。
灰色综合评价法在供应链成员选择中的应用

数列可以用 x 表示 , i 其意义为第 i 个被评价成员的第 j 个指标属
性 值 。文 中 为 专家 评 分 值 , 于 定 性 指 标 。 属 22 对 比较 数 列 进 行 无 量 纲 化 处 理 -
s ec i ide a d h esa ihe gr y ev la i mode. n l e ampl s gien o h el t on n x。n t en t bl s sa e au t on 1 al an x Fi y e i v t s ow t s hi me h d t o S appl a i i t c on. E m pl s n lde an pr e h o s e il d xa e i icu d d ov s t e m deli fasbe an pr t bl. ac i ca e Ke wo d : e ee an e an y i. de yse , o l up y c i a ge e y r sgr y r lv c alssi x s t m m de, pl han m na m nt n s
《 工业控制计算机} 0 9年 2 20 2卷第 2期
灰色综合评价法在供应链成员选择中的应用
App ia in o e mp e e sv v u t n n S l t f Gr y Co c o r h n ie E ala i i CM mb r S lc i n o Me e ee t o
薛 琼 蔡 延 光 余 姗 ( 东工业大学 自动化 学院, 广 广东 广州 5 0 0 ) 106
灰色评价方法与模糊综合评价方法

灰色评价方法与模糊综合评价方法
灰色评价与模糊综合评价具有许多共同的特点,它们的评价结果 都是集合,都能应用于多层次评价,都可以作区间处理。并且,灰色 评价与模糊综合评价都是以经过加工的评价值作为综合的对象,这些 评价值一般位于[1,-1]区间内,反映了评价对象该评价指标对评价结 果的贡献。因此,将评价指标实际值转换为评价值的白化度权函数或 隶属函数成为一个转换器。所确定的白化权函数或隶属函数是否真实, 主要是看它是否能够正确反映评价指标实际值对评价结果的贡献。
第三章灰色系统理论及其应用

第三章灰色关联分析一般的抽象系统,如社会系统,经济系统,农业系统,生态系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。
我们常常希望知道众多的因素中,哪些是主要因素,哪些是次要因素,哪些因素对系统发展影响大,哪些因素对系统发展影响小,哪些因素对系统发展起推动作用需加强,哪些因素对系统发展起阻碍作用需抑制……数理统计中的回归分析,方差分析,主成分分析等都是用来进行系统特征分析的方法。
但数理统计中的分析方法往往需要大量数据样本,且服从某个典型分布。
灰色关联分析方法弥补了采用数理统计方法作系统分析所导致的缺憾.它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密。
曲线越接近,相应序列之间关联度就越大,反之就越小。
例如某地区农业总产值X,0种植业总产值X,畜牧业总产值2X和林业总产值3X,从11997-2002年共6年的统计数据如下:X=(18,20,22,35,41,46)X=(8,11,12,17,24,29)1X=(3,2,7,4,11,6)20X =(5,7,7,11,5,10)从直观上看,与农业总产值曲线最相似的是种植业总产值曲线,而畜牧业总产值曲线和林果业总产值去与农业总产值曲线在几何形状上差别较大。
因此我们可以说该地区的农业仍然是以种植业为主的农业,畜牧业和林果业还不够发达。
3.1灰色关联因素和关联算子集进行系统分析,选准系统行为特征的映射量后,还需进一步明确影响系统行为的有效因素。
如要作量化研究分析,则需要对系统行为特征映射量和各有效因素进行处理,通过算子作用,使之化为数量级大体相近的无量纲数据,并将负相关因素转化为正相关因素。
定义3.1.1设((1),(2),,())ii i i X x x x n =为因素i X 的行为序列,1D 为序列算子,且1111((1),(2),,())i i i i X D x d x d x n d =其中1()()(1)0;1,2(1)i i i i x k x k d x k nx =≠=,则称1D 为初值化算子。
综合评价方法灰色评价法案例讲解

5
灰色关联法
1989年度西山矿务局五个生产矿井技术经济指标如表 6-3
By 杜小二
指标
白家庄矿 杜儿坪矿 西铭矿 官地矿 西曲矿
原煤成本
99.89 103.69 97.42 101.11 97.21
企业利润
96.91 124.78 66.44 143.96 88.36
原煤产量
102.63 101.85 104.39 100.94 100.64
1
灰色关联法
By 杜小二
1、煤矿企业经济效益的灰色关联分析法 (1)应用灰色关联分析法评价煤矿企业效益,首先要构成各个系 统的技术经济指标数据列: {X1}={X1(1),X1(2)……X1(n) } {X2}={X2(1),X2(2)……X2(n) }
∶ ∶ {Xm}={Xm(1),Xm(2)……Xm(n) }
第二步,确定个指标的重要性系数,如表6-4所示。
表6-4 各指标的重要性—权重
指标
权重
原煤成 企业利 产量 销售量 灰分 全员 周转 回收 百万吨
本
润
效率 天数 率 死亡
0.111 0.143 0.098 0.112 0.108 0.096 0.068 0.072 0.192
8
灰色关联法
By 杜小二
第三步,计算各矿井中指标数据列对于最优参考数据列的关联度。个矿井 指标数据列为:
{X1}= { 99.89,96.91,102.63,98.47,87.51,108.35,71.67,103.25,171.20} {X2}= {103.69,124.78, 101.85,103.16,90.27,106.39,137.16,100.00,51.35} {X3}= { 97.42,66.44,104.39,109.17,93.77,142.35,97.65,100.00,15.90 } {X4}= {101.11,143.96,100.94,104.39,94.33,121.91,171.31,99.13,53.72} {X5}= {97.21,88.36,100.64,91.90,85.21,158.61,204.52,100.22,20.78}
模糊评价--灰色评价

模糊评价一、模型的建立设系统有n 个待优选的对象组成备择对象集,有m 个评价因素组成系统的评价指标集。
每个评价指标对每一备择对象的评判用指标特征量表示,则系统有n m ⨯阶指标特征量矩阵:n m ij mn m m n n mxn x x x x x x x x x x X ⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)(212222111211,;,,2,1m i =)2(3,,2,1 n j = 式中ij x 为第j 个备择对象的第i 个评价因素的指标特征量,一般情况下,它具有两种类型:(1)“越大越优”型,其隶属度计算式为:)3(3maxx x r ij ij =式中max x 为n j m i x ij ,,1;,,1, ==中的最大值。
(2)“越小越优”型,其隶属度计算式为:)4(3min ijij x x r =式中min x 为n j m i x ij ,,1;,,1, ==中的最小值。
优化的任务在于根据指标特征量矩阵选择出最优对象或对象的最优排序。
事实上,优与次(或劣)这一对立的概念之间不存在绝对分明的界限,这是优化的模糊性。
另一方面,优化是依据指标特征量在备择对象集中进行,优或次是相对于备择对象集中的元素间比较而言,这是优化的相对性。
通过3(3)、3(4)式,可将指标特征量矩阵3(2)转变为指标隶属度矩阵3(5)(例如可用适当的计算隶属度公式等):),(212222111211ij mn m m n n mxnr r r r r r r r r r R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= ;,,2,1m i =)5(3,,2,1 n j = 根据优化的模糊性与相对性概念,可以给出下面定义: 定义1 设系统有指标隶属度矩阵3(5)若)6(3),,,(),,,(21222211121121Tmn m m n n Tm r r r r r r r r r g g g G ∨∨∨∨∨∨∨∨∨==称为系统的优向量。