第2章场地地基和基础

合集下载

场地、地基和基础

场地、地基和基础
因此,在工程选址时,就应尽可能避开对建筑抗震不利的地段,任何情况下, 都不应在抗震危险地段上,建造可能造成人员伤亡或较大经济损失的建筑物。
2.1.1工程地质条件对震害的影响
主要包括地质构造和局部地形
1. 发震断裂的影响
局部地质构造:主要是指断裂。断裂是地质构造上的薄弱环节,分 为发震断裂和非发震断裂。 断裂带是地质上的薄弱环节,浅源地震多与断裂活动有关。
2.1.3 场地土类型
土的类型主要取决于土的刚度。
土的刚度可按土的剪切波速划分,土层剪切波速的测量,应按 下列要求进行(了解):
1)在场地初步勘察阶段,对大面积的同一地质单元,测试土层 剪切波速的钻孔数量不宜少于3个。
2)在场地详细勘察阶段,对单幢建筑,测试土层剪切波速的钻 孔数量不宜少于2个,测试数据变化较大时,可适量增加;对小 区中处于同一地质单元内的密集建筑群,测试土层剪切波速的 钻孔数量可适量减少,但每幢高层建筑和大跨空间结构的钻孔 数量均不得少于1个。
山梁顶部,容易滑落
局部突出地形的影响
1.高突地形距离基准面的高度愈大,高处的反应愈大; 2.离陡坎和边坡顶部边缘的距离大,反应相对减小; 3.在同样地形条件下,土质结构的反应比岩质结构大; 4.高突地形顶面愈开阔,远离边缘的中心部位的反应明显
减小; 5.边坡愈陡,其顶部的放大效应相应加大。
局部突出地形顶部的地震影响系数的放大系数
2.2.2 山区建筑边坡设计要求
山区建筑的地基基础应符合下列要求:
(1)边坡设计应符合现行国家标准《建筑边坡工程技术 规范》GB 50330的要求;其稳定性验算时,有关的摩擦角 应按设防烈度的高低相应修正。 (2)边坡附近的建筑基础应进行抗震稳定性设计。建筑 基础与土质、强风化岩质边坡的边缘应留有足够的距离, 其值应根据设防烈度的高低确定,并采取措施避免地震时 地基基础破坏。

场地地基基础抗震

场地地基基础抗震

第2章场地、地基和基础抗震2.1概述场地:工程群体的所在地,其在平面上大体相当于厂区、居民点、自然村或不小于1.0km2的区域范围。

地震作用下,场地下的土层,双重作用。

地震波传播介质,将地震动传给结构物;结构物的地基,具有一定强度和稳定性。

建筑物的震害按照破坏性质可以分成两大类:一类震害是由上部结构振动破坏引起的;一类建筑物的震害是由地基失效引起的.地面振动可使地基土丧失稳定,发生砂土液化或软土震地面振动可使地基土丧失稳定发生砂土液化或软土震陷,引起结构倾斜倒塌。

历史震害资料表明,建筑物震害还与场地的地质条件有关。

2.2.1局部地形的影响震害表明:局部孤突地形对地震有放大作用,震害加重。

1920年宁夏海原地震位于渭河河谷的姚庄烈度为7度2.2工程地质条件对震害的影响1920年宁夏海原地震,位于渭河河谷的姚庄烈度为7度,相距2km的牛家庄,坐落在100m的黄土山嘴上,烈度9度。

1975年辽宁海城地震中,高差58m的两个测点,地面加速度相差1.84倍。

1994年云南昭通地震,芦家湾山梁长150m,顶部宽15m。

一端高60m,一端高50m,中烈度为8度间呈鞍较高端部的最大加速度0.632g, (9度)鞍部为0.257g (7度),较低端部为0.431g (8度)。

烈度为9度烈度为7度高突地形地震反应的总体趋势:1.高突地形距离基准面的高度愈大,高处的反应愈大;2.离陡坎和边坡顶部边缘的距离大,反应相对减小;3在同样地形条件下土质结构的反应比岩质结构大;3.在同样地形条件下,土质结构的反应比岩质结构大;4.高突地形顶面愈开阔,远离边缘的中心部位的反应明显减小;5.边坡愈陡,其顶部的放大效应相应加大。

对条状突出的山嘴、高耸孤立的山丘、非岩石的陡坡、河岸和边坡边缘等不利地段,对设计地震动参数产生的放大作用(增大系数)。

局部突出地形顶部的地震影响系数的放大系数6.11<+=ξαλλ---局部突出地形顶部的地震影响系数的放大系数α---局部突出地形地震动参数的增大幅度,见表2.1ξ---附加调整系数H1L L 0.30.61.0ξ5.2/1<H L 5/5.21<≤H L5/1≥H L 2.2.2局部地质构造的影响断裂分为发震断裂和非发震断裂:(1)发震断裂:具有潜在地震活动的断裂,多与地震活动有关,地震时,发震断层可能出现很大的错动,建筑物严重破坏。

场地、地基和基础(简化版)资料

场地、地基和基础(简化版)资料
地基抗震验算的范围
软弱地基上采用天然地基的单层厂房、单层空旷房屋; 7层及以上的民用框架及荷载相应的多层厂房; 其它超过规范规定的不验算范围的建筑均需进行地基和基础的抗震验算。
二、地基土抗震承载能力的调整 —— 拟静力法
§2.3 液化土与软土地基
一、场地土的液化现象 这是1964年日本新泻地震中被认识并备受关注的现象。处于地下水位以下的饱和砂土和粉土, 在地震时容易发生液化现象。 1.原因(机理)
n — 15(20)m深度范围内每一个钻孔标准贯入试验点的总数 Ni, Ncri — 实测值与临界值 di — i点代表的土层厚度(m), 一般考虑15m深。 wi — 第i层土的影响权函 数值
10m
0
Wi 10
5m
(15m)
当经过上述两步判别证实地基土确实存在液化趋势后, 应进一步定量分析、评价液化土可能造成的危害程度。这 一工作通常是通过计算地基液化指数来实现的。
GB50011-2010液化等级和对建筑物的相应危害程度
等级
液化指数 IlE (20m)
地面喷水 冒沙情况
对建筑的 危害情况
轻微
IlE ≤ 6
无喷水冒沙或仅 有零星点
危害性小,不引起明显震害
中等
6<IlE≤18
喷水冒沙可能性大,多数属中等
危害性大可造成不均匀沉陷开裂
场地自振周期(卓越周期)和类共振现象 地震波放大最多分量: 单一土层T=4H/Vse 多土层T=
4Hi/Vi
放大器
滤波器
地震波
基岩
T1
Tg
当结构的基本自振周期与场地自振周期接近或相等时结构的地震反应最大, 使建筑物震害加大。
有利地段
稳定基岩,坚硬土,开阔、平坦、密实、均匀的中硬土等

建筑抗震设计-第2章-场地、地基与基础

建筑抗震设计-第2章-场地、地基与基础

中硬 土
中软
500≥ vs >250 250≥ vs >140
中密、稍密的碎石土,密实、中密的砾、粗、中砂, fak>200的粘性土和粉土,坚硬黄土
稍密的砾、粗、中砂,除松散外的细、粉砂, fak

≤200的粘性土和粉土, fak ≥130的填土 ,可塑黄土
软弱 vs ≤140
淤泥和淤泥质土,松散的砂,新近沉积的粘性土和粉土,
1、液化判别和处理的一般原则:

筑 抗 震 设
1)对存在饱和砂土和粉土(不含黄土)的地基, 除6度外,应进行液化判别。对6度区一般情况 下可不进行判别和处理,但对液化敏感的乙类 建筑可按7度的要求进行判别和处理。

2)存在液化土层的地基,应根据建筑的抗震设防类
别、地基的液化等级结合具体情况采取相应的措
上覆非液化土层厚度du=5.5m
db=2m
其下为砂土,地下水位深度
dw=6m
为dw=6m.基础埋深db=2m,该
场地为8度区。确定是否考

虑液化影响。
筑 解:按土层液化判别图确定
抗 震
du=5.5m

dw=6m
du (m)
1 2 3 4 5 6 7 8 9 10
1
2
须进一步判别区

3
需要考虑液化影响。

会加重。
震 • 在软弱地基上,建筑物的破坏有时是结构破坏所造成

,有时是由于沙土液化、软土震陷和地基不均匀沉降

等造成的地基失效所致。
• 就地面建筑物总的破坏现象来说,在软弱地基上的比 坚硬地基上的要严重。
• 场地土的刚性一般用土的剪切波速表示。

土木工程施工——第2章 地基与基础工程

土木工程施工——第2章  地基与基础工程

2. 换填材料和施工方法
换填材料要求使用砂和砂石换填应选用级配良好、质地 坚硬的中砂或粗砂、角(圆)砾、碎(卵)石、石屑等, 并应除去植物残体、垃圾等杂质。若用粉细砂或石粉, 应掺入30%的碎石或卵石,砂石最大粒径不宜大于50mm。 人工级配的砂砾石,应先将砂、卵石拌合均匀后再铺设。 使用粉质粘土时,土料中有机质含量不得超过5%,亦不 得含有冻土或膨胀土。使用灰土时,体积配合比宜为2: 8或3:7。由分层铺设的土工合成材料与地基土构成加筋 垫层时,作为加筋的土工合成材料应采用抗拉强度较高、 受力时伸长率不大于4%~5%、耐久性好、抗腐蚀的土 工格栅、土工格室、土工垫或土工织物等土工合成材料。
根据加压系统的不同,可分为堆载预压法和真空 预压法两大类。排水系统,主要在于改变地基原 来的排水边界条件,增加孔隙水排出的途径,缩 短排水距离。排水系统由水平排水体和竖向排水 体构成。水平排水体一般采用砂垫层;竖向排水 体一般采用普通砂井、袋装砂井或塑料排水板等。
1. 袋装砂井堆载预压
袋装砂井堆载预压法是以袋装砂井为竖向排水体、砂垫 层作为水平排水体构成排水系统,在砂垫层上部堆载作 为加压系统的预压法。典型的袋装砂井堆载预压地基剖 面如图2-6所示。
开挖软弱土方法主要有挖掘机挖除法、推土机挖 除法、人工挖除法等。当土质过于软弱而挖掘机 和推土机无法作业时,可采用水力挖塘机组挖除, 即用高压水流对软粘土进行切割并冲成泥浆,然 后用泥浆泵输送到指定地点沉淀后再处理。开挖 的深度和宽度应根据换填垫层的设计要求确定。
换填垫层施工应分层铺设,分遍压(振)实,填 料的含水量应控制在最优施工含水量范围。换填 施工过程应注意防止基坑灌水或雨水下渗。坑槽 开挖时应避免坑底土层扰动,可保留200mm厚土 层暂不挖去,待铺设垫层前再挖至设计标高,如 有浮土必须清除。当坑底为饱和软土时,须在与 土面接触处铺一层细砂起反滤作用,其厚度不计 入地基垫层设计厚度内。

场地、地基和基础

场地、地基和基础

dw=6m
du=5.5m
dw=6m dw(m)
1 2 3 4
1
2
3
4
d u (m)
5 6
7
8
9
10
须进一步判别区
需要考虑液化影响。
7度
5
6 7 8 9 10
8度
9度
不考虑液化影响区
砂土
2、标准贯入试验判别
钻孔至试验土层上15cm处,用63.5公 斤穿心锤,落距为76cm,打击土层,打 入30cm所用的锤击数记作N63.5,称为标 贯击数。用N63.5与规范规定的临界值Ncr 比较来确定是否会液化。
场地覆盖层厚度两个指标综合确定的。
等效剪切波速 (m/s)
场 Ⅰ 0 Ⅱ


型 Ⅲ Ⅳ
vse 500
500 vse 250
5m 250 vse 140 3m 3m 140 vse
5m
3~50
50
3~15
15 ~80
80
土层等效剪切波速
vse
d0 n di i 1 v si
du dw 1.5d0 2db 4.5
查液化土特征深度表
dw=6m
饱和土 类别
烈度
7 6m 7m
8 7m 8m
9 8m 9m
粉土 砂土
d 0 8m 1.5d0 2db 4.5 11.5m du d w 11.5m
需要考虑液化影响。
例1 图示为某场地地基剖面图 上覆非液化土层厚度du=5.5m 其下为砂土,地下水位深度 为dw=6m.基础埋深db=2m,该 场地为8度区。确定是否考 虑液化影响。 解:按土层液化判别图确定

工程结构抗震设计第2章 场地、地基和基础

工程结构抗震设计第2章  场地、地基和基础

1
2.1 场 地
2.1.1 建筑场地的选用 场地是指范围相当于厂区、居民点和自然村或平面 面积不小于0.5km2,具有相似的反应谱特征的工程群体 所在地。场地震害主要为滑坡、崩塌、地陷、地裂、泥 石流、断层、地表错位以及砂土液化和震陷等。 表2.1按场地对建筑抗震有利、不利和危险的情况进 行了分类。
第2章 场地、地基和基础 工程结构抗震设计
本章要点 本章系统地介绍场地、地基和基础。场 地分为对建筑抗震有利、不利和危险地段。按土层等效 剪切波速和场地覆盖层厚度,建筑场地划分为四类。讨 论了天然地基和基础的抗震验算、液化土的判别及抗震 措施、桩基础的抗震验算。此外,介绍了地震动的特性 和地震动主动土压力等问题。
2
3
4
2.1.2 建筑场地的类别 场地土是指场地范围内的地基土。震害调查和对场 地土输入地震波的动态分析表明,影响地表震动的主要 因素有两个,其一是场地土的刚度,其二是场地覆盖土 层厚度。震害调查表明,土质愈软,覆盖土层愈厚,建 筑物震害愈重。 土的软硬一般用土的剪切波速vs表示。因此,《规 范》采用了以平均剪切波速和覆盖层厚度为评定指标来 划分场地类别的双参数分类法。
25
2.3.1 可不进行验算的范围 我国多次强烈地震的震害表明,在遭受破坏的建筑 中,因地基失效导致的破坏较上部结构在地震作用下的 破坏为少。而遭受破坏的地基主要由饱和松砂、软弱粘 性土和成因岩性状态严重不均匀的土层组成。大量的一 般天然地基都具有较好的抗震性能。因此,《规范》规 定,下列建筑可不进行天然地基及基础的抗震承载力验 算: ①砌体房屋; ②地基主要受力层范围内不存在软弱粘性土层的一 般单层厂房,单层空旷房屋和8层、高度25m以下的一 般民用框架房屋及与其基础荷载抗震验算的建筑。 以上规定中,软弱粘性土层指7度、8度和9度时, 地基土静承载力特征值分别小于80、100和120kPa的土 层。

抗震第2章-场地、地基和基础

抗震第2章-场地、地基和基础

9.5/1701.05/130
v i1 si
抗震第2章-场地、地基和基础
第二章 场地与地基
例:已知某建筑场地的钻孔 土层资料如表所示,试确定 该建筑场地的类别。
解:
(1)确定地面下20m表层 土的场地土类型
层底深度(m) 土层厚度(m) 土的名称
9.5
9.5

37.8
28.3
淤泥质粘土
43.6
5.8
比较而言,软弱场地上的建筑物震害一般重 于坚硬场地。
抗震第2章-场地、地基和基础
第二章 场地与地基
场地的地震效应 地震波
场地 (放大器,滤波器)
软弱地基 坚硬地基
以长周期为主。 以短周期为主。
当建筑的自振周期与场地的周期相近时,振动会放大,
使破坏更大,相反则小。 共振效应
抗震第2章-场地、地基和基础
第二章
场地、地基和基础
§2.1 场地
场地: 是指工程群体所在地,具有相似的反应谱特征, 其范围大体相当于厂区、居民点和自然村或不小于1 km2的平面面积。
工程地质条件对地震破坏的影响很大。
地段类别 有利地段 不利地段
危险地段
地质、地形、地貌
稳定基岩,坚硬土,开阔、平坦、密实、均匀的中硬土等
软弱土,液化土,条状突出的山嘴,高耸孤立的山丘,非 岩质的陡坡,河岸和边坡的边缘,平面分布上成因、岩性、 状态明显不均匀的土层(如故河道、疏松的断破裂带、暗 埋的塘浜沟谷和半填半挖地基)等
第二章 场地与地基
场地土类型的划分
抗震规范将建筑场地划分成四个类别:坚硬、中 硬、中软及软弱。考虑因素为:场地土的坚硬程度 和土层的组成。
土层的坚硬程度可用剪切波的传播速度来确定( 根据波在坚硬物体中的传播速度大于软弱物体中的 传播速度)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
区面积不应超过基础底面面积的15%。
§2.3 液化地基的判别与处理
• 1.地基液化: • 处于地下水位以下的饱和砂土和饱和粉土,在地震作
用时容易发生液化现象。 • 原因: • 地震引起的强烈振动使得饱和砂土或粉土颗粒间发生
相对位移,趋于密实,短时间内孔隙水压力急剧增加, 使原先由土颗粒通过其接触点传递的压力(有效压力) 减小,当有效压力完全消失时,沙土颗粒局部或全部 处于悬浮状态。此时土体抗剪强度为零,形如液体, 产生冒水喷砂现象。 • S=(σ-μ)tanφ
2.天然地基抗震验算
• (2)上部荷载效应应采用地震作用效应标准组合,即各作 用分项系数均取1.0的组合。
• (3)采用拟静力法,假定地震作用如同静力作用,验算地 基的承载力和稳定性。
• 验算天然地基地震作用下的竖向承载力时,按地震作用 效应标准组合的基础底面平均压力和边缘最大压力应符 合下列各式要求:
1.可不进行地基及基础抗震验算的情况
• 1砌体房屋。
• 2地基主要受力层范围内不存在软弱粘性土层的下 列建筑:
• 1)一般的单层厂房和单层空旷房屋; • 2)不超过8层且高度在25m以下的一般民用框架房屋; • 3)基础荷载与2)项相当的多层框架厂房。
• 3《抗震规范》规定可不进行上部结构抗震验算的 建筑
t di / vsi
深于剪场切地波覆速盖的层计厚算度深度d0是取地面下20m,且不
3.场地类别的划分
《抗震规范》按照等效剪切波速和场地覆盖层厚 度两个因素,将建筑场地划分为四种类别:
• 对丁要建筑和≤10层且高度≤30m丙类建筑,当无实测剪切波速时, 可参考岩土性状来划分。
§2.2 地基抗震验算
土层剪切波速范 围m/s
υs>500
中硬土
中密、稍密的碎石土,密实、中密的砾、 500 ≥ υs >250 粗、中砂,fa>200的粘性土和粉土,坚 硬黄土
中软土
稍密的砾、粗、中砂,不属松散类的细 250 ≥ υs >140 粉砂,fa≤200的粘性土和粉土,
fa>130的填土,可塑黄土
软弱土
淤泥和淤泥质土,松散的砂,新近沉积 υs<140 的粘性土、 fa≤130的填土,可塑黄土
• 注:剪切波速均大于500m/s的孤石、透镜体不计,火山 岩硬夹层不计厚度。
• 土层越厚,震害越严重
等效剪切波速
• 当土层物理力学指标明显不同时(分层), 可采用等效剪切波速
• 等效剪切波速以剪切波在地面至计算深度 各层土中的传播的时间不变的原则,来定 义的土层平均剪切波速:

vse d0 / t
建筑结构系列电子教案
建筑结构抗震设计
Reinforced Concrete Structure
2.场地与地基
Building Site and foundations
主讲:张自荣 2010-10
第二章 场地与地基
§2.1 建筑场地 §2.2 天然地基的抗震验算 §2.3 液化地基的判别与处理
§2.1 建筑场地
p faE
• 式中:
pmax 1.2 faE
• P——地震作用效应标准组合的基础底面平均压力;
• Pmax——地震作用效应标准组合的基础边缘的最大
压力。
2.天然地基抗震验算
• (4)地基稳定性要求: • 高宽比大于4 的高层建筑,在地震作用下
基础底面不宜出现拉应力; • 其他建筑,基础底面与地基土之间零应力
• 场地:是指范围相当于厂区、居民点、自然村 或平面面积不小于0.5km2,具有相似的反映谱 特征的工程群所在地。(建筑物所在地)
• 建筑在不同地质条件的场地上的建筑地按其对建筑物地震作用的强 弱和特征进行分类,以便根据不同的建筑场地 类别采用相应的设计参数,进行建筑物的抗震 设计和采取相应的抗震措施。
注:软弱粘性土层指7度、8度和9度时,地基承载力 特征值分别小于80、100和120kPa的土层。
2.天然地基抗震验算
• (1)确定地震作用下地基土的承载力: • 采用在地基静承载力设计值基础上乘以抗震调整系数来
计算
faE a fa
• 地震作用下一般土的动强度高于静强度。 • 地震作用下地基的可靠度可比静力荷载下有所降低。
建筑地段
建筑地段
建筑地段的选用原则
•宜选择有利地段 •避开不利地段
•当无法避开不利地段时,应采取有效措施, •不应在危险地段建造甲乙丙类建筑
建筑场地的地震影响
• 建筑场地的地震影响:
• 不同场地上的建筑物的震害差异明显:
• 在软弱地基上,柔性结构容易遭到破坏,刚性 结构表现较好;结构破坏有时是由于地基破坏 而产生;
• 大量的一般性地基具有很好的抗震性能,极少有因地 基承载力不足而导致的震害。
• 原因: • 一般天然地基在静力荷载作用下具有相当大的安全 储备。
• 地基在建筑物自重长期作用下产生固结,使承载力 提高
• 动载短期荷载作用下,地基动承载力也有所提高 • 大量的一般地基具有良好的抗震性能,按地基静力承
载力设计的地基能够满足抗震要求,规范规定了相当 大部分的建筑物可不进行天然地基及基础的抗震承载 力验算。
1.建筑地段类别的划分
按震害轻重程度将建筑场地地段分三类
地段类别
地质 、地形、 地貌
有利地段
稳定基岩、坚硬土、开阔平坦密实均匀的中硬 土等
软弱土、液化土、条状突出的山嘴,高耸孤立 不利地段 的山丘,非岩质的陡坡,河岸和边坡边缘,平
面分布土成因、岩性、状态明显不均匀的土层
地震是可能发生滑坡、崩塌、地陷、地裂、泥 危险地段 石流等及发震断带上可能发生地表位错的部位
fa为深宽修正后的地基静承载力特征值(KPa)
覆盖层厚度
• 场地覆盖层厚度:
• ①一般指的是地面至坚硬土顶面的距离。
• 坚硬土通常是指剪切波速大于500m/s的土层和岩石;
• ②但当地面5m以下存在剪切波速大于相邻上层土 剪切波速2.5倍的土层,且下卧岩层的剪切波速均 不小于400m/s时,也可按该层土顶面至地面的距 离作为覆盖层厚度。
• 在坚硬地基上,柔性结构表现较好,而刚性结 构表现不一,有好有坏;建筑物的破坏通常是 因结构破坏而产生;
• 总体来说,在软弱地基上的破坏比坚硬地基上 的破坏要严重。
2. 场地土类型和覆盖层厚度
• 场地土类型是指土层本身的刚度特性,根据土层剪 切波速将土的类型划分为四种:
土的类型
岩土名称和性质
坚硬土或岩石 稳定岩石,密实的碎石土
相关文档
最新文档