系统抽样教案
2.1.系统抽样-苏教版必修3教案

2.1.系统抽样-苏教版必修3教案1. 教学目标•了解系统抽样的定义和要点;•掌握系统抽样的实现方法;•能够运用系统抽样方法解决实际问题。
2. 教学重点和难点2.1. 教学重点•系统抽样的定义和要点;•系统抽样的实现方法。
2.2. 教学难点•如何运用系统抽样方法解决实际问题。
3. 教学内容及方法3.1. 教学内容1.系统抽样的定义和要点;2.系统抽样的实现方法;3.运用系统抽样方法解决实际问题。
3.2. 教学方法1.讲授与演示相结合;2.课堂讨论;3.分组活动。
4. 教学过程4.1. 导入环节了解学生对样本调查的认识。
4.2. 讲授环节1.系统抽样的定义和要点:–系统抽样是按照规律、有序地从总体中抽取样本的方法;–系统抽样的主要优点有:简单、方便、经济、样本分布均匀等。
2.系统抽样的实现方法:–确定总体大小和样本容量;–计算抽样间隔:抽样间隔 = 总体容量 / 样本容量;–确定起始点,样本包括起始点和其后的每隔一定间隔点的数据。
3.运用系统抽样方法解决实际问题:–对实际问题进行分析;–根据问题所描述的总体情况,计算出总体大小和样本容量;–按照刚才介绍的方法计算出抽样间隔;–确定起始点,并在总体中抽取样本;–对样本数据进行分析,得出结论。
4.3. 演示环节1.计算样本抽样间隔;2.确定起始点,抽取样本。
4.4. 练习环节1.分组活动,找出范围内的最大值并进行数据分析;2.小组汇报分析过程和结果。
4.5. 总结环节系统抽样的优点和适用范围;运用系统抽样方法时应注意的问题。
5. 教学反思本节课采用了讲授、演示和分组活动相结合的教学方法,有助于提高学生学习的兴趣和积极性。
但是,在设计练习环节时需要考虑到时间安排,防止时间过长造成学生疲劳。
此外,也需要对学生在课堂上的表现予以及时的反馈和鼓励,以促进他们的学习动机和成长。
《系统抽样学案》课件

在抽取样本的过程中,应当遵循系统性和规律性原则,确保每个个体都有同等的机会被选中。同时, 应当记录每个被选中的个体信息,以便后续的数据分析和处理。在抽取样本时,还需要注意控制误差 和偏差,以确保结果的准确性和可靠性。
03 系统抽样的优缺点
优点
01
02
03
04
系统性
系统抽样按照固定的间隔进行 抽样,使得样本更加系统、有
在市场调查中,系统抽样被广泛应用于各类产品的市场潜力、消费者行为和品牌 知名度等方面调查。由于其具有较高的代表性和准确性,系统抽样能够为市场策 略制定提供有力依据。
实例二:人口普查
总结词
全面覆盖、宏观角度
详细描述
在人口普查中,由于涉及地域广泛且人口众多,系统抽样成为一种高效且可靠的方法。 通过系统抽样,可以宏观了解人口分布、年龄结构、性别比例等关键数据,为政策制定
增加样本量可以减少抽样误差, 使估计值更加接近总体参数。
需要注意的是,增加样本量并不 总是必要的,有时候过多的样本 量可能会导致计算复杂度和成本
的增加。
优化抽样间隔
优化抽样间隔可以提高系统抽 样的效率,使样本更具代表性 。
抽样间隔的选择应该根据总体 大小、总体结构、总体变异程 度等因素进行合理设置。
确定起始样本
总结词
起始样本是系统抽样的起点,其选择对整个抽样过程具有重要影响。
详细描述
起始样本的选择应当具有随机性,以确保整个抽样的代表性。通常,可以使用 随机数生成器或随机数表来选择起始样本。起始样本的选择应当避免主观性和 偏差,以确保结果的客观性和准确性。
抽取样本
总结词
按照确定的抽样间隔和起始样本,依次抽取样本是系统抽样的核心步骤。
《系统抽样》教案正式版

《系统抽样》教案尤溪一中姜志茂设计理念:立足“以人为本,以学生发展为本”的基本理念,努力解决好以下三个问题:⑴依据课程目标,结合教材内容和学生实际,确定教学目标。
⑵依据建构主义理论,学习不是被动接受而是主动建构的过程,强调学习的情境性、个体性、生成性,选择教学方法,实现教学目标。
⑶以教师为主导,学生为主体,探究为主线,通过主动、探究、合作为主要特征的学习方式,强调“活动”的内化,让学生体验“学数学、用数学”的意识和能力。
教学内容:《普通高中课程标准实验教科书——数学③》(人教版)第二章第一课第二节2.1.2系统抽样教学目标:1.知识与技能:(1)通过案例及练习,使学生理解和掌握系统抽样的概念方法与步骤;(2)会用系统抽样法从总体中抽取个体,能根据总体的特征选择适当的抽样方法;(3)正确理解系统抽样与简单随机抽样的关系。
2. 过程与方法:通过对实际问题的探究,让学生体验从总体中抽取样本的全过程,归纳应用系统抽样来解决实际问题的具体方法步骤,体验“学数学、用数学”的意识和能力3•情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
学情与教材分析:学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,可以创设一个恰当的问题情境,让学生类比简单随机抽样的方法步骤,尝试解决抽取样本的过程,并围绕代表性与公平性两原则,分析比较从而达到对新知识新方法的学习与掌握。
教学重点:正确理解系统抽样的概念方法步骤,能够灵活应用系统抽样的方法解决统计问题。
教学难点:当N不是整数时的处理办法,个体编号具有某种周期性时,“坏样n本”的理解。
教学准备:制作相关ppt幻灯片,如复习提问的问题与答案,系统抽样的方法步骤,例题及解答等教学过程:一、新课引入[教学内容]1、复习提问:(1)什么是简单随机抽样?有哪两种方法?(2)抽签法与随机数表法的一般步骤是什么?(3)简单随机抽样应注意哪两个原则?(4)什么样的总体适合简单随机抽样?为什么?[设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础[教学内容]2、实例探究当总体数量较多时,应当如何抽取?结合课本课本P60探究问题,设计你的抽取样本的方法。
2.1.2系统抽样教案1

第2课时:抽样方式二――系统抽样【目标引领】1.学习目标:明白得什么是系统抽样,会用系统抽样从整体中抽取样本。
2.学法指导:系统抽样形象地讲是等距抽样。
对系统抽样咱们能够从以下三个方面来明白得:①系统抽样适用于整体中的个体数较多的情形,因为这时采纳简单随机抽样显得不方便。
②系统抽样与简单随机抽样之间存在着紧密联系,即在将整体中的个体均分后的每一段进行抽样时,采纳的是简单随机抽样。
③与简单随机抽样一样,系统抽样也属于等可能抽样。
【教师在线】1.解析视屏:(1)系统抽样的步骤为:①采取随机方式将整体中的个体编号。
②将整个的编号均衡地分段,确信分段距离k。
Nn是整数时,Nkn;Nn不是整数时,从N中剔除一些个体,使得其为整数为止。
③第一段用简单随机抽样确信起始号码l。
④依照规那么抽取样本:l;l+k;l+2k;……l+(n-1)k;(2)讲义中指出,当整体中的个体数不能被样本容量整除时,可先用简单随机抽样从整体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行。
这时在整个抽样进程中每一个个体被抽取的可能性仍然相等。
(3)本课重点是系统抽样的要领的明白得及如何用系统抽样取得样本。
结合具体实例咱们自己能够归纳出系统抽样的操作步骤。
2.经典回放:例1:人们打桥牌时,将洗好的扑克牌随机确信一张为起始牌,这时,开始顺顺序起牌,对任何一家来讲,都是从52张整体中抽取13张的样本。
问如此的抽样方式是不是为简单随机抽样?分析:简单随机抽样的实质是逐个地从整体中随机抽取。
而那个地址只是随机地确信了起始张,这时其他各张尽管是逐张起牌的,但其实各张在谁手里已被确信了,因此不是简单随机抽样,据其“等距”起牌的特点,应将其归纳为系统抽样。
答:不是简单随机抽样,是系统抽样。
点评:逐张随机抽取与随机确信一张为起始牌后逐张起牌不是一回事。
此题的关键只要抓住“等距”的特点就不难确信是属于哪类抽样。
例2:为了了解某大学一年级新生英语学习的情形,拟从503名大学一年级学生中抽取50名作为样本,如何采纳系统抽样方式完成这一抽样?分析:由题设条件可知整体的个数为503,样本的容量为50,不能整除,可采纳随机抽样的方式从整体中剔除3个个体,使剩下的个体数500能被样本容量50整除,然后再采纳系统抽样方式。
系统抽样教案

系统抽样教案教学目标:学生能够理解系统抽样的概念、原理和使用方法,并能够应用系统抽样进行统计推断。
教学重点:系统抽样的步骤、计算方法和抽样误差的控制。
教学难点:掌握系统抽样的实施方法和样本容量的确定。
教学准备:1. 教材:统计学教材相关章节。
2. 工具:电脑、投影仪、演示软件。
3. 教具:抽样表格、抽样器具(例如:数字表、骰子等)。
教学过程:Step 1:引入1. 引入统计学中的抽样方法,并简单介绍简单随机抽样的特点和步骤。
2. 提出系统抽样的概念,并与简单随机抽样进行对比,引发学生对系统抽样的兴趣。
Step 2:原理与步骤1. 讲解系统抽样的原理:将总体分为若干个相似的子群,然后从每个子群中按照一定规律进行抽样。
2. 展示系统抽样的步骤:确定总体、确定子群、确定样本数量、确定抽样间隔、开始抽样。
3. 通过实例演示系统抽样的步骤和计算方法,让学生掌握如何进行系统抽样。
Step 3:样本容量的确定1. 介绍样本容量的重要性和确定方法。
2. 讲解常用的确定样本容量的方法,例如根据总体大小、抽样误差、置信水平和抽样分布的标准差等进行计算。
3. 通过实例演示样本容量的计算方法,让学生能够灵活应用于实际问题中。
Step 4:抽样误差的控制1. 介绍抽样误差的概念和影响因素。
2. 讲解如何通过增加样本容量、调整抽样方法和降低抽样误差的方式来提高抽样的准确性。
3. 通过实例分析抽样误差的控制方法,帮助学生掌握有效的抽样误差控制策略。
Step 5:练习与讨论1. 给学生分发练习题,让他们应用所学知识进行抽样方法的设计与计算。
2. 带领学生共同讨论练习题的解答过程和结果,并指导他们纠正错误和深化理解。
Step 6:总结与拓展1. 总结系统抽样的步骤、计算方法和注意事项。
2. 拓展其他抽样方法的介绍,比如分层抽样、整群抽样等。
教学实施建议:1. 引导学生积极思考和互动,注重实例操作和练习。
2. 鼓励学生提出问题和解答问题,促进思维的灵活性和创造性。
教学设计3:2.1.2 系统抽样

2.1.2系统抽样三维目标1.知识与技能(1)了解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感、态度与价值观(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,培养学生合作探讨,相互交流的能力,概括归纳的能力,合情推理的意识.重点难点重难点:系统抽样的定义及操作步骤.在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力,让学生体会学数学的成就感.通过师生的互动,深化系统抽样和分层抽样概念及遵循原则的理解,用程序框图来表示分层抽样的步骤,加深学生对分层步骤的理解,进而强化了重点.学生对系统抽样和分层抽样刚刚接触,还没有形成理性认识,所以鼓励学生相互交流,让他们先想、先说、先做,再规范学生的解题过程,避免了老师的单独说教,既降低了学习难度,又激发了学习兴趣.在兴趣中化解了难点.教学建议本课利用多媒体辅助教学,在教法上充分体现教师“问题诱导,启发讨论”的引导作用,在学法上突出学生的“自主探究,合作交流”的学习方式,真正实现“教师为主导,学生为主体”的新课程理念,让学生通过“析案例、议疑难、现过程、得结论、做小结”等一系列学习活动来掌握重点,突破难点,充分发挥学生的主动性和参与性.以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式,由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.知识1系统抽样【问题导思】1.某中学从5 000名学生中选出50人参加2013年10月1日的庆国庆文娱活动,若用抽签法可行吗?【提示】可行,但费时费力、操作不变.2.能否设计一个合理的抽样方法完成此样本的抽取?【提示】能.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本.题型一系统抽样的概念[例1](1)某客运公司为了了解客车的耗油情况,现采用系统抽样方法按1∶10的比例抽取一个样本进行检测,将所有200辆客车依次编号为1、2、…、200,则其中抽取的4辆客车的编号可能是()A.3、23、63、102B.31、61、87、127C.103、133、153、193D.57、68、98、108(2)为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.3C.4D.5【解析】(1)由系统抽样的特点可知,如果抽样间隔为k,第一段抽取号码为l,则抽取号码依次为l,k+l,2k+l,….由于抽样比为110,所以共抽取110×200=20辆汽车.将200辆汽车分成20段,每段10辆,从第一段(编号为1~10)中抽取一个号码l,则所抽取的号码为l.∴选C.(2)因为1 252=50×25+2,所以应随机剔除2个个体.故选A.【答案】(1)C(2)A[类题通法]系统抽样的判断方法判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体,(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样,(3)最后看是否等距抽样.跟踪训练1.下列抽样试验中,最适宜用系统抽样的是()A.从某厂生产的15件产品中随机抽取5件入样B.从某厂生产的1 000件产品中随机抽取10件入样C.从某厂生产的1 000件产品中随机抽取100件入样D.搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定调查人数为止【解析】A 总体容量很小,适宜抽签法.B 样本容量很小,适宜用随机数表法.C 满足总体容量大,个体无明显差异,样本容量较多的特点.D 选项为简单随机抽样.【答案】C 题型二 系统抽样的设计[例2]为了了解某地区今年高一学生期末考试数学学科的答卷情况,分析教学质量,拟从参加考试的15 000名学生的数学试卷中抽取容量为150的样本.请用系统抽样写出抽取过程.解 由于总体容量恰被样本容量整除,所以分段间隔k =15 000150=100; 按系统抽样方法的四个步骤抽取样本.(1)对全体学生的数学试卷进行编号:1、2、3、…、15 000;(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分包含100个个体;(3)在第一部分,即1号到100号用简单随机抽样,抽取一个号码,比如是56;(4)以56作为起始数,然后顺次抽取编号为156、256、356、…、14 956的试卷,这样就得到容量为150的一个样本.[类题通法]设计系统抽样应关注的几个问题(1)系统抽样一般是等距离抽取,适合总体中个体数较多,个体无明显差异的情况;(2)总体均匀分段,通常在第一段(也可以选在其他段)中采用简单随机抽样的方法抽取一个编号,再通过将此编号加段距的整数倍的方法得到其他的编号.注意要保证每一段中都能取到一个个体;(3)若总体不能均匀分段,要将多余的个体剔除(通常用随机数表的方法),不影响总体中每个个体被抽到的可能性.跟踪训练2.某校高中三年级的295名学生已经编号为1、2、…、295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.解 按照1∶5的比例抽取样本,则样本容量为15×295=59. (1)编号:按现有的号码.(2)确定分段间隔k =5,把295名同学分成59组,每组5人,第1组是编号为1~5 的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第一组的5名学生中抽出一名学生,不妨设编号为l (1≤l ≤5).(4)那么抽取的学生编号为l +5k (k =0,1,2,…,58),得到59个个体作为样本.如当l =3时的样本编号为3、8、13、…、288、293. 题型三 简单随机抽样与系统抽样的综合问题[例3] 中秋节,相关部门对某食品厂生产的303盒中秋月饼进行质量检验,需要从中抽取10盒,请用系统抽样的方法完成对此样本的抽取.解 (1)将303盒月饼用随机的方式编号.(2)从总体中用简单随机抽样的方式剔除3盒月饼,将剩下的月饼重新用000~299编号, 并等距分成10段.(3)在第一段000、001、002、…、029这三十个编号中用简单随机抽样确定起始号码l (0≤l ≤29).(4)将编号为l ,l +30,l +2×30,l +3×30,…,l +9×30的个体抽出,组成样本.[类题通法]系统抽样与简单随机抽样的区别和联系1.区别(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈一定的周期性,可能会使抽样的代表性很差;(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上产品质量的检验,不知道产品的数量,因此不能用简单随机抽样.2.联系(1)将总体均分后的起始部分进行抽样时,采用的是简单随机抽样;(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;(3)与简单随机抽样一样是不放回的抽样;(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.跟踪训练3.下面给出某村委会调查本村各户收入情况做的抽样,阅读并回答问题.本村人口数:1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,后两位数为12;确定第一样本户:编号12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改.(3)何处是用简单随机抽样?解 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔30030=10,其他步骤相应改为确定随机数字:取一张人民币,末位数为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户.(3)确定随机数字:取一张人民币,其末位数为2.易错易误辨析系统抽样概念不清致误[典例] 从2 009名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 009人中剔除9人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 009人中,每个人入选的机会( )A .都相等,且为502 009B .不全相等C .均不相等D .都相等,且为140【解析】因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除9人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为502 009. 【答案】A课堂小结抽样方法的选取:1.若总体由差异明显的几个层次组成,则选用分层抽样.2.若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大、样本容量较小时宜用随机数表法; 当总体容量较大、样本容量也较大时宜用系统抽样.3.采用系统抽样时,当总体容量N 能被样本容量n 整除时,抽样间隔为k =N n;当总体容量不能被样本容量整除时,先用简单随机抽样剔除多余个体,抽样间隔为k =[N n]. 当堂检测1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序往后将65号、115号、165号……发票上的销售额组成一个调查样本,这种抽取样本的方法是( )A .抽签法B .随机数表法C .系统抽样法D .其他抽样方法【解析】符合系统抽样的特点.【答案】C 2.为规范办学,市教育局督导组对某所高中进行了抽样调查,抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽到一个容量为4的样本.已知7号、33号、46号同学在样本中,那样本中另一位同学的编号应该是( )A .13B .19C .20D .51【解析】由题意可知,抽样间隔为13,故另一位同学的编号应为20号.【答案】C3.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20【解析】根据系统抽样的特点可知分段间隔为1 00040=25,故选C. 【答案】C4.某厂将从64名员工中用系统抽样的方法抽取4名参加2010年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是________.【解析】由系统抽样的知识知,将64名员工分成4组,每组16名,由题目知8号、24号、56号在样本中,知8号、24号、56号是从第1,2,4组中抽取的,则第3组中抽取的号码是8+2×16=40.【答案】405.某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解 (1)先把这253名学生编号001、002、 (253)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生;(3)把余下的250名学生重新编号1、2、3、 (250)(4)分段:取分段间隔k =5,将总体均分成50段,每段含5名学生;(5)从第一段即1~5号中随机抽取一个号作为起始号,如l ;(6)以后各段中依次取出l +5,l +10,…,l +245这49个号.这样就按1∶5的 比例抽取了一个容量为50的样本.。
2022年《系统抽样》参考优秀教案1

系统抽样教学目标1.理解系统抽样的定义及特点,会用系统抽样的方法从总体中抽取样本。
2.通过实例,使学生体会两种抽样方法的联系和区别。
3.通过对本小节的学习,提高学生对统计的认识,提高应用数学的能力,并进一步培养学习兴趣。
教学重点系统抽样方法的应用教学难点系统抽样方法的原理教学过程:一、新课引入:问题1简单随机抽样的定义问题2简单随机抽样适用于怎样的抽样问题?〔学生答复以上两问题,由于简单随机抽样适用于总体中个数较少时,很容易联想到总体中个数较多怎么办,从而引出课题。
〕二、新课例题1为了了解某市今年高一学生期末考试数学成绩,拟从参加考试的15 000名学生成绩中抽容量为150的样本,用简单随机抽样适宜吗?请设计一个合理的方案。
〔学生先独立思考,形成自己的解法,然后小组讨论,统一方法〕解题步骤:1.编号。
1到15 000。
2.分段。
由于样本与总体容量之比为1:100,故将总体分为150段,每段100个个体。
3.确定起始个体。
从1到100号进行简单随机抽样,抽取一个号码。
例如34。
4.按照事先确定的规那么抽其他样本。
即:134,234,334, (14934)问题3〔变式〕假设样本容量变为15 004呢?问题4系统抽样满足等可能性吗?问题5系统抽样的定义〔小组讨论归纳〕问题6系统抽样的步骤〔小组讨论归纳〕。
例题2某件产品共有1563件,按出厂顺序编号,号码为1到1563。
检测员要从中抽取15件产品作检测,请设计一个系统抽样方案。
〔学生先独立思考,形成自己的解法,然后小组讨论,统一方法〕解题步骤:1.剔除余数。
1563除以15的余数为3,用简单随机抽样方法除掉3个个体。
2.编号。
1到15603.分段。
由于样本与总体容量之比为1:104,故将总体分为15段,每段104个个体。
4.确定起始个体。
从1到104号进行简单随机抽样,抽取一个号码。
例如205.按照事先确定的规那么抽其他样本〔依次加104〕。
三、随堂训练1.以下抽样中不是系统抽样的是〔〕A.从标有1到30的30份试卷中,任选3个做样本,从小号到大号排序,随机选起点m,以后取m+10,m+20(超过30那么从1再数)。
2.1.2 系统抽样教案

§2.1.2 系统抽样教学目标1.知识与技能(1)了解系统抽样。
(2)会用系统抽样从总体中抽取样本。
2.过程与方法能运用所学知识判断、分析和选择抽取样本的方法。
3.情感、态度与价值观(1)培养学生运用统计思想表达思考和解决现实世界中的问题的能力。
(2)让学生感受数学的美学价值在于鲜活的实际应用,立志于学习和研究数学,最大限度的用数学知识服务于社会,同时自身也能获得最佳生存环境。
教学重点应用系统抽样的方法进行抽样。
教学难点对系统抽样中的“系统”思想的理解和样本随机性的理解。
教辅手段幻灯片、投影仪教学过程一、复习引入处理方式提问:简单随机抽样的优点和缺点是什么?①抽签法的优点和缺点:抽签法简单易行,当总体中的个体不多时,使总体处于“均匀搅拌”的状态较容易,这时,每个个体有均等的机会被抽出,从而能保证样本的代表性。
但是当总体的个体很多时,将总体“均匀搅拌”就比较困难,不能确保每个个体有均等的机会被抽出,从而样本的代表性就差。
②与抽签法相比,随机数表法抽选样本的优点是节省人力、物力、财力和时间。
缺点是所产生的样本不是真正的简单样本。
二、新知探究提问:当总体个数比较多时,采用哪种抽样方法呢?【问题1】:为了了解某市今年高一学生期末考试数学科的成绩,拟从参加考试的1500名学生的数学成绩中抽取容量为150的样本,你能设计一个合理的抽取方法吗?让学生讨论采取的方法,将学生提出的几种方法进行分类讨论,比较各种方法的优劣。
经过一翻讨论之后,教师引导,提出用系统抽样的方法来解决这个问题。
最后给出详细步骤如下:⑴把全市学生的数学成绩编号,号码为1到1500。
⑵由于样本容量与总体容量的比为150:1500=1:100,所以我们将总体平均分为150部分,每一部分包含100个个体。
⑶从1到100号进行简单随机抽样,抽取一人号码,比如说是23。
⑷接下来顺次取出号码为123、223、…、14 923的学生,得到容量为150的一个样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统抽样
山东临朐实验中学数学教研室
付廷彬
课题:系统抽样
课时:一课时
教材:普通高中课程标准实验教科书人教B版(2007年4月第二版)必修三第二章第二节2.1.2
教学目标:(1)理解系统抽样的定义及特点,会用系统抽样的方法从总体中抽取样本。
(2)通过实例,使学生体会两种抽样方法的联系和区别。
(3)通过对本小节的学习,提高学生对统计的认识,提高应用数学的能力,并进一步培养学习兴趣。
教学重点:系统抽样方法的应用
教学难点:系统抽样方法的原理
教学方法:思(学生独立思考)、论(小组讨论并初步解决问题)、疑(小组提出不能解决的疑问)、答(老师和学生共同解答
疑难并巩固强化)四步教学法
教具:多媒体
教学过程:
一、新课引入:
问题1、简单随机抽样的定义
问题2、简单随机抽样适用于怎样的抽样问题?
(学生回答以上两问题,由于简单随机抽样适用于总体中个数
较少时,很容易联想到总体中个数较多怎么办,从而引出课题。
)二、新课
例题1、为了了解某市今年高一学生期末考试数学成绩,拟从
参加考试的15 000名学生成绩中抽容量为150的样本,用简单
随机抽样合适吗?请设计一个合理的方案。
(学生先独立思考,形成自己的解法,然后小组讨论,统一方法)
解题步骤:1、编号。
1到15 000。
2、分段。
由于样本与总体容量之比为1:100,故将总体分为150段,每段100个个体。
3、确定起始个体。
从1到100号进行简单随机抽样,抽取一个号码。
例如34。
4、按照事先确定的规则抽其他样本。
即:134,234,334, (14934)
问题3、(变式)若样本容量变为15 004呢?
问题4、系统抽样满足等可能性吗?
问题5、系统抽样的定义(小组讨论归纳)
问题6、系统抽样的步骤(小组讨论归纳)。
例题2、某件产品共有1563件,按出厂顺序编号,号码为1到1563。
检测员要从中抽取15件产品作检测,请设计一个系统抽样方案。
(学
生先独立思考,形成自己的解法,然后小组讨论,统一方法)
解题步骤:
1、剔除余数。
1563除以15的余数为3,用简单随机抽样方法除
掉3个个体。
2、编号。
1到1560
3、分段。
由于样本与总体容量之比为1:104,故将总体分为15
段,每段104个个体。
4、确定起始个体。
从1到104号进行简单随机抽样,抽取一个
号码。
例如20
5、按照事先确定的规则抽其他样本(依次加104)。
三、随堂训练
1、下列抽样中不是系统抽样的是()
A、从标有1到30的30份试卷中,任选3个做样本,从小号到
大号排序,随机选起点m,以后取m+10,m+20(超过30则从1
再数)。
B、工厂生产的产品,用传送带将产品送入包装车间,检验人员
从传送带上每隔5分钟抽一件产品进行检验。
C、搞某一市场调查,规定在商场门口抽一个人进行询问,直到
调查到事先规定的调查人数为止。
D、电影院调查观众的某一指标,通知每排(每排人数相同)座
位号为14 的观众留下。
2、一个年级有12个班,每班50名学生,随机编号为1到50,为
了了解他们的课外兴趣,要求每班第40号学生留下来调查。
这里运用的抽样方法是()
A、抽签法
B、随机数表法
C、系统抽样法
3、为了解某地参加计算机水平测试的5008名学生的成绩,从中抽取200名进行统计,运用系统抽样时,每组的容量为()
A、24
B、25
C、26
D、28
四、归纳小结(学生独立思考,小组讨论)
1、系统抽样的定义
2、系统抽样的解题步骤
3、系统抽样的可行性
4、与简单随机抽样的关系(联系和区别)
联系:均为随机抽样,每个个体被抽到的机会均等。
系统抽样在剔除余数和抽取第一个号码时用单随机抽样。
区别:适用范围不同。
五、分层作业
(必做题)1.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为()
A、 99
B、 99.5
C、 100
D、100.5
2.从学号为1~50的50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()
A、 1,2,3,4,5
B、 5,16,27,38,49
C、 2, 4, 6, 8
D、 4,13,22,31,40
3.某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
(选做题)某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
六、课后反思:。