函数单调性的教学活动设计
函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
《函数单调性教案》

《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。
2. 学会利用单调性判断函数的性质,如极值、最值等。
3. 能够运用单调性解决实际问题,如求函数的极值、最值等。
二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。
2. 单调性的判断方法及应用。
3. 实际问题中的单调性应用。
三、教学重点与难点:1. 函数单调性的概念及判断方法。
2. 单调性在实际问题中的应用。
四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。
2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。
3. 互动教学法:提问、讨论,激发学生的思考。
五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。
2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。
3. 举例:分析具体函数的单调性,让学生学会判断。
4. 练习:布置练习题,让学生巩固单调性的判断方法。
5. 案例分析:分析实际问题,引导学生运用单调性解决问题。
6. 总结:回顾本节课的内容,强调单调性的重要性。
7. 作业布置:布置课后作业,巩固所学内容。
六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。
2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。
3. 案例分析:评估学生在实际问题中运用单调性的能力。
七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。
2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。
八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。
2. 课件:制作课件,辅助教学,提高课堂效果。
3. 练习题:准备练习题,巩固所学内容。
4. 实际问题案例:收集实际问题案例,用于教学实践。
九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。
《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
函数单调性教案

函数单调性教案中的这种变化规律,可以用数学中的函数来描述。
引导学生思考函数与实际生活的联系。
二)函数单调性的概念和判断方法讲解函数单调性的概念和判断方法,引导学生观察图像,数形结合,发现图像上升或下降时函数值的变化规律,推广到一般函数,得出增减函数定义。
学生归纳出判断的方法及步骤并进行简单的应用。
三)函数单调性的证明通过对函数单调性的定义进行探究,引导学生进行推理论证,提高学生的推理论证能力。
四)课后练布置课后练,让学生巩固所学知识,体现层次性,照顾各层次的同学。
通过实际生活中的例子引导学生理解函数的概念,讲解函数单调性的概念和判断方法,引导学生观察图像,数形结合,发现图像上升或下降时函数值的变化规律,推广到一般函数,得出增减函数定义。
通过对函数单调性的定义进行探究,引导学生进行推理论证,提高学生的推理论证能力。
布置课后练,让学生巩固所学知识。
中处处都有数学,因为数学是一门广泛应用于各个领域的学科。
其中,气温变化也蕴含着丰富的数学知识,例如函数的单调性。
函数的单调性指的是在一个区间范围内,函数上升或下降的趋势。
观察函数图像和变量的变化可以帮助我们理解函数的单调性。
上节课的作业中,我们观察了三个函数图像,可以看出它们的变化趋势。
例如,从4点到7点,7点到14点温度是升高的;从点到4点,14点到24点温度是下降的。
通过这样的观察,我们可以感受到生活中处处都蕴含着数学,激发学生的研究热情。
除了观察函数图像,我们还可以通过增减函数的概念来判断函数的单调性。
增减函数是指函数在某个区间内的导数为正或负。
通过这种方法,我们可以更清楚地表述函数的单调性。
需要注意的是,函数的单调性具有局部性,必须在一个区间范围内进行观察和判断。
因此,无论是从图像上还是从变量上,我们都需要借助函数图像来观察和判断函数的单调性。
学中随机选择m个同学回答)。
函数的单调性与增减性是密切相关的,通常我们把具有单调性的函数称为增函数或减函数。
高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
函数单调性教案

函数单调性教案一、教学目标1.了解函数单调性的概念和判断方法。
2.学会应用函数的单调性进行函数图像的描绘和函数不等式的求解。
3.培养学生观察问题、分析问题、解决问题的能力。
二、教学重点掌握函数单调性的判断方法。
三、教学难点能够熟练应用函数单调性进行函数图像的描绘和函数不等式的求解。
四、教学过程1.导入新课:讲解函数的单调性概念和意义。
函数的单调性是指函数在定义域内是否呈现上升或下降的趋势。
若对于定义域内的任意两个实数x1和x2,当x1<x2时,有f(x1)<f(x2)成立,则函数f(x)在该定义域内是递增的;若对于定义域内的任意两个实数x1和x2,当x1<x2时,有f(x1)>f(x2)成立,则函数f(x)在该定义域内是递减的。
2.讲解函数单调性的判断方法。
(1)对于一阶导数f'(x)的符号判断方法:当f'(x)>0时,函数f(x)在该区间单调递增;当f'(x)<0时,函数f(x)在该区间单调递减。
(2)对于二阶导数f''(x)的符号判断方法:当f''(x)>0时,函数f(x)在该区间上是上凸的,即函数在该区间内是单调递增的;当f''(x)<0时,函数f(x)在该区间上是下凸的,即函数在该区间内是单调递减的。
3.通过例题巩固掌握单调性的判断方法。
例题1:判断函数f(x)=x^3-3x^2+2x+1在定义域[-∞,+∞]的单调性。
解:首先求函数f(x)的一阶导数f'(x)=3x^2-6x+2,二阶导数f''(x)=6x-6。
(1)分析f''(x)的符号,当6x-6>0时,即x>1时,f''(x)>0,函数图像上凸,此时函数递增;当6x-6<0时,即x<1时,f''(x)<0,函数图像下凸,此时函数递减。
函数的单调性优秀教案

函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。
掌握函数单调性的证明方法,能运用定义证明函数的单调性。
2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。
通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。
3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。
通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
二、教学重难点1、教学重点函数单调性的概念。
运用定义证明函数的单调性。
2、教学难点函数单调性定义的理解。
利用定义证明函数的单调性。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。
引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。
3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。
分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。
解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
课题:函数的单调性
科目:数学教学对象:高一学生课时:第一课时
提供者:张毅霞单位:山西忻州五台实验中学
一、教学内容分析
首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶
段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步
的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面
理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.
其次,从函数角度来讲. 函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了
直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经
历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.
最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的
重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思
想的重要素材.
二、教学目标
1.函数单调性的研究经历了从直观到抽象,从图识数的过程,在这个过程中,让学
生通过自主探究活动,体验数学概念的形成过程,学会应用函数图象理解和研究函数的
性质。
2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数单调性的步骤,会
求函数的单调区间,提高应用知识解决问题的能力。
3.能够应用函数的性质解决日常生活中的简单实际问题,使学生感受到学习函数单
调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性。
三、学习者特征分析
学生已经初步掌握函数的定义,但不能用数形结合的思想来分析掌握教材的内容,
通过本次知识的探究来培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学
生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程。
也培养学生细心观察、
归纳、分析的良好习惯和不断探求新知识的精神。
希望学生能通过本节的学习为今后研
究具体函数的单调性理论打下基础。
四、教学策略选择与设计
本节课是一节较为抽象的数学概念课,教师要启发讲授,学生要探究学习。
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引
入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识。
采用投影
仪、多媒体等现代教学手段,增大教学容量和直观性。
五、教学重点及难点
教学重点:函数的单调性的概念,判断、证明函数的单调性
教学难点:引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调
性.
六、教学过程
教师活动学生活动设计意图
观察图象Y=,能得到什么信息?
观察图象,讨论由已经学过熟识的知识引入新课
问题:在y轴右侧(1)图象是上升
还是下降?(2)越往右图象上的点有什么变化?(3)Y是如何随x变化的?小组讨论,得出结论,大家分
享
培养合作精神,观察
能力
给出增函数的定义,板书,并用数学语言描述,仿照增函数,给出减函数的定
义,也用数学语言描述
培养理解与仿照能
力
你能说出函数Y=的单调递增区间和递减区间?确定分界点的确切位置
使学生体会到用数量
大小关系严格表述函
数单调性的必要性
例题,证明函数Y=在(0,+∞)上是
减函数
小结证明函数单调性的步骤证明函数Y=在(—∞,0)上是减
函数
通过对证明题的辨析,
加深学生对定义的理
解
七、教学评价设计
本节课我在概念教学上进行了一些尝试.在教学过程中,我努力创设一个探索数学的学习环境,通过设计一系列问题,使学生在探究问题的过程中,亲身经历数学概念的发生与发展过程,从而逐步把握概念的实质内涵,深入理解概念.
八、板书设计
函数的单调性
一:的图象三:例题五:课堂小结二:增减函数的定义四:证明函数单调性的步骤六:作业。