三角形的高、中线与角平分线练习题及答案讲解学习
三角形的角平分线中线高以及三角形稳定性知识点练习与作业

三角形的高,中线,角平分线知识点及练习知识点一:认识并会画三角形的高线,利用其解决相关问题 1、作出下列三角形三边上的高:2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交于三角形的 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)交点我们叫做三角形的垂心。
练习一:如图所示,画△ABC 的一边上的高,下列画法正确的是( ).知识点二:认识并会画三角形的中线,利用其解决相关问题 1、 作出下列三角形三边上的中线2、AD 是△ABC 的边BC 上的中线,则有BD = =21, 3、由作图可得出如下结论:(1)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交于三角形的 ;(3)钝角三角形的三条中线相交于三角形的 ;(4)直角三角形的三条中线相交于三角形的 ;(5)交点我们叫做三角形的重心。
练习二:如图,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中________上的中线;知识点三:认识并会画三角形的角平分线,利用其解决相关问题 1、作出下列三角形三角的角平分线:2、AD 是△ABC 中∠BAC 的角平分线,则∠BAD=∠ =3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;(5)交点我们叫做三角形的内心。
练习三:如图,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 .总结:三角形的高、中线、角平分线都是一条线段。
三、综合练习A C BA CB AC B ACB AC B A C B1CD BA图11C图2BCD E1.一个三角形有______条中线,______条角平分线,______条高。
(新课标)华东师大版七年级数学下册《三角形的角平分线、中线和高》同步训练及解析

2017-2018学年(新课标)华东师大版七年级下册9.1.2三角形的角平分线,中线和高线一.选择题(共8小题)1.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A.B.C.D.2.在△ABC所在的平面内存在一点P,它到A、B、C三点的距离都相等,那么点P一定是()A.△ABC三边中垂线的交点B.△ABC三边上高线的交点C.△ABC三内角平分线的交点D.△ABC一条中位线的中点3.已知BD是△ABC的中线,AB=4,AC=3,BD=5,则△ABD的周长为()A. 12 B.10.5 C.10 D.8.54.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线5.如图,AD是△ABC的中线,已知△ABD比△ACD的周长大6 cm,则AB与AC的差为()A. 2cm B.3cm C.6cm D.12cm6.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③7.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定8.下列说法错误的是()A.三角形的中线、高、角平分线都是线段B.任意三角形内角和都是180°C.三角形按角可分为锐角三角形、直角三角形和等腰三角形D.直角三角形两锐角互余二.填空题(共6小题)9.在△ABC中,AD为BC边的中线,若△ABD与△ADC的周长差为3,AB=8,10.如图,在△ABC中,BE是边AC上的中线,已知AB=4cm,AC=3cm,BE=5cm,则△ABC的周长是_________ cm.11.在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD=_________ °.12.如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,则△ABD 与△ACD的周长之差为_________ cm.13.如图,在△ABC中,AC⊥BC,CD⊥AB于点D.则图中共有_________ 个直角三角形.14.AD为△ABC的高,AB=AC,△ABC的周长为20cm,△ACD的周长为14cm,则AD= _________ .三.解答题(共6小题)15.在△ABC中,BD是AC边上的中线,已知AB=6cm,△ABD的周长与△CBD 的周长的差1cm,求边BC的长.16.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.17.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD 周长为15cm,求AC长.18.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线(1)求∠EAD的度数;(2)寻找∠DAE与∠B、∠C的关系并说明理由.19.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.20.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.9.1.2三角形的角平分线,中线和高线参考答案与试题解析一.选择题(共8小题)1.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A.B.C.D.考点:三角形的角平分线、中线和高;三角形的面积.菁优网版权所有分析:由三角形的三边为4,9,12,可知该三角形为钝角三角形,其最长边上的高在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.解答:解:∵42+92=97<122,∴三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选:C.点评:本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形内部;当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部;当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.2.在△ABC所在的平面内存在一点P,它到A、B、C三点的距离都相等,那么点P一定是()A.△ABC三边中垂线的交点B.△ABC三边上高线的交点C.△ABC三内角平分线的交点D.△ABC一条中位线的中点考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据已知,作出图形,已知△ABC内一点P,PA=PB=PC,如图所示,作辅助线PM、PN、PK分别垂直三角形的三边AC、BC、AB,可证得点P是三角形的外心.问题可求.解答:解:如图所示,PA=PB=PC,作PM⊥AC于点M,则∠PMA=∠PMC=90°,在两直角三角形中,∵PM=PM,PA=PC,∴△APM≌△CPM,∴AM=MC;同理可证得:AK=BK,BN=CN,∴点P是△ABC三边中垂线的交点.故选A.点评:解答本题的关键是熟练掌握三角形的内心(三边垂直平分线的交点)和外心(三条角平分线的交点);垂心是三条高的交点.3.已知BD是△ABC的中线,AB=4,AC=3,BD=5,则△ABD的周长为()A. 12 B.10.5 C.10 D.8.5考点:三角形的角平分线、中线和高.菁优网版权所有分析:先由BD是△ABC的中线,得出AD=AC=1.5,再根据三角形周长的定义得出△ABD的周长=AB+BD+AD,将数值代入计算即可求解.解答:解:∵BD是△ABC的中线,∴AD=AC=1.5,∴△ABD的周长=AB+BD+AD=4+5+1.5=10.5.故选B.点评:本题考查了三角形的中线与周长,比较简单,根据中线的定义得出AD=AC=1.5是解题的关键.4.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线考点:三角形的角平分线、中线和高.菁优网版权所有分析:三角形的角平分线与中线重合时才能将三角形分成面积相等的两部分,三角形的中位线将三角形分成面积为1:3,三角形的高只有与中线重合时才能将三角形分成面积相等的两部分,三角形的中线将三角形的一条边平均分成2部分,以这2部分分别为底,分别求新三角形的面积,面积相等.解答:解:(1)三角形的角平分线把三角形分成两部分,这两部分的面积比分情况而定;(2)三角形的中位线把三角形分成两部分,这两部分的面积经计算得:三角形面积为梯形面积的;(3)三角形的高把三角形分成两部分,这两部分的面积比分情况而定;(4)三角形的中线AD把三角形分成两部分,△ABD的面积为•BD•AE,△ACD面积为•CD•AE;因为AD为中线,所以D为BC中点,所以BD=CD,所以△ABD的面积等于△ACD的面积.∴三角形的中线把三角形分成面积相等的两部分.故选D.点评:考查中线,高,中位线,角平分线的定义,及中线,高,中位线在实5.如图,AD是△ABC的中线,已知△ABD比△ACD的周长大6 cm,则AB与AC的差为()A. 2cm B.3cm C.6cm D.12cm考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的周长和中线的定义求AB与AC的差.解答:解:∵AD是△ABC的中线,∴BD=DC.∴△ABD比△ACD的周长大6 cm,即AB与AC的差为6cm.故选C.点评:三角形的中线即三角形的一个顶点与对边中点所连接的线段.6.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在解答:解:①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.故选B.点评:考查了三角形的三条中线,三条角平分线,三条高的位置.三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上.7.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的高的特点对选项进行一一分析,即可得出答案.解答:解:A、锐角三角形,三条高线交点在三角形内,故错误;B、钝角三角形,三条高线不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.故选:C.点评:此题主要考查了三角形的高,用到的知识点是钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.8.下列说法错误的是()A.三角形的中线、高、角平分线都是线段B.任意三角形内角和都是180°C.三角形按角可分为锐角三角形、直角三角形和等腰三角形D.直角三角形两锐角互余考点:三角形的角平分线、中线和高;三角形内角和定理;直角三角形的性质.菁优网版权所有专题:推理填空题.分析:根据三角形的中线高角平分线定义即可判断A;由三角形内角和定理能判断B;由直角三角形的分类能判断C;根据直角三角形的性质能判断D.解答:解:A、三角形的中线高角平分线都是线段,故本选项错误;B、根据三角形的内角和定理,三角形的内角和等于180°,故本选项错误;C、因为三角形按角分为直角三角形和斜三角形(锐角三角形、钝角三角形),故本选项正确;D、直角三角形两锐角互余,故本选项错误;故选C.点评:本题考查了三角形的角平分线、中线、高,三角形的内角和定理,直角三角形的性质等知识点,熟练理解和掌握这些知识是解此题的关键.二.填空题(共6小题)9.在△ABC中,AD为BC边的中线,若△ABD与△ADC的周长差为3,AB=8,则AC= 5 .考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的中线的定义可得BD=CD,然后求出△ABD与△ADC的周长差AB与AC的差,然后代入数据计算即可得解.解答:解:∵AD为BC边的中线,∴BD=CD,∴△ABD与△ADC的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD与△ADC的周长差为3,AB=8,∴8﹣AC=3,解得AC=5.故答案为:5.点评:本题考查了三角形的中线,熟记概念并求出两个三角形的周长的差等于两边长的差是解题的关键.10.如图,在△ABC中,BE是边AC上的中线,已知AB=4cm,AC=3cm,BE=5cm,则△ABC的周长是cm.考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的中线定理:AB2+BC2=2(BE2+AE2),来求出BC的长度,然后再来求△ABC的周长.解答:解:∵在△ABC中,BE是边AC上的中线,∴AB2+BC2=2(BE2+AE2),AE=AC,∵AB=4cm,AC=3cm,BE=5cm,∴BC=(cm),∴AB+BC+AC=(cm),即△ABC的周长是cm.点评:本题主要考查了三角形的中线定理.11.在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD= 30 °.考点:三角形的角平分线、中线和高.菁优网版权所有分析:要求∠BAD的度数,只要求得∠BAC的度数即可,可根据三角形的内角和,利用180°减去另外两个角的度数可得答案.解答:解:△ABC中,∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C,=180°﹣50°﹣70°,=60°,∴∠BAD=∠BAC=×60°=30°.故填30.点评:本题考查了三角形的角平分线、中线和高的相关知识;利用三角形的内角和求得∠BAC的度数是正确解答本题的关键.12.如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,则△ABD 与△ACD的周长之差为 2 cm.考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的周长的计算方法得到,△ABD的周长和△ADC的周长的差就是AB与AC的差.解答:解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=5﹣3故答案为:2.点评:本题考查三角形的中线的定义以及周长的计算方法,难度适中.在三角形中,连接一个顶点和它对边的中点的线段,叫做这个三角形的中线.三角形的周长即三角形的三边和,C=a+b+c.13.如图,在△ABC中,AC⊥BC,CD⊥AB于点D.则图中共有 3 个直角三角形.考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据直角三角形的定义,解答出即可.解答:解:∵AC⊥BC,CD⊥AB,∴∠ACB=∠ADC=∠BDC=90°,∴直角三角形有:△ACB,△ADC,△BDC.故答案为:3.点评:本题主要考查了直角三角形的定义,有一个角是直角的三角形是直角三角形.14.AD为△ABC的高,AB=AC,△ABC的周长为20cm,△ACD的周长为14cm,则AD= 4cm .考点:三角形的角平分线、中线和高.菁优网版权所有分析:如图,由于AD为△ABC的高,AB=AC,那么D为BC中点,而△ABC的周长为20cm,由此可以求出AC+CD的值,而△ACD的周长为14cm,由此就可以求出AD的长度.解答:解:如图,∵AD为△ABC的高,AB=AC,∴D为BC中点,而△ABC的周长为20cm,∴AC+CD=×20=10cm,而△ACD的周长=AC+CD+AD=14cm,∴AD=4cm.故答案为:4cm.点评:此题主要考查了等腰三角形的底边上中线的性质,也利用了三角形的周长公式,然后求出所求线段的长度.三.解答题(共6小题)15.在△ABC中,BD是AC边上的中线,已知AB=6cm,△ABD的周长与△CBD 的周长的差1cm,求边BC的长.考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解答:解:∵BD是△ABC的中线,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=1cm.又∵AB=6cm,∴BC=1cm.点评:本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.16.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.考点:三角形的角平分线、中线和高;三角形内角和定理.菁优网版权所有分析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.解答:解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.点评:此题主要考查了角平分线的性质以及高线的性质和三角形内角和定理,根据已知得出∠B的度数是解题关键.17.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD 周长为15cm,求AC长.考点:三角形的角平分线、中线和高.菁优网版权所有分析:先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BD的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解答:解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.点评:考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.18.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线(1)求∠EAD的度数;(2)寻找∠DAE与∠B、∠C的关系并说明理由.考点:三角形的角平分线、中线和高;三角形内角和定理.菁优网版权所有分析:(1)根据三角形的内角和定理首先求得∠BAC,然后利用角平分线的定义求得∠BAE,再在直角△BAD中求得∠BAD的度数,根据∠EAD=∠EAB ﹣∠BAD即可求得;(2)根据三角形的内角和定理,以及角平分线的定义用∠B与∠C表示出∠EAB,在直角△ABD中,利用∠B表示出∠BAD,根据∠EAD=∠EAB﹣∠BAD即可求得.解答:解:(1)∵在△ABC中,∠BAC=180°﹣∠C﹣∠B=180°﹣20°﹣60°=100°,又∵AE为角平分线,∴∠EAB=∠BAC=50°,在直角△ABD中,∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠EAB﹣∠BAD=50°﹣30°=20°;(2)根据(1)可以得到:∠EAB=∠BAC=(180°﹣∠B﹣∠C)∠BAD=90°﹣∠B,则∠EAD=∠EAB﹣∠BAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠B)=(∠B﹣∠C).点评:本题考查了角平分线的定义,以及三及三角形的内角和定理,正确用∠B与∠C表示出∠EAB是关键.19.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.考点:三角形的角平分线、中线和高.菁优网版权所有分析:由三角形的一个外角等于与它不相邻的两个内角和知,∠BAC=∠ACD﹣∠B,∠AEC=∠B+∠BAE,而AD平分∠BAC,故可求得∠AEC的度数.解答:解:∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC∴∠BAE=15°∴∠AED=∠B+∠BAE=41°.点评:本题利用了三角形内角与外角的关系和角平分线的性质求解.20.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.点评:本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.。
人教版八年级数学上册《三角形的高、中线与角平分线》拔高练习(1)

《三角形的高、中线与角平分线》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:.(2)点G是△的垂心.(3)点A是△的垂心.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.《三角形的高、中线与角平分线》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN【分析】三角形一边的中点与此边所对顶点的连线叫做三角形的中线,逐一判断各选项即可.【解答】解:由图可得,F是BC的中点,根据三角形中线的定义,可知线段AF是△ABC的中线,故选:C.【点评】本题主要考查了三角形中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【分析】直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;作出一个直角三角形的高线进行判断,就可以得到.【解答】解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.【点评】本题主要考查了三角形的高的概念,钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点【分析】根据三角形的高线的定义分情况讨论高线的交点,即可得解.【解答】解:锐角三角形,三角形三条高的交点在三角形内部,直角三角形,三角形三条高的交点在三角形直角顶点,钝角三角形,三角形三条高的交点在三角形外部,故选:D.【点评】本题考查了三角形的高线,熟记三种三角形的高线的交点的位置是解题的关键.5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=45°.【分析】在三角形中,三内角之和等于180°,锐角三角形三个高交于一点.【解答】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.【点评】考查三角形中,三条边的高交于一点,且内角和为180°.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是直角三角形.【分析】根据直角三角形的高的交点是直角顶点解答.【解答】解:∵三角形的三条高线的交点在三角形的一个顶点上,∴此三角形是直角三角形.故答案为:直角三角形.【点评】本题考查了三角形的高,锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=2.【分析】作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,先证明△ADB≌△EDC得到EC=AB=10,再利用△AEF为等腰直角三角形计算出AF=EF=7,则根据勾股定理可计算出CF=,从而得到AC =6,接着利用△ACH为等腰直角三角形得到AH=CH=6,然后利用勾股定理计算出CD,从而得到BC的长.【解答】解:作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,∵AD是中线,∴BD=CD,在△ADB和△EDC中,∴△ADB≌△EDC(SAS),∴EC=AB=10,在RtAEF中,∵∠DAC=45°,AE=14,∴AF=EF=AE=7,在Rt△CEF中,CF==,∴AC=AF﹣CF=6,在Rt△ACH中,∵∠HAC=45°,∴AH=CH=AC=6,∴DH=AD﹣AH=1,在Rt△CDH中,CD==,∴BC=2CD=2.故答案为2.【点评】本题考查了三角形的角平分线、中线和高:熟练掌握三角形高、中线的定义;构造等腰直角三角形是解决此题的关键.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于5+3或5+5.【分析】分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.【解答】解:如图所示,Rt△ABC中,CD⊥AB,CD=AB=,设BC=a,AC=b,则,解得a+b=5,或a+b=﹣5(舍去),∴△AB长度周长为5+5;如图所示,Rt△ABC中,AC=BC,设BC=a,AC=b,则,解得,∴△AB长度周长为3+5;综上所述,该三角形的周长为5+3或5+5.故答案为:5+3或5+5.【点评】本题主要考查了三角形的高线以及勾股定理的运用,解决问题给的关键是利用勾股定理进行推算.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是2.【分析】根据三角形中线的定义可得AD=CD,然后求出△ABD和△BCD的周长差=AB ﹣BC,代入数据进行计算即可得解.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长差=(AB+AD+BD)﹣(BC+CD+BD),=AB+AD+BD﹣BC﹣CD﹣BD,=AB﹣BC,∵AB=8,BC=6,∴△ABD和△BCD的周长差=8﹣6=2.答:△ABD和△BCD的周长差为2.故答案为:2【点评】本题考查了三角形的中线的定义,是基础题,数据概念并求出△ABD和△BCD 的周长差=AB﹣BC是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.【分析】依据DE∥AC,DF∥AB,即可得到∠ADE=∠DAF,∠ADF=∠EAD,再根据∠ADE=∠ADF,即可得出∠DAF=∠EAD,进而得到AD是∠BAC的角平分线.【解答】解:AD是△ABC的角平分线.理由:∵DE∥AC,DF∥AB,∴∠ADE=∠DAF,∠ADF=∠EAD,又∵∠ADE=∠ADF,∴∠DAF=∠EAD,又∵∠DAF+∠EAD=∠BAC,∴AD是∠BAC的角平分线.【点评】本题主要考查了角平分线的定义以及平行线的性质,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE.(2)点G是△ABC的垂心.(3)点A是△BCG的垂心.【分析】(1)依据BE⊥AC,CF⊥AB,可得∠ABE+∠BAE=∠ACF+∠CAF=90°,即可得到∠ABE=∠ACF;(2)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断;(3)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断.【解答】解:(1)∵BE⊥AC,CF⊥AB,∴∠ABE+∠BAE=∠ACF+∠CAF=90°,∴∠ABE=∠ACF,同理可得,∠BAD=∠BCF,∠CAD=∠CBE,故答案为:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE;(2)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G,∴点G是△ABC的垂心,故答案为:△ABC;(3)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BF,CE交于点A,∴点A是△BCG的垂心,故答案为:△BCG.【点评】本题主要考查了三角形的角平分线高线以及中线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【分析】分高AD在△ABC内部和外部两种情况讨论求解即可.【解答】解:①如图1,当高AD在△ABC的内部时,∠BAC=∠BAD+∠CAD=70°+20°=90°;②如图2,当高AD在△ABC的外部时,∠BAC=∠BAD﹣∠CAD=70°﹣20°=50°,综上所述,∠BAC的度数为90°或50°.【点评】本题考查了三角形的高线,难点在于要分情况讨论.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.【分析】根据中线的定义知CD=BD.结合三角形周长公式知AC﹣AB=5cm;又AC+AB =11cm.易求AC的长度.【解答】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.【点评】本题考查了三角形的角平分线、中线和高.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.。
八年级上册数学人教版三角形的高、中线与角平分线 课时练 试题试卷 含答案解析(5)

11.1.2三角形的高、中线与角平分线一、选择题1.下列结论正确的有()①两条直线相交,所得的四个角中有一个角是90°,这两条直线一定互相垂直②三角形的三条角平分线交于一点,这点称为三角形的重心③直线AB⊥CD,也可以说成直线CD⊥AB④直线外一点与直线上各点连接的所有线段中,垂线段最短A.1个B.2个C.3个D.4个2.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形3.若线段CM、CH是△ABC的中线和高线,则()A.CM>CH B.CM≥CH C.CM<CH D.CM≤CH4.下列命题正确的是()A.三角形的三条边上的高交于三角形内部一点,到三个顶点的距离相等B.三角形的三条中线交于三角形内部一点,到三个顶点距离相等C.三角形的三条角平分线交于三角形内部一点,到三边的距离相等D.三角形的三边中垂线交于三角形内部一点,到三边的距离相等5.下列说法正确的个数有()①三角形的高、中线、角平分线都是线段;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.1个B.2个C.3个D.4个6.如图,是ABC的中线,AB比AC长3cm,若ABD△的周长为25cm,则△ACD的周长为()A.28cm B.25cm C.22cm D.19cm7.如图,若CD是△ABC的中线,AB=10,则AD=()A .5B .6C .8D .48.如图,△ABF 的面积是2,D 是AB 边上任意一点,E 是CD 中点,F 是BE 中点,△ABC 的面积是()A .4B .6C .8D .169.如图,D 、E 分别在∆ABC 的边BC 、AC 上,13CD BC =,13CE AC =,CD =1,CE =1,AC ,AD 与BE 交于点O ,已知∆ABC 的面积为12,则∆ABO 的面积为()A .4B .5C .6D .710.如图,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有().(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个二、填空题11.如图,在三角形ABC 中,AB AC ^,AD BC ^,垂足为D ,3AB =,4AC =,5BC =,则AD =______.12.设E 、F 是ABC 边AB 、AC 上的点,线段BE 、CF 交于D ,已知BDF ,BCD △,CDE △的面积分别为5,9,9,则四边形AEDF 的面积为___________.13.如图,在△ABC 中,AD 是BC 边上的中线,点E 在线段AC 上且EC =2AE ,线段AD 与线段BE 交于点F ,若△ABC 的面积为6,则四边形EFDC 的面积为________.14.如图,点G 是ABC 的重心,点D ,E 分别是边AB ,BC 的中点,连接,GD GE ,若ABC 的面积为6,则GDE △的面积为_________.15.如图,在ABC 中,D 是AB 的中点,E 是BC 上的一点,且5BE EC =,CD 与AE 相交于点F ,若CEF △的面积为1,则ABC 的面积为______.三、解答题16.如图,在ABC 中,AB =AC ,AC 边上的中线BD 把ABC 的周长分成12cm 和15cm 两部分,求ABC 各边的长.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.若△ABC 的面积为40,BD=5,则△BDE 中BD 边上的高为多少?18.已知,如图,在△ABC 中,,,6,5,4AD BC CE AB AB AD BC ^^===,求CE 的长.19.如图,在ABC 中AD 、AE 、AF 分别为△ABC 的高、角平分线和中线,已知AFC 的面积为10,AD =4,∠DAE =20°,∠C =30°.(1)求BC 的长度;(2)求∠B 的度数.20.在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=10cm ,BC=8cm ,AC=6cm ,(1)求CD 的长;(2)若AE 是BC 边上的中线,求△ABE 的面积.21.如图,在△ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时.若AE =4,△ABC 的面积为24,求CD 的长;(2)当AD 为∠BAC 的角平分线时.①若∠C =65°,∠B =35°,求∠DAE 的度数;②若∠C-∠B =20°,则∠DAE =°.22.如图所示,已知AD ,AE 分别是△ADC 和△ABC 的高和中线,AB=6cm ,AC=8cm ,BC=10cm ,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.23.操作与探究探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连结DA.若△ACD的面积为S1,则S1=________(用含a的代数式表示);(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE.若△DEC的面积为S2,则S2=(用含a的代数式表示);(3)在图2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=__________(用含a的代数式表示).发现:像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的_____倍.【参考答案】1.C2.B3.B4.C5.C6.C7.A8.C9.C10.A 11.2.412.4013.5 214.1215.4216.AB=AC=8cm,BC=11cm或AB=AC=10cm,BC=7cm 17.418.10 319.(1)10;(2)70°20.(1)4.8;(2)12cm2 21.(1)6;(2)①15°;②10.22.⑴4.8cm;⑵12cm²;⑶2cm. 23.(1)a;(2)2a;(3)6a;7。
八年级上册数学人教版课时练《 三角形的高、中线与角平分线》 试题试卷 含答案解析

《11.1.2三角形的高、中线与角平分线》课时练一、选择题1.三角形三条高的交点一定在)A .三角形内部B .三角形外部C .三角形内部或外部D .以上说法都不完整2.AD 是ABC 的高,80BAD Ð=°,20CAD Ð=°,则BAC Ð的度数为()A .100°B .80°C .60°D .100°或60°3.已知一个三角形三边之比为3∶4∶5,则这个三角形三边上的高之比为()A .3∶4∶5B .5∶4∶3C .20∶15∶12D .10∶8∶24.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为()A .8B .9.6C .10D .125.如图,已知BD 是△ABC 的中线,AB =7,BC =5,且△ABD 的周长为15,则△BCD 的周长是()A .12B .14C .13D .不能确定6.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm .则等腰三角形的腰长为()A .2cm B .8cm C .2cm 或8cmD .以上答案都不对7.下列说法正确的个数有()①三角形的高、中线、角平分线都是线段;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A .1个B .2个C .3个D .4个8.三角形三条中线的交点叫做三角形的().A .内心B .外心C .重心D .垂心9.在ABC D 中,AD 是BC 边上的中线,点G 是重心,如果6AG =,那么线段DG 的长为()A .3B .4C .9D .1210.如图在ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是()A .BF CF=B .12EAD B C Ð=Ð-ÐC .C BAD Ð=ÐD .2ABC ABFS S =△△二、填空题11.在ABC 中,90B Ð=°,8AB =cm ,6BC =cm ,点D 是AB 的中点,点P 从A 点出发,沿线段AD 以每秒2cm 的速度运动到B .当点P 的运动时间t =____________秒时,PCD 的面积为26cm .12.如图,在△ABC 中,D 为BC 边上的一点,且BD =3DC ,连接AD ,E 为AD 的中点,连接BE 并延长交AC 于点F ,若△BDE 与△AEF 的面积之和为9cm 2,则△ABC 的面积为___cm 213.如图,//////AB DC ED BC AE BD ,,,那么图中和ABD △面积相等的三角形(不包括ABD △)有______个.14.如图,点O 在ABC 内部,且到三边的距离相等.且∠A=70°,则∠BOC=______°.15.如图,在△ABC 中,∠BAC =100°,AD ⊥BC 于D 点,AE 平分∠BAC 交BC 于点E .若∠C =26°,则∠DAE 的度数为_____.三、解答题16.如图,AD //BC ,52BC AD =,求三角形ABC 与三角形ACD 的面积之比.17.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?18.如图所示,已知AD ,AE 分别是△ABC 的高和中线,AB =3cm ,AC =4cm ,BC=5cm ,∠CAB =90°.(1)求AD 的长.(2)求△ABE 的面积.19.如图,AD 、BE 分别是△ABC 的高,AF 是角平分线.(1)若∠ABC=35°,∠C=75°,求∠DAF 的度数;(2)若AC=4,BC=6.求AD 与BE 的比.20.如图,在ABC D 中,AE 是边BC 上的高线.(1)若AD 是BC 边上的中线,3cm AE =,212cm ABC S D =.求DC 的长.(2)若AD 是BAC Ð的平分线,40B Ð=°,50C Ð=°,求DAE Ð的大小.21.如图,在ABC D 中,AD 是BC 边上的高,AE 是ABC D 的角平分线,,40BE AE B °=Ð=.(1)求EAD Ð的度数;(2)若1CD =,求AC 的长.22.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E点运动过程中,EG 和FH 的数量关系.23.操作示例:(1)如图1,在中△ABC ,AD 为BC 边上的中线,ABD △的面积记为1S ,的△ADC 面积记为2S .则1S ,2S 之间的数量关系为.解决问题:(2)在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为______.拓展延伸:(3)如图3,在△ABC 中,点D 在边BC 上,且2BD CD =,ABD △的面积记为1S ,△ADC 的面积记为2S .则1S 与2S 之间的数量关系为______参考答案1.D 2.D 3.C4.B 5.C 6.B 7.C 8.C 9.A 10.C 11.1或312.2113.214.12515.14°16.5:217.2cm 18.(1)125cm ;(2)3cm 219.(1)20°;(2)2:320.(1)CD =4c m ;(2)5°21.(1)10°;(2)2.22.(1)4522cm ;(2)23302t cm æö-ç÷èø;218cm ;(3)53EG FH =23.(1)12S S =;(2)6;(3)122S S =。
三角形中线高角平分线的30题(有答案)ok

题(有答案)三角形高中线角平分线专项练习30题(有答案)1.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).2.如图,AD为△ABC的中线,BE为三角形ABD中线,中线,的度数;(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;边上的高;(2)在△BED中作BD边上的高;边的距离为多少?(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,的长.求AB和AC的长.4.如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求的大小.∠B的大小.5.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.的大小.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.是否相等?若相等,请说明理由.6.在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.的度数.7.在△ABC中.中.(如图)(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC= _________°,再用你已学过的数学知识加以说明.,再用你已学过的数学知识加以说明.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=_________°.8.在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.的交点.的度数.求∠ABE、∠ACF和∠BHC的度数.9.如图,△ACB中,∠ACB=90°,∠1=∠B.的高;(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.的长.10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.的度数.11.如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.的平分线.(1)求∠DAE的度数;的度数;是哪几个三角形的高.(2)指出AD是哪几个三角形的高.12.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,的度数.求∠ABE、∠ACF和∠BHC的度数.13.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线为角平分线的度数;(1)求∠EAD的度数;的关系并说明理由.(2)寻找∠DAE与∠B、∠C的关系并说明理由.14.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.的度数.15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,的角平分线,的度数.(1)若∠B=47°,∠C=73°,求∠DAE的度数.的代数式表示)(2)若∠B=α°,∠C=β°(α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,在△ABC中,AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.的度数.17.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.18.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?确吗?为什么?19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.长.20.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)之间有何数量关系,请写出来,并说明其中的道理.(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.40°60°90°120°∠BAC的度数的度数∠BIC的度数∠BDI的度数21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA 的度数.的度数.22.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:是高,填空:(1)BE=_________=_________(2)∠BAD=__________________(3)∠AFB=_________=90°(4)S△ABC=_________S△ABE.23.如图,BM是△ABC的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长是差是多少?的周长是差是多少?24.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.的长.25.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?的边长的差吗?26.如图,在△ABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由.,请说明理由.27.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.的角平分线,对吗?说明理由.28.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,的长.求AC的长.29.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.的长.30.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.的周长的差.参考答案:1.(1)∵∠B=70°,CD ⊥AB 于D , ∴∠BCD=90°﹣70°=20°,在△ABC 中,∵∠A=30°,∠B=70°, ∴∠ACB=180°﹣30°﹣70°=80°, ∵CE 平分∠ACB , ∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE ﹣∠BCD=40°﹣20°=20°, ∴∠BCD=∠ECD ;(2)∵CD ⊥AB 于D ,DF ⊥CE 于F , ∴∠CED=90°﹣∠ECD=90°﹣20°=70°, ∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B 相等的角有:∠CED 和∠CDF . 2.(1)∵∠BED 是△ABE 的一个外角,的一个外角, ∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF 即是△BED 中BD 边上的高.边上的高. (3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线, ∴S △BED =S △ABC =×60=15; ∵BD=5,∴EF=2S △BED ÷BD=2×15÷5=6, 即点E 到BC 边的距离为6.3.∵AD 是BC 边上的中线,边上的中线, ∴BD=CD ,∴△ABD 的周长﹣△ADC 的周长=(AB+AD+BD )﹣(AC+AD+CD )=AB ﹣AC=4,(2分)分) 即AB ﹣AC=4①, 又AB+AC=14②, ①+②得.2AB=18, 解得AB=9,②﹣①得,2AC=10, 解得AC=5,∴AB 和AC 的长分别为:AB=9,AC=5. 4.∵DE 是CA 边上的高,边上的高, ∴∠DEA=∠DEC=90°, ∵∠A=20°,∴∠EDA=90°﹣20°=70°, ∵∠EDA=∠CDB ,∴∠CDE=180°﹣70°×2=40°,在Rt △CDE 中,∠DCE=90°﹣40°=50°, ∵CD 是∠BCA 的平分线,的平分线,∴∠BCA=2∠DCE=2×50°=100°,在△ABC 中,∠B=180°﹣∠BCA ﹣∠A=180°﹣100°﹣20°=60°.故答案为:60 5.(1)∵∠B=30°,∠C=70° ∴∠BAC=180°﹣∠B ﹣∠C=80° ∵AE 是角平分线,是角平分线, ∴∠EAC=∠BAC=40°∵AD 是高,∠C=70° ∴∠DAC=90°﹣∠C=20°∴∠EAD=∠EAC ﹣∠DAC=40°﹣20°=20°;(2)由(1)知,∠EAD=∠EAC ﹣∠DAC=∠BAC ﹣(90°﹣∠C )①把∠BAC=180°﹣∠B ﹣∠C 代入①,整理得,整理得 ∠EAD=∠C ﹣∠B ,∴2∠EAD=∠C ﹣∠B .6.∵AD 是高,∠C=60°,∴∠CAD=90°﹣∠C=90°﹣60°=30°; ∵∠B=20°,∠C=60°,∴∠BAC=180°﹣∠B ﹣∠C=180°﹣20°﹣60°=100°, ∵AE 是角平分线,是角平分线, ∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAE ﹣∠CAD=50°﹣30°=20°. 7.(1)∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°, 又∵∠BAC=60°,∴∠ABD=180°﹣∠ADB ﹣∠A=180°﹣90°﹣60°=30°, ∴∠BOC=∠EBD+∠BEO=90°+30°=120°; (2)如图所示:)如图所示:∠BAC+∠BOC=180°;理由如下:∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°,∵∠ABD=180°﹣∠ADB ﹣∠BAD=180°﹣90°﹣∠BAD=90°﹣∠BAD ,∠O=180°﹣∠BEO ﹣∠DBA=90°﹣∠DBA=90°﹣(90°﹣∠BAD )=∠BAD , ∵∠BAC=180°﹣∠DAB , ∴∠BAC=180°﹣∠O , ∴∠BAC+∠O=180°; (3)由(1)(2)可得∠BAC+∠BOC=180°.8.∵BE是AC上的高,上的高,∴∠AEB=90°,∵∠ABC=60°,∠ACB=50°,∴∠A=180°﹣60°﹣50°=70°,∴∠ABE=180°﹣90°﹣70°=20°,∵CF是AB上的高,上的高,∴∠AFC=90°,∴∠ACF=180°﹣90°﹣70°=20°,∵∠ABE=20°,∴∠EBC=∠ABC﹣∠ABE=60°﹣20°=40°,∵∠ACF=20°,∠ACB=50°,∴∠BCH=30°,∴∠BHC=180°﹣40°﹣30°=110°.9.(1)∵∠1+∠BCD=90°,∠1=∠B ∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC •BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===10.∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC ∴∠BAE=15°∴∠AED=∠B+∠BAE=41°11.(1)∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD=30°,∴∠BAC=50°+30°=80°,∵AE是∠BAC的平分线,的平分线,∴∠BAE=40°,∴∠DAE=50°﹣40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.的高.12.∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.13.(1)∵在△ABC中,∠BAC=180°﹣∠C﹣∠B=180°﹣20°﹣60°=100°,又∵AE为角平分线,为角平分线,∴∠EAB=∠BAC=50°,在直角△ABD中,∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠EAB﹣∠BAD=50°﹣30°=20°;(2)根据(1)可以得到:∠EAB=∠BAC=(180°﹣∠B﹣∠C)∠BAD=90°﹣∠B,则∠EAD=∠EAB﹣∠BAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠B )=(∠B﹣∠C).14.∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°15.(1)∵∠B=47°,∠C=73°,∴∠BAC=180°﹣47°﹣73°=60°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣47°=43°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=30°,∴∠DAE=∠BAD﹣∠BAE=43°﹣30°=13°;(2))∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣α°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=(180°﹣α°﹣β°),∴∠DAE=∠BAD﹣∠BAE=90°﹣α°﹣(180°﹣α°﹣β°),=90°﹣α°﹣90°+α°+β°,=(β﹣α)°16.∵∠B=60°,∠C=45°,∴∠BAC=180°﹣60°﹣45°=75°,∵AD为∠BAC的角平分线,的角平分线,∴∠BAD=∠CAD=∠BAC=37.5°,在△ABD 中,∠ADB=180°﹣∠BAD ﹣∠B=82.5°, 则∠ADC=180°﹣∠ADB=97.5°. 17.∵∠ACB=90°, ∴∠1+∠3=90°, ∵CD ⊥AB , ∴∠2+∠4=90°,又∵BE 平分∠ABC , ∴∠1=∠2, ∴∠3=∠4, ∵∠4=∠5, ∴∠3=∠5,即∠CFE=∠CEF.18.(1)在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣50°﹣80°=50°; ∵AD 是角平分线,是角平分线, ∴∠DAC=∠BAC=25°;在△ADC 中,∠ADC=180°﹣∠C ﹣∠DAC=75°; 在△ADE 中,∠DAE=180°﹣∠ADC ﹣AED=15°. (2)∠DAE=180°﹣∠ADC ﹣AED=180°﹣∠ADC ﹣90°=90°﹣∠ADC=90°﹣(180°﹣∠C ﹣∠DAC )=90°﹣(180°﹣∠C ﹣∠BAC )=90°﹣[180°﹣∠C ﹣(180°﹣∠B ﹣∠C )]=(∠C ﹣∠B ). (3)(2)中的结论仍正确.)中的结论仍正确.∠A ʹDE=∠B+∠BAD=∠B+∠BAC=∠B+(180°﹣∠B ﹣∠C )=90°+∠B ﹣∠C ;在△DA ʹE 中,∠DA ʹE=180°﹣∠A ʹED ﹣∠A ʹDE=180°﹣90°﹣(90°+∠B ﹣∠C )=(∠C ﹣∠B ). 19.∵AB=6cm ,AD=5cm ,△ABD 周长为15cm , ∴BD=15﹣6﹣5=4cm , ∵AD 是BC 边上的中线,边上的中线, ∴BC=8cm ,∵△ABC 的周长为21cm , ∴AC=21﹣6﹣8=7cm . 故AC 长为7cm . 20.(1)填写表格如下:)填写表格如下:∠BAC 的度数40° 60° 90°120° ∠BIC 的度数的度数 110°120°135°150°∠BDI 的度数110° 120° 135°(2)∠BIC=∠BDI ,理由如下:,理由如下:∵△ABC 的三条内角平分线相交于点I , ∴∠BIC=180°﹣(∠IBC+∠ICB ) =180°﹣(∠ABC+∠ACB ) =180°﹣(180°﹣∠BAC ) =90+∠BAC ; ∵AI 平分∠BAC , ∴∠DAI=∠DAE . ∵DE ⊥AI 于I , ∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC . ∴∠BIC=∠BDI .21.∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°, 又∵AD 是高,是高, ∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°, ∵AE 、BF 是角平分线,是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°, ∴∠DAE=∠DAC ﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°, ∴∠DAC=30°,∠BOA=120°. 故∠DAE=5°,∠BOA=120°. 22.(1)∵AE 是中线,是中线, ∴BE=CE=BC , (2)∵AD 是角平分线,是角平分线, ∴∠BAD=∠CAD=∠BAC , (3)∵AF 是高,是高,∴∠AFB=∠AFC=90°,(4)S △ABC =,S △ABE =,∵BC=2BE,∴S△ABC=2S△ABE,故答案为CE,BC,∠CAD,∠BAC,∠AFC,2 23.∵BM是△ABC的中线,的中线,∴MA=MC,∴C△ABM﹣C△BCM=AB+BM+MA﹣BC﹣CM﹣BM =AB﹣BC=5﹣3=2cm.答:△ABM与△BCM的周长是差是2cm.24.方法1:由题意知:AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得:2AB+2AD+BC=60③,③﹣①得:2AD=26,∴AD=13cm.方法2:∵AB=AC,D是中点,且AB+AC+BC=34,∴BD=BC,AB=(AB+AC),∴AB+BD=(AB+AC)+BC=(AB+AC+BC)=17cm (周长的一半).∵AB+BD+AD=30cm,AD=30﹣17=13cm.25.能..能.由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD﹣(AB+BD+AD)=AC﹣AB=5.即AC与AB的边长的差为5 26.∵AD是BC边上的中线,∴BD=DC,∵AC=AB,AD=AD,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.27.错误..错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.的平分线.28.∵AD是BC边上的中线,边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.29.∵AD是△ABC的中线,AE是△ACD的中线,的中线, ∴BD=CD=2DE=4cm,∴BE=BD+DE=6cm,∴BC=2BD=8cm.30.∵AD是△ABC中BC边上的中线,边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=1.。
三角形的高、中线、与角平分线专题练习(含答案解析)--八年级数学上册

三角形的高、中线、与角平分线专题练习(含答案解析)--八年级数学上册一、基础题训练1.下列四个图形中,线段BE是△ABC的高的是()2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③4.三角形的三条中线的交点的位置为()A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能在三角形的一条边上5.下列说法错误的是()A.三角形的角平分线能把三角形分成面积相等的两部分B.三角形的三条中线,角平分线都相交于一点C.直角三角形三条高交于三角形的一个顶点D.钝角三角形的三条高所在直线的交点在三角形的外部6.如图,在△ABC中,AD是BC边上的中线,已知AB=7cm,AC=5cm,则△ABD和△ACD的周长差为cm.7.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.二、中档题训练8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.9.大家都知道,三角形的三条高(所在的直线)、三条角平分线、三条中线都会交于一点,那么三角形的三条交点不一定在三角形的内部.10.三角形的:①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④11.如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE 的周长的差.12.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,BE=2,AF=3,填空:(1)BE==.(2)∠BAD==.(3)∠AFB==.(4)S△AEC=.三、综合题训练13.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.14.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD 和∠ECD的度数.答案解析1.选D2.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.3.选B4.选A5.【考点】三角形的角平分线、中线和高【分析】根据三角形的面积公式以及三角形的中线、角平分线、高的概念可知.【解答】解:A、三角形的中线把三角形的面积分成相等的两部分,错误;B、三角形的三条中线,角平分线都相交于一点,正确;C、直角三角形三条高交于直角顶点,正确;D、钝角三角形的三条高所在直线的交点在三角形的外部,正确.故选A.【点评】注意三角形的中线、角平分线、高的概念.以及三角形的中线、角平分线、高的交点的位置.6.已知AB=7cm,AC=5cm,则△ABD和△ACD的周长差为2cm.7.68.【考点】三角形的角平分线、中线和高.【专题】几何图形问题.【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.【解答】解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.【点评】本题考查了三角形的角平分线、中线和高的相关知识;求得∠EAD=10°是正确解答本题的关键.9.高10.B11.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE是等底同高的两个三角形,它们的面积相等;(3)由于AE是中线,那么BE=CE,于是△ACE的周长﹣△ABE 的周长=AC+AE+CE﹣(AB+BE+AE),化简可得△ACE的周长﹣△ABE的周长=AC﹣AB,易求其值.12.(1)BE=CE=BC.(2)∠BAD=∠DAC=∠BAC.(3)∠AFB=∠AFC=90°.(4)S△AEC=3.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形的中线、角平分线和高及三角形的面积公式进行计算即可.13.【点评】本题考查了等腰三角形的性质,三角形的三边关系定理的应用,注意:要分情况进行讨论.14、【考点】三角形的角平分线、中线和高.【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数。
三角形的高中线与角平分线练习题

4321EDCBA1CDBA三角形的高、中线与角平分线11 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R ,PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确 2、 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B.(1)试说明 CD 是ΔABC 的高;(2)如果AC=8,BC=6,AB=10,求CD 的长。
4如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2所以 ____∥____ ( ) 因为 ∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm7.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .22 C .17或22 D .138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°10.一个多边形的角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形部交于一点B.三角形的三条中线一定在三角形部交于一点C.三角形的三条角平分线一定在三角形部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形B.菱形C.三角形D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3) 4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°2.一个多边形的角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形4.六边形的角和等于_______度.5.正十边形的每一个角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,)已知一个多边形的角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形(2)(2005年,)五边形的角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个B.2个C.3个D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的角和增加多少度?若将n边形的边数增加1倍,则它的角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的角和为360°,如果四个角都是锐角或都是钝角,•则角和小于360°或大于360°,与四边形的角和为360°矛盾.•所以四个角不可以都是锐角或都是钝角.若四个角都是直角,则四个角的和等于360°,与角和定理相符,所以四个角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n (n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的角和.12.(1)C 点拨:设这个多边形的边数为n ,依题意,得(n-2)×180°=540°,解得n=5,故选C .(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n 边形有(3)2n n -条对角线. (2)当n 边形的边数增加1时,对角线增加(n-1)条.点拨:从n 边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n 个顶点共可引n (n-3)条,但这些对角线每一条都重复了一次,故n 边形的对角线条数为(3)2n n -. 15.180°,n ·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
精品文档初二数学三角形综合练习
垂直平分线
1、如图1在△ABC中AB=AC,∠A=30度,DE垂直平分AC,则∠BCD的度数为( )度
A 80 B75 C65 D 45
A
C
D M
图1 B C图2 A N B 图3
角平分线
1、如图2在直角△ABC中,∠C=900,BD是三角形的角平分线,交AC于点
D,AD=2.2cm,AC=3.7cm,则点D到AB边的距离是cm..
2、如图3在锐角△ABC中,AB=2
4,∠BAC=450,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是
综合题
1、如图4网格中的小正方形边长均为1,△ABC的三个顶点在格点上,则△ABC中AB边
上的高为
A B
A
D
图4 B C E图5
2、如图5在ΔABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC,交BC的延长线于点E,已知∠E=36度,则∠B=
3、如图6△ABC中,∠C=90度,AO平分∠BAC,OD⊥AB,BD=3,OB=5,则BC=
4、如图7,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=
A
C 图7 A
P Q
5、如图8在三角形纸片ABC中,∠ACB=90度,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为。