裂缝宽度验算及减小裂缝宽度的主要措施
建筑力学钢筋混凝土受弯构件的变形与裂缝

f
5
= 48
·Ml02
EI
式中:l0——梁的计算跨度; M——跨中最大弯矩;
EI——截面抗弯刚度。
4
2 受弯构件的挠度验算 由于钢筋混凝土属弹塑性材料,且存在有裂缝, 梁的弯矩与挠度(M-f)的关系呈曲线变化,如 下图所示。
5
2 受弯构件的挠度验算
下面给出均布荷载简支梁跨中最大挠度的一般公 式:
12
5.3 裂缝宽度验算
(3)三级:允许出现裂缝的构件,按荷载效应
准永久组合,并考虑长期作用影响计算时构件的
最大裂缝宽度ωmax,不应超过下页表中规定的最
大裂缝宽度限值ωlim。
即:
ωmax≤ωlim
注:上述一级、二级裂缝控制属于构件的抗裂能力控制, 对于一般的钢筋混凝土构件来说,在使用阶段都是带裂 缝工作的,故按三级标准来控制裂缝宽度。
8
2 受弯构件的挠度验算 2.2 减少受弯构件挠度的措施
(1)提高混凝土的强度等级; (2)增加纵向钢筋的数量; (3)选用合理的截面形状(如T形、I形等); (4)增加梁的截面高度,这是最有效的措施。
9
3 裂缝宽度验算
3.1 钢筋混凝土构件裂缝的类型 钢筋混凝土构件产生裂缝的原因很多,主要有以 下两个方面: (1)由于间接作用引起的裂缝,如基础不均匀 沉降、构件混凝土收缩或温度变化等。
14
5.3 裂缝宽度验算 4 减小裂缝宽度的措施
1、增大钢筋截面面积; 2、在钢筋截面面积不变的情况下,采用较小直径的钢 筋;
3、提高混凝土强度等级; 4、增大构件截面尺寸;
5、减小混凝土保护层厚度。
注:采用较小直径的变形钢筋是减小裂缝宽度最有效的措施。 需要注意的是,混凝土保护层厚度应同时考虑耐久性和减小裂 缝宽度的要求。除结构对耐久性没有要求,而对表面裂缝造成 的观瞻有严格要求外,不得为满足裂缝控制要求而减小混凝土 保护层厚度。
混凝土设计原理 邵永健第9章思考题与习题答案

−
0.65 ×1.78 0.01×196.1
=
⎧> 0.51⎩⎨<
0.2 1.0
(6)计算最大裂缝宽度 wmax cs=c=20mm,且 cs <65mmห้องสมุดไป่ตู้带肋钢筋 ν =1.0 则:deq=d/ν=12mm
wmax
= αcrψ
σ sq Es
(1.9cs
+ 0.08 deq ρ te
)
= 1.9 × 0.51× 196.1 (1.9 × 20 + 0.08 × 12 )
截面尺寸 b×h=350mm×900mm,Mk=400kN·m,Mq=355kN·m,C30 混凝土,采用 HRB335
钢筋,受拉钢筋为 4 25( As =1964mm2),受压钢筋为 4 14( As ' =615mm2),箍筋直径 dv
=8mm,构件允许挠度为 l0/300,试验算构件的挠度是否满足要求。 解: (1)确定基本参数 查附表 1-1、附表 1-9 得:C30 混凝土 ftk =2.01N/mm2,HRB335 钢筋 Es =2×105N/mm2 查附表 1-13 得:一类环境 c=20mm h0=h-c-dv-d/2=900-20-8-12.5=859.5mm (2)计算有效配筋率 ρte
矩形截面:γf'=0 短期刚度:
Bs
=
1.15ψ
Es As h02 + 0.2 +
6α E ρ
=
1.15
×
2.0 ×105 × 942 0.51 + 0.2 + 6 ×
× 2242 7.14 × 0.0042
1 + 3.5γ 'f
混凝土裂缝处理方法以及裂缝宽度分析

.混凝土宽度分析以及裂缝处理方法第一,启程前言在许多钢启程路桥和大家说说裂纹是固体材料中的一种不连续现象。
形式也不裂缝出现的程度不同,筋混凝土结构的施工和使用过程中,也是长期困扰土木工程师的一个技术这是一个相当普遍的现象,同。
问题。
在工程鉴定和加固中,经常会遇到各种形式的混凝土裂缝。
混也是裂缝加固和修复凝土裂缝的准确识别不仅是工程鉴定的主要容,的重要依据,因此显得尤为重要。
二、混凝土裂缝的主要类型混凝土裂缝的基本原因可归纳为两类:一是由荷载变化引起的裂缝,温度、另一方面是变形、包括施工阶段和使用阶段的静荷载和动荷载,湿度、不均匀引起的裂缝。
沉降、冻胀、钢筋锈蚀、化学反应膨胀等)。
(1沉降根据裂缝产生的机理,建筑物裂缝的基本类型有塑性收缩裂缝、收缩裂缝、温度裂缝、干缩裂缝、碳化收缩裂缝、化学反应裂缝、沉降裂缝、冻胀裂缝、蠕变裂缝。
冷凝裂纹等。
三、混凝土裂缝识别的主要容建筑物的破坏,尤其是钢筋混凝土结构的破坏,从裂缝开始。
但并非稳定只有影响接头的承载能力、所有的裂缝都是建筑物的危险标志,专业资料word.许多常见的裂性、刚度和连接可靠性的裂缝可能危及建筑物的安全。
缝,如温度和收缩裂缝,不会危及建筑结构的安全。
因此,各种裂缝因此,因此对各种裂缝的处理应有所不同。
对建筑物的危害是不同的,准确区分不同类型的裂纹是非常重要的。
裂缝的发生时间和裂缝的发展三个方面对裂缝的识别从裂缝的现状、)鉴定的主要容如下:进行了一般性的分析。
(2 1()裂缝现状调查包括裂纹的产生、裂纹宽度、裂纹长度、是否穿透、裂纹中是否存在异物和裂纹宽度等。
裂纹尖端位置是推断混凝土应力状态的重要参数。
必须仔细观察它是看不见的。
1、裂缝宽度研究裂缝的裂缝宽度是确定裂缝对混凝土结构影响的一个重要参数。
成因,确定裂缝的修复和加固方法是一个重要的工程问题。
、裂缝的位置和分布特征2墙等)柱、(梁、一般认为,裂缝位于建筑物的一层,出现在构件板、上,以及构件的位置处的裂缝,如梁端或中跨、顶面或底部。
钢筋混凝土构件的裂缝及变形验算

第7章 钢筋混凝土构件的裂缝及变形验算
7.3 受弯构件挠度验算
一、受弯构件挠度验算的特点
对于简支梁承受均布荷载作用时,其跨中挠度:
f
5(g k
qk
)l
4 0
384 EI
Bs ––– 荷载短期效应组合下的抗弯刚度
B Bl ––– 荷载长期效应组合影响的抗弯刚度
f
5(gk qk )l04 384 B
例如,对矩形截面受弯构件,可根据代换前、后弯矩相等原则复 核截面承载力,即
裂缝宽度验算就是要计算构件的在荷载作用下产生的最大裂缝 宽度不应超过《规范》规定的最大裂缝宽度限值,即
wmax≤wlim
混凝土构件的最大裂缝宽度限值wlim见附表A-12。
第7章 钢筋混凝土构件的裂缝及变形验算
一、钢筋混凝土构件裂缝的形成和开展过程
通过理论分析可知, 裂缝之间混凝土和钢筋的 应变沿轴线分布为曲线形, 如图7-1(b)、(c)所示。 裂缝截面钢筋应变最大, 混凝土的应变为零;裂缝 间混凝土的应变最大,钢 筋的应变最小。
(1)等强度代换。当构件受承载力控制时,钢筋可按强度相等 原则进行代换。
(2)等面积代换。当构件按最小配筋率配筋时,钢筋可按面积 相等原则进行代换。
(3)当构件受裂缝宽度或挠度控制时,钢筋代换后应进行裂缝 宽度或挠度验算。
第7章 钢筋混凝土构件的裂缝及变形验算
二、代换方法
1、等强度代换
不同规格钢筋的代换,应按钢筋抗力相等的原则进行代换,即
《规范》规定:对构件进行正常使用极限状态验算时,应按荷载 效应的标准组合和准永久组合,或标准组合并考虑长期作用影响来进 行。标准组合是指对可变荷载采用标准值、组合值为荷载代表值的组 合;准永久组合是指对可变荷载采用准永久值为荷载代表值的组合。
混凝土结构设计原理习题集之七(含答案)钢筋混凝土构件正常使用极限状态验算试题

混凝土结构设计原理习题集之七9 钢筋混凝土构件正常使用极限状态验算一.填空题:1 其他条件相同时,配筋率越高,平均裂缝间距越,平均裂缝宽度越。
其他条件相同时,混凝土保护层厚度越厚,平均裂缝宽度越。
2 在截面抗弯刚度的计算公式中,体现截面抗弯刚度随弯矩的增大而减小的是系数,它的名称是,其物理意义是。
3 纵向钢筋应变不均匀系数ψ,反应了裂缝间受拉区混凝土参与工作,从而降低裂缝间钢筋应变的程度。
ψ越小,表明裂缝间受拉区混凝土参与工作的程度越,ψ随钢筋应力的增大而,随配筋率ρ的减小而,随混凝土强度等级的提高而,随钢筋与混凝土间黏结能力的提高而。
4 有一试验梁,在纯弯区段量得的钢筋平均应变为εs=8.30×10 -4 ,平均间l cr=120mm,则纯弯区段平均裂缝宽度大致为mm。
5 钢筋混凝土构件在荷载作用下,若计算所得的最大裂缝宽度超过允许值,则应采取相应措施,以减小裂缝宽度,例如可以适当钢筋直径;采用钢筋;必要时可适当配筋量,以使用阶段的钢筋应力。
对于抗裂和限制裂缝宽度而言,最根本的方法是采用。
二.选择题:1 在钢筋混凝土构件中,钢筋表面处的裂缝宽度比构件表面处的裂缝宽度()。
A.小得多B.大得多C.稍小一些2 其它条件相同时,钢筋的保护层厚度与平均裂缝间距、裂缝宽度的关系是()A.保护层越厚,平均裂缝间距越大,裂缝宽度也越大B.保护层越厚,平均裂缝间距越小,但裂缝宽度也越大C.保护层厚度对平均裂缝间距没有影响,但保护层越厚,裂缝宽度越大3 钢筋混凝土受弯构件中,裂缝间受拉钢筋应变不均匀系数ψ与弯矩M 的关系是()。
A.M 增大,ψ增大B.M 增大,ψ减小C.M 增大,ψ可能增大也可能减小4 长期荷载作用下,钢筋混凝土梁的挠度会随时间而增长,其主要原因是()。
A.受拉钢筋产生塑性变形B.受拉混凝土产生塑性变形C.受压混凝土产生塑性变形D.受压混凝土产生徐变5 钢筋混凝土梁截面抗弯刚度随荷载的增加以及持续时间增加而()。
减少裂缝宽度的措施

减少裂缝宽度的措施引言裂缝是指材料或结构中的开裂、断裂或裂纹。
在工程领域,裂缝往往会引起严重的问题,如材料的强度降低、渗漏、结构不稳定等。
为了确保工程的安全和可靠性,减少裂缝的宽度成为一项重要的工作。
本文将介绍一些常见的减少裂缝宽度的措施。
控制温度变化温度变化是导致裂缝产生和扩展的主要原因之一。
当材料受到温度变化的影响时,会发生热胀冷缩的现象,从而导致应力的积累和裂缝的产生。
因此,通过控制温度变化可以有效地减少裂缝宽度。
使用伸缩节伸缩节是一种可在横向方向上伸缩的弹性装置,可用于吸收材料在温度变化时产生的应力。
通过使用伸缩节,可以减少应力积累,从而有效地减少裂缝的宽度。
常见的伸缩节材料包括金属、橡胶和聚氨酯等。
控制温度变化范围在设计和施工过程中,可以采取措施控制温度变化的范围。
例如,在混凝土浇筑过程中,可以控制混凝土的温度和浇筑速度,以减少温度梯度和裂缝的产生。
另外,在施工过程中使用隔热材料也可以有效地减少温度变化。
增加材料的韧性和抗裂性能除了控制温度变化,增加材料的韧性和抗裂性能也是减少裂缝宽度的重要措施。
加入纤维材料纤维材料可以增加材料的韧性和抗裂性能。
常用的纤维材料包括钢纤维、聚丙烯纤维等。
通过加入纤维材料,可以改善材料的抗拉强度和抗剪强度,从而减少裂缝的产生和扩展。
使用高性能材料选择高性能材料也是减少裂缝宽度的重要措施之一。
高性能材料具有良好的韧性和抗裂性能,可以有效地减少裂缝的产生和扩展。
常见的高性能材料包括高性能混凝土、高性能玻璃等。
加强结构设计和施工质量良好的结构设计和施工质量对于减少裂缝宽度也起着至关重要的作用。
以下是一些加强结构设计和施工质量的措施:设计合理的结构连接在结构设计过程中,应合理设计结构连接,以确保结构的稳定性和可靠性。
合理的结构连接可以使结构在受力时分布均匀,从而减少裂缝的产生。
控制施工过程在施工过程中,应严格控制施工质量,确保材料和构件的合理使用和安装。
例如,控制混凝土的浇筑质量、施工环境的湿度和温度等,以减少裂缝的产生和扩展。
减小混凝土裂缝宽度的措施

减小混凝土裂缝宽度的措施
减小混凝土裂缝宽度的措施主要有以下几点:
1. 控制混凝土收缩开裂:可采用加入缩微剂、优化配合比及控制外界温度等方法来控制混凝土收缩开裂。
2. 合理加强混凝土轴向受力能力:可采用加强混凝土配筋、改变截面形状、减少跨径等方法来加强混凝土轴向受力能力,从而有效降低混凝土裂缝宽度。
3. 加强混凝土抗折能力:可采用加强混凝土配筋、降低混凝土的应力集中度等方法来加强混凝土抗折能力,从而减小混凝土裂缝宽度。
4. 掌握优良施工技术:施工中应掌握优良的施工技术,如钢筋预张力松弛、生产质量严格控制等方法,以确保混凝土良好的施工质量,从而减小混凝土裂缝宽度。
总之,混凝土裂缝宽度的减小是需要从多个方面配合治理。
【混凝土习题集】—8—钢筋混凝土构件的变形和裂缝宽度验算

第八章混凝土构件变形和裂缝宽度验算一、填空题:1、钢筋混凝土构件的变形或裂缝宽度过大会影响结构的、性。
2、规范规定,根据使用要求,把构件在作用下产生的裂缝和变形控制在。
3、在普通钢筋混凝土结构中,只要在构件的某个截面上出现的超过混凝土的抗拉强度,就将在该截面上产生方向的裂缝。
4、平均裂缝间距就是指的平均值。
5、平均裂缝间距的大小主要取决于。
6、影响平均裂缝间距的因素有、、、。
7、钢筋混凝土受弯构件的截面抗弯刚度是一个,它随着和而变化。
8、钢筋应变不均匀系数的物理意义是。
9、变形验算时一般取同号弯矩区段内截面抗弯刚度作为该区段的抗弯刚度。
10、规范用来考虑荷载长期效应对刚度的影响。
二、判断题:1、混凝土结构构件只要满足了承载力极限状态的要求即可。
()2、混凝土构件满足正常使用极限状态的要求是为了保证安全性的要求。
()3、构件中裂缝的出现和开展使构件的刚度降低、变形增大。
()4、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。
()5、实际工程中,结构构件的裂缝大部分属于由荷载为主引起的。
()6、引起裂缝的变形因素包括材料收缩、温度变化、混凝土碳化及地基不均匀沉降等。
()7、荷载裂缝是由荷载引起的主应力超过混凝土抗压强度引起的。
()8、进行裂缝宽度验算就是将构件的裂缝宽度限制在规范允许的范围之内。
()9、规范控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。
()10、规范控制由混凝土碳化引起裂缝采取的措施是规定受力钢筋混凝土结构保护层厚度。
()11、随着荷载的不断增加,构件上的裂缝会持续不断地出现。
()L主要取决于荷载的大小。
()12、平均裂缝间距cr13、有效配筋率te ρ是所有纵向受拉钢筋对构件截面的配筋率。
( )14、平均裂缝宽度是平均裂缝间距之间沿钢筋水平位置处钢筋和混凝土总伸长之差。
( )15、最大裂缝宽度就是考虑裂缝并非均匀分布,在平均裂缝宽度的基础上乘以一个增大系数而求得的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。
《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定:(8-20)式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式;w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。
表8-1 混凝土结构的使用环境类别表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值:一般环境0.20mm有气态、液态或固态侵蚀物质环境0.10mm这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。
从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。
因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。
粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。
但是,当采用上述措施仍不能满足要求时,亦可增大钢筋截面面积,从而增大截面的配筋率,减小钢筋的工作应力,减小平均裂缝间距;当然,有时也可采取改变截面形式及尺寸或提高混凝土强度等级等办法。
8.2.6 小结两本规范的裂缝宽度计算公式相差较大(见表8-3)。
从理论基础上看,《混凝土结构设计规范》(GB50010)采用一般裂缝理论,然后通过试验数据统计回归的方法确定其中的系数;《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)公式则纯粹是建立在试验统计分析基础上的。
但二者所反映的裂缝宽度的主要影响因素大体上仍然是一致的,即钢筋直径、形式、配筋率和钢筋的工作应力等。
需要再次强调的是,本节上述裂缝宽度验算方法只是针对于荷载作用下的竖向弯曲裂缝而言的。
实际工程中大量存在的非荷载裂缝及荷载作用下其他形式的裂缝,目前还没有可靠的计算方法来控制,这些裂缝往往是通过构造措施来保证的。
从这个角度来理解构造设计,应该更能帮助大家领会构造设计的重要意义了。
表8-3 建筑工程与公路桥梁工程关于受弯构件最大裂缝宽度计算公式的比较§8-3 钢筋混凝土受弯构件的变形验算8.3.1 变形验算的目的和要求在结构的使用期限内,各种荷载的作用都将产生相应的变形,如梁和板的跨中挠度、简支端的转角、柱和墙的侧向位移等。
对受弯构件的变形进行控制主要出于以下三方面的考虑:1.功能要求结构构件产生过大的变形将损害甚至使构件完全丧失所应承担的使用功能。
例如厂房结构过大的变形,会影响精密仪器的操作精度;桥梁过大的挠度则影响桥面行车速度和舒适;吊车梁过大的变形会影响吊车的正常运行和使用期限;屋面构件变形过大,将导致表层积水、渗水等。
2.防止非结构构件破坏结构构件的过大变形可能导致一些变形能力较差的脆性非结构构件破坏,如门窗开启困难,轻质隔墙开裂等。
3.外观要求构件出现明显的挠度时会使使用者产生不安全感。
如刚度过小,桥面或楼面板大幅度震颤,给使用者造成很大的心理压力甚至导致心理恐慌。
因此,在设计混凝土结构时,应该对使用阶段的构件最大变形进行验算,并按允许值加以限制。
《混凝土结构设计规范》(GB50010)对受弯构件的挠度限值见表8-4。
表中括号内的数值适用于使用上对挠度有较高要求的构件。
悬臂构件的允许挠度值按表中相应数值乘以2.0取用。
《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)中对受弯构件的挠度限值规定为:对梁式桥主梁的最大挠度,取计算跨度的1/600;主梁的悬臂端取计算跨度的1/300。
8.3.2 钢筋混凝土受弯构件变形计算的特点由材料力学知识可知,受弯构件的挠度可由下式通过对曲率进行二次积分得到:(8-21a)特别地,对于匀质弹性体材料的受弯构件,求解以上积分,荷载作用下最大挠度a f 均可表达为:(8-21b)式中为与构件边界条件和受荷条件有关的挠度系数。
该式意味着,对于给定的材料和截面几何尺寸,由于构件截面的抗弯刚度EI为定值,因而挠度a f与弯矩M成正比。
钢筋混凝土受弯构件挠度变形有着明显不同的特点。
随着外部荷载的增加,构件截面刚度逐渐减小(图8-8)。
裂缝的出现与开展,使构件的中性轴沿纵向呈波浪变化,截面刚度沿构件纵向亦不断变化(图8-9)。
由此可见,钢筋混凝土构件的抗弯刚度(一般用B表示)与匀质弹性体构件的抗弯刚度EI有很大的区别。
另一方面,在长期荷载作用下,构件压区混凝土的徐变,混凝土的收缩,钢筋与混凝土间的粘结蜕化,裂缝的进一步开展,都会使构件的截面刚度随时间逐渐降低。
这就进一步使构件的刚度和变形计算复杂化。
但是从式(8-21a)我们发现,只要能将截面刚度计算出来,那么构件在荷载作用下的变形总可以计算出来。
因此,钢筋混凝土受弯构件的挠度计算最终可以归结为拉区存在裂缝情况下的截面刚度的计算问题。
图8-8 钢筋混凝土受弯构件弯矩与挠度、曲率及刚度间的关系图8-9 荷载作用下钢筋混凝土受弯构件的刚度和曲率变化图受拉区存在裂缝情形下的截面刚度计算方法可以分为三类:有效惯性矩法、刚度解析法以及等效拉力法等。
目前我国《混凝土结构设计规范》(GB50010)考虑拉区混凝土的工作,根据平截面假定,采用刚度解析法计算构件截面刚度B;而《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)则引入换算截面的概念,采用有效惯性矩法计算截面刚度。
截面刚度计算出来后,还有一个截面刚度沿构件纵向的分布问题。
如前所述,钢筋混凝土构件由于裂缝的存在,截面刚度沿构件纵向是不断变化的。
精确地分析各截面的刚度并以此进行挠度的计算是非常复杂而且是没有必要的。
实际挠度计算时,通常采用所谓的“最小刚度原则”,即一般取同号弯矩区段内弯矩最大截面的抗弯刚度作为该区段的抗弯刚度(图8-9)。
对于简支梁,取最大正弯矩截面的刚度作为全梁的抗弯刚度;对于带悬挑的简支梁、连续梁或框架梁等,则取最大正弯矩截面和最小负弯矩截面的刚度,分别作为相应弯矩区段的刚度。
构件刚度分布图确定后,即可按结构力学的方法计算钢筋混凝土受弯构件的挠度。
根据最小刚度原则计算的构件弯曲变形会稍微偏大,但是考虑到实际构件中剪切变形的影响,这样计算的变形仍是合理的。
下面按照不同专业分别阐述两种截面刚度的计算方法。
8.3.3 GB50010方法一钢筋混凝土梁的纯弯段,在弯矩作用下出现裂缝,进入裂缝稳定发展阶段后,裂缝的间距大致均匀。
各截面的实际应变分布不再符合平截面假定,中和轴的位置受到裂缝的影响而成为波浪形(图8-10a),裂缝截面处的压区高度为最小值。
各截面的顶面混凝土压应变和受拉钢筋应变也因此成波浪变化(图8-10b)。
设平均应变为和,出现在裂缝截面的最大应变为和。
图8-10 受弯构件在正常使用阶段上中和轴、截面应力、应变、刚度图构件的截面平均刚度可按下述步骤建立计算公式:(1)几何条件——试验证明,截面的平均应变仍符合线性分布。
因此截面的平均曲率为(8-22a)其中,顶面混凝土压应变的变化幅度较小,近似可取;与前节裂缝的计算类似,为了分析的简便,钢筋的平均拉应变取(8-22b ) 式中为钢筋应变不均匀系数。
(2)物理关系——在梁的使用阶段,裂缝截面的应力分布如图8-11d ,顶面混凝土的压应力和受拉钢筋应力按下式计算:或(8-22c ) 式中为混凝土的弹性系数。
(3)平衡关系——忽略截面上拉区混凝土的应力,建立裂缝截面的两个平衡方程(图8-11d ):或(8-22d ) 式中为压区混凝土应力图形完整系数;为裂缝截面上的内力臂系数;为裂缝截面混凝土的相对受压区高度。
将式(8-22c )、(8-22d )代入式(8-22a ),作变换得(8-22d )故截面平均刚度为(8-23)式中E s,A s,h0以及和等为确定值;其余的系数等均随弯矩而变化,需另行确定。
受拉钢筋应变的不均匀系数,在裂缝计算中已经给出,即。
裂缝截面的内力臂系数,因为构件使用阶段的弯矩水平变化不大,裂缝发展相对稳定,试验表明其值约为0.83~0.93,配筋率高者,其值偏低,计算时近似地取其平均值为=0.87。
图8-11令,称为混凝土受压区边缘的平均应变综合系数,其值随弯矩的增大而减小,在使用阶段(M/M u=0.5~0.7)内基本稳定,弯矩值对其影响不大,而主要取决于配筋率。
根据试验结果得矩形截面梁的回归分析式(图8-11):(8-24)考虑到受压区有翼缘板的影响,对于T形,工形截面构件,上式右侧改为,这里。
于是式(8-23)变为:(8-25)上式就是GB50010中规定的在荷载标准组合作用下受弯构件的短期截面刚度的计算公式。
8.3.4 JTJ023方法1.换算截面换算截面是指将物理性能与混凝土明显不同的钢筋按力学等效的原则通过弹性模量比值的折换,将钢筋换算为同一混凝土材料而得到的截面。
图8-12所示为在受拉区裂缝出现前后不同的换算截面。
根据换算截面由材料力学方法可以求得其等效截面惯性矩I0和I cr。
图8-12 换算截面2.短期截面刚度将一根带裂缝的受弯构件视为一根不等刚度的构件(图8-13a),裂缝处刚度最小,两裂缝间刚度最大,图8-13b实线表示截面刚度变化规律。
为便于分析,取一个长度为l m的裂缝区段,近似地分解为整体截面区段和开裂截面区段。
根据试验分析,和与开裂弯矩M cr和截面上所受弯矩M s的比值有关,可按下列公式确定:(8-26)(8-27)把图8-13c变刚度构件等效为图8-13d的等刚度构件,采用结构力学方法,按在端部弯矩作用下构件转角相等的原则,可求得等刚度受弯构件的等效刚度B。
图8-13 受弯构件截面刚度等效示意图根据图8-13c所示变截面构件,求出裂缝区段两端截面的相对转角:(8-28)根据图8-13d所示等截面构件,求出裂缝区段两端截面的相对转角:(8-29)令=,可得:(8-30)将式(8-26)、(8-27)代入式(8-30),整理后得:(8-31)式中 B ——开裂构件等效截面的抗弯刚度;B0——全截面的抗弯刚度,B0=0.85E c I0;B cr——开裂截面的抗弯刚度,B cr=E c I cr;M cr——截面开裂弯矩;I0——全截面换算截面惯性矩;I cr——开裂截面换算截面惯性矩。