一次函数知识结构图

合集下载

一次函数知识核心及结构图

一次函数知识核心及结构图

一次函数知识核心及结构图在平面直角坐标系内,点与一对有序实数建立了一一对应关系。

把“有序实数对”称之为点的坐标。

点的横坐标决定了点在坐标平面上的左右,点的纵坐标决定了点在坐标平面上的高低。

横坐标——→定左右——→也就是自变量定点的左右。

点由左到右,则自变量由大到小;,点由右到左,则自变量由大到小。

反之,自变量由小到大,则点由左到右;自变量由大到小,则点由右到左。

纵坐标——→定高低——→也就是函数值定点的高低。

点由低到高,则函数值由小到大;点由高到低,则函数值由大到小。

反之,函数值由小到大,则点由低到高;函数值由大到小,则点由高到低。

左右、高低一旦确定,点的位置就唯一确定。

每一对自变量与其对应的函数值确定图象上的一个点。

函数的图象,是经过一列二描三连线得到,由此知道:图象上点的坐标适合函数关系式,保证了图象上点的纯洁性,每一个点的坐标都适合函数关系式,即图象上的点不杂,很纯;满足函数关系式的点一定在函数图象上,保证了图象上点的完整性,只要点的坐标满足函数关系式,它一定在函数图象上,即图象上的点不缺,很全。

判定一个点是否在函数图象上,就看该点坐标是否满足函数关系式。

沿着图象从左向右走,图象的走势有两种:上坡、下坡。

上坡,点越来越右,点也越来越高,表明自变量越来越大,函数值也越来越大。

即y随x的增大而增大。

也可说成y随x的减小而减小。

下坡,点越来越右,点也越来越低,表明自变量越来越大,函数值却越来越小。

即y随x的增大而减小。

也可说成y随x的减小而增大。

正比例函数y=kx的图象:是一条经过原点的直线。

K的正负定图象的位置和增、减。

当k大于0时,在I、III象限,上坡,y 随x的增大而增大。

当k小于0时,在II、IV象限,下坡,y随x的增大而减小。

K的绝对值大小决定了图象的坡度,绝对值越大,变化越快,坡度越大。

一次函数y=kx+b的图象:是一条直线是把y=kx的图象向上平移b个单位而得到的。

K大于0,图象过I、III象限,K小于0,图象过II、IV象限。

一次函数的图像和性质的知识点

一次函数的图像和性质的知识点

一次函数的图像和性质的知识点
一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k,即:y=kx+b(k为任意不为零的实数,b取任何实数);2.当x=0时,b为函数在y 轴上的截距。

一次函数的图像及性质
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

一次函数知识点

一次函数知识点

自变量x和因变量y有如下关系:y=kx+b (k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。

即:y=kx (k为任意不为零实数)定义域:自变量的取值范围,自变量的取值应使函数有意义;若与实际相反,。

一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0) (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)形。

取。

象。

交。

减一次函数的图像及性质1.作法与图形:通过如下3个步骤(1)列表[一般取两个点,根据两点确定一条直线];(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.函数不是数,它是指某一变量过程中两个变量之间的关系。

4.k,b与函数图像所在象限:y=kx时当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b时:当k>0,b>0, 这时此函数的图象经过一,二,三象限。

当k>0,b<0, 这时此函数的图象经过一,三,四象限。

当k<0,b<0, 这时此函数的图象经过二,三,四象限。

当k<0,b>0, 这时此函数的图象经过一,二,四象限。

当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

一次函数的知识点

一次函数的知识点

一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。

二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。

当k < 0时,函数图像从左到右下降,即函数是减函数。

斜率k表示函数图像与x轴正方向的夹角大小。

2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。

3、图象:一次函数的图象是一条直线。

当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。

三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。

2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。

3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。

四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。

2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。

五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。

3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。

4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。

一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。

一次函数单元知识结构图及教学设计

一次函数单元知识结构图及教学设计

一次函数单元知识结构图及教学设计方案一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章的主要内容包括:变量与函数的概念,函数的三种表示法,正比例函数和一次函数的概念、图象、性质和应用举例,用函数观点再认识一元一次方程、一元一次不等式和二元一次方程组,以及以建立一次函数模型来选择最优方案为主要内容的课题学习。

其中,14.1节是全章的基础部分,14.2节是全章的重点内容,14.3节是引申的内容,起加强知识前后联系的作用,14.4节是探究性学习的内容,以课题学习的形式呈现,突出建立数学模型的实际意义和思想方法。

(三)课程学习目标本章内容的设计与编写以下列目标为出发点:1.以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;2.结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;4.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系;5.在课题学习中,以选择方案为问题情境,进行探究性学习,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力。

二、本章的教学建议(一)反映函数概念的实际背景,渗透“变化与对应”的思想(二)从特殊到一般地认识一次函数(三)用函数观点回顾与审视相关内容,加强知识体系的构建(四)注重联系实际问题,体现数学建模的作用三、几个值得关注的问题(一)重视数学概念中蕴涵的思想,注意从运动变化和联系对应的角度认识函数(二)借助实际问题情景,由具体到抽象地认识函数;通过函数应(三)重视数形结合的研究方法(四)加强对知识之间内在联系的认识,体会函数观点的统领作用(五)注重对于基础知识和基本技能的掌握,提高基本能力(六)结合课题学习,提高实践意识与综合应用数学知识的能力四课时安排本章教学时间约需17课时,具体分配如下(仅供参考):14.1 变量与函数5课时14.2 一次函数5课时14.3 用函数观点看方程(组)与不等式3课时14.4 课题学习选择方案3课时小结与复习2课时数学测试与试卷讲评2课时。

初三一次函数的图像和性质分析知识点

初三一次函数的图像和性质分析知识点

初三⼀次函数的图像和性质分析知识点2019初三⼀次函数的图像和性质分析知识点1 基本信息1.y的变化值与对应的x的变化值成正⽐例,⽐值为k即:△y/△x=k (△为任意不为零的实数),即函数图像的斜率。

2.⼀次函数的表达式:y=kx+b3.性质:当k0时,y随x的增⼤⽽增⼤;当k0时,y随x的增⼤⽽减⼩。

当b0时,该函数与y轴交于正半轴;当b0时,该函数与y轴交于负半轴当x=0时,b为函数在y轴上的截距。

4.⼀次函数定义域xR,值域f(x)R5.⼀次函数在xR上的单调性:若f(x)=kx+b,k0,则该函数在xR上单调递增。

若f(x)=kx+b,k0,则该函数在xr上单调递减。

2 函数性质1.y的变化值与对应的x的变化值成正⽐例,⽐值为k即:y=kx+b(k0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)3.k为⼀次函数y=kx+b的斜率,k=tan(⾓为⼀次函数图象与x 轴正⽅向夹⾓,90)形、取、象、交、减。

4.当b=0时(即y=kx),⼀次函数图像变为正⽐例函数,正⽐例函数是特殊的⼀次函数.5.函数图像性质:当k相同,且b不相等,图像平⾏;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。

3 图像性质1.作法与图形:通过如下3个步(1)列表(2)描点:⼀般取两个点,根据两点确定⼀条直线的道理;(3)连线,可以作出⼀次函数的图像⼀条直线。

因此,作⼀次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x 轴和y轴的交点分别是-k分之b与0,0与b)2.性质:(1)在⼀次函数上的任意⼀点P(x,y),都满⾜等式:y=kx+b(k0)。

(2)⼀次函数与y轴交点的坐标总是(0,b),与x 轴总是交于(-b/k,0)正⽐例函数的图像都是过原点。

3.函数不是数,它是指某⼀变化过程中两个变量之间的关系。

初三一次函数的图像和性质分析知识点

初三一次函数的图像和性质分析知识点

2019初三一次函数的图像和性质分析知识点1 基本信息1.y的变化值与对应的x的变化值成正比例,比值为k即:△y/△x=k (△为任意不为零的实数),即函数图像的斜率。

2.一次函数的表达式:y=kx+b3.性质:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。

当b0时,该函数与y轴交于正半轴;当b0时,该函数与y轴交于负半轴当x=0时,b为函数在y轴上的截距。

4.一次函数定义域xR,值域f(x)R5.一次函数在xR上的单调性:若f(x)=kx+b,k0,则该函数在xR上单调递增。

若f(x)=kx+b,k0,则该函数在xr上单调递减。

2 函数性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)3.k为一次函数y=kx+b的斜率,k=tan(角为一次函数图象与x轴正方向夹角,90)形、取、象、交、减。

4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。

3 图像性质1.作法与图形:通过如下3个步(1)列表(2)描点:一般取两个点,根据两点确定一条直线的道理;(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

一次函数及其图像知识点总结

一次函数及其图像知识点总结

第一节:函数一、知识归纳函数的概念一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y 是x的函数,其中x是自变量,y是因变量。

函数的三种表达式:(1)图象;(2)表格;(3)关系式。

要使函数的解析式有意义。

函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

④函数的解析式是三次根式时,自变量的取值应是一切实数。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

4 常见函数关系式几何物理生活二、经典题型题型考点一求简单的函数关系式,识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

例1.某市自来水公司为限制单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。

⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨;②用水量大于3000吨。

⑵某月该单位用水3200吨,水费是元;若用水2800吨,水费元。

⑶若某月该单位缴纳水费1540元,则该单位用水多少吨?参考答案:(1)y=0.5 x 、y=1500+0.8(x-3000)(2)1660 1400(3) 3050例2.函数是研究( )A.常量之间的对应关系的B.常量与变量之间的对应关系的C.变量与常量之间对应关系的D.变量之间的对应关系的题型考点二确定函数的自变量取值范围,例1 .(2010四川凉山)在函数121xyx+=-中,自变量x的取值范围是____题型考点三能根据实际问题的意义以及函数关系式,确定函数图像例1、某游客为爬上3千米高的山顶看日出,先用了1小时爬了2千米,休息0.5小时后,又用了1小时爬上了山顶。

游客爬山所用时间t与登山高度h间的函数关系用图形表示是()第二节一次函数一、知识归纳知识点一:一次函数的定义函数y=______(k、b为常数,k_____,自变量x的次数是U__ _U次)叫做一次函数.知识点二:正比例函数的定义当b_____时,函数y=_____ (k______,比例系数U____)叫做正比例函数.知识点三:一次函数与正比例函数的异同(1)一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、能写出实际问题中的一次函数、正比例函数的解析式,掌握它们的图象及其性质,并利用它们解决简单的实际问题.
基础知识
一、函数
1.函数的概念
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数(function),其中x是自变量,y是因变量.
2.函数值
对于自变量在取值范围内的一个确定的值x=a,函数都有惟一确定的对应值,这个对应值,叫作当x=a时的函数值.
3.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
二、一次函数
1.定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(1inear function)(x为自变量,y为因变量).
2.图象一次函数y=kx.
3.性质当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小.
当k>0,b>0时,图象经过第一、二、三象限
当k>0,b<0时,图象经过第一、三、四象限
当k<0,b>0时,图象经过第一、二、四象限
当k<0,b<0时,图象经过第二、三、四象限
4.正比例函数
(1)定义 函数y=kx(k是常数,k≠0)叫正比例函数.
(2)图象 正比例函数y=kx的图象是经过原点和(1,k)两点的—条直线.
(3)性质 当k>0时,它的图象在第一、三象限内,y随x的增大而增大;当k<0时,它的图象在第二、四象限内,y随x的增大而减小.
知识结构图
一次函数和的知识结构图
目标要求
1、经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,发展学生的抽象思维能力.
2、初步理解函数的概念,了解函数的列表法、图象法和解析法的表示方法.
3、经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别与应用过程,发展学生的形象思维能力.
相关文档
最新文档