《函数的单调性》教学设计(精品)

合集下载

高中精品教学设计函数的单调性的教学设计

高中精品教学设计函数的单调性的教学设计

高中精品教学设计《函数的单调性》教材版本:北京师范大学出版社学科:数学册别:必修一课题名称:函数的单调性【教材分析】1.教材的地位及作用“函数的单调性”是本章两个重点内容之一,其作用在于刻画出这个函数图形的基本形状以及这个函数变化的基本情况。

函数单调性在研究反函数、函数最值、在函数方程的零点以及解不等式中都有重要作用。

在函数性质中,本章突出了单调性,而弱化了函数的奇偶性,没有把奇偶性专门列出一节,而是把它和幂函数放在一起。

这样处理是突出单调性的重要地位,单调性是函数的固有的性质,也是表示函数变化规律的重要性质。

2教学内容简述“函数的单调性”是北师大版必修一第二章第三节的教学内容,函数的单调性是函数的一条重要性质,从知识面看,函数的单调性既是函数概念的延续和拓展,又是后续学习指数函数、对数函数、三角函数等内容的基础。

针对学生的基础和这部分内容学习两个课时,现在学的是第一课时3.教学目标①知识与技能目标:理解函数的单调性和单调函数的意义;会判断和证明一些简单函数单调性的方法②过程与方法目标:培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的数学思想③情感、态度、价值观目标:由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习的兴趣。

4.教学重点、难点重点:函数的单调性的概念,判断和证明一些简单函数单调性的方法【确定依据】确定教学重点应该首先以教学目标为根本依据。

以前学科教学目标强调掌握知识的系统性和完整性,确定教学重点更多的是从本学科的角度出发,将某一知识是否在知识体系中有重要作用或影响作为确定教学重点的依据,新的课程标准将“知识与能力”、“过程与方法”、“情感、态度与价值观”三个方面确定为教学目标。

只有明确了这节课的完整知识体系框架和教学目标,并把课程标准、教材整合起来,才能科学确定教学重点。

其次再结合教学内容确定教学重点。

【解决方法】1.数形结合法从图形直观反映图像的上升或下降 2 定量分析法(也称五步法)3.板书突出法。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。

教学内容:(1) 引入函数单调性的概念。

(2) 讲解函数单调增和单调减的定义。

(3) 举例说明函数单调性的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。

(2) 采用提问法,引导学生思考函数单调性的含义和应用。

教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。

(2) 讲解函数单调增和单调减的定义,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。

(4) 总结函数单调性的应用,如解不等式、求最值等。

1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。

教学内容:(1) 讲解函数单调性的传递性。

(2) 讲解函数单调性的同增异减性质。

(3) 举例说明函数单调性性质的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的性质。

(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。

教学步骤:(1) 讲解函数单调性的传递性,举例说明。

(2) 讲解函数单调性的同增异减性质,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。

(4) 总结函数单调性性质的应用,如解不等式、求最值等。

第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。

教学内容:(1) 讲解导数与函数单调性的关系。

(2) 讲解利用导数判断函数单调性的方法。

(3) 举例说明利用导数判断函数单调性的应用。

教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。

(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。

教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。

(2) 讲解利用导数判断函数单调性的方法,举例说明。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。

章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。

2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。

3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。

2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。

3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。

章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。

2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。

3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。

章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。

2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。

3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。

4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。

《函数的单调性》教学设计

《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。

2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。

3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。

二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。

2. 学会利用导数、图像以及定义法判断函数的单调性。

3. 能够运用单调性解决实际问题,提高解决问题的能力。

三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。

2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:笔记本、彩笔、函数图像绘制工具。

五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。

例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。

(2)利用图像:引导学生观察函数图像,判断函数的单调性。

(3)利用定义法:讲解如何利用定义法判断函数的单调性。

4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。

5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。

六、板书设计1. 函数单调性的定义。

2. 单调性的判断方法:导数法、图像法、定义法。

3. 单调性在实际问题中的应用。

七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。

求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。

举例说明函数单调性的两种类型:单调递增和单调递减。

1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。

通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。

第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。

引导学生学会识别函数图像中的单调区间。

2.2 导数法介绍导数与函数单调性的关系。

教授如何利用导数的正负来判断函数的单调性。

第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。

通过例题让学生掌握求解极值的方法。

3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。

通过例题让学生理解最值的求解过程。

第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。

通过例题展示导数在单调区间判断中的应用。

4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。

通过实际例子让学生学会如何运用单调性解决实际问题。

第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。

引导学生学会如何运用所学知识来解决问题。

5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。

提供一些拓展问题,激发学生的学习兴趣和思考能力。

第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。

通过例题展示函数单调性在其他数学领域的应用。

6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。

通过实际例子让学生学会如何运用函数单调性来解决优化问题。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:引言1.1 教学目标了解函数单调性的概念及其在数学中的重要性。

理解单调性对解决实际问题的重要作用。

1.2 教学内容介绍函数单调性的概念。

通过实际例子说明单调性在解决实际问题中的应用。

1.3 教学方法使用多媒体演示和实际例子来讲解函数单调性的概念。

引导学生通过思考和讨论来理解单调性的重要性。

1.4 教学评估通过课堂提问和小组讨论来评估学生对函数单调性的理解程度。

第二章:函数单调性的定义与性质2.1 教学目标理解函数单调性的定义及其性质。

学会判断函数的单调性。

2.2 教学内容介绍函数单调性的定义。

讲解函数单调性的性质,如单调递增和单调递减。

2.3 教学方法使用数学定义和示例来解释函数单调性的概念。

引导学生通过自主学习和小组讨论来掌握函数单调性的性质。

2.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性定义和性质的理解程度。

第三章:函数单调性的应用3.1 教学目标学会使用函数单调性解决实际问题。

理解函数单调性在数学和其他领域中的应用。

3.2 教学内容介绍函数单调性在解决实际问题中的应用。

讲解函数单调性在其他领域中的应用,如经济学和物理学。

3.3 教学方法使用实际例子和应用问题来展示函数单调性的使用。

引导学生通过思考和讨论来理解函数单调性在实际问题中的应用。

3.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性应用的理解程度。

第四章:函数单调性的证明4.1 教学目标学会使用数学方法证明函数的单调性。

理解证明函数单调性的重要性和方法。

4.2 教学内容介绍证明函数单调性的方法和技巧。

讲解不同类型的函数单调性证明。

4.3 教学方法使用示例和练习来讲解证明函数单调性的方法。

引导学生通过自主学习和小组讨论来掌握证明函数单调性的技巧。

4.4 教学评估通过课堂练习和小组讨论来评估学生对证明函数单调性的理解程度。

5.1 教学目标拓展对函数单调性的深入理解。

5.2 教学内容介绍函数单调性的进一步研究和发展。

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。

函数的单调性优秀教案

函数的单调性优秀教案

函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。

掌握函数单调性的证明方法,能运用定义证明函数的单调性。

2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。

通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。

3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。

通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。

二、教学重难点1、教学重点函数单调性的概念。

运用定义证明函数的单调性。

2、教学难点函数单调性定义的理解。

利用定义证明函数的单调性。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。

引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。

强调定义中的关键词:定义域、区间、任意、都有。

通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。

3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。

分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。

解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性
(一)教学目标 1.知识与技能
(1)理解函数单调性的定义、明确增函数、减函数的图象特征. (2)能利用函数图象划分函数的单调区间,并能利用定义进行证明. 2.过程与方法
由一元一次函数、一元二次函数的图象,让学生从图象获得“上升”“下降”的整体认识. 利用函数对应的表格,用自然语言描述图象特征“上升”“下降”最后运用数学符号将自然语言的描述提升到形式化的定义,从而构造函数单调性的概念.
3.情感、态度与价格观
在形与数的结合中感知数学的内在美,在图形语言、自然语言、数学语言的转化中感知数学的严谨美.
(二)教学重点和难点
重点:理解增函数、减函数的概念;难点:单调性概念的形成与应用. (三)教学方法
讨论式教学法. 在老师的引导下,学生在回顾旧知,细心观察、认真分析、严谨论证的学习过程中生疑与析疑,合作与交流,归纳与总结的过程中获得新知,从而形成概念,掌握方法.
(四)教学过程 教学 环节
教学内容
师生互动
设计意图
提出 问题
观察一次函数f (x ) = x 的图象:
函数f (x ) = x 的图象特征由左到右是上升的.
师:引导学生观察图象的升降.
生:看图. 并说出自己对图象 的直观认识.
师:函数值是由自变量的增大
而增大,或由自变量的增大而
减小,这种变化规律即函数的单调性.
在函数图象
的观察中获取函数单调性的直观认识.
y
x
1
1 O
引入深题观察二次函数f (x) = x2的图象:
函数f (x) = x2在y轴左侧是下
降的,在y轴右侧是上升的.
列表:
x …

4
–3 –2 –1 0
f
(x)
=x2
16 9 4 1 0
1 2 3 4 …
1 4 9 16 …
x∈(–∞,0]时,x增大,f (x)
减少,图象下降.
x∈(0,+∞)时,x增大,f (x)也
增大,图象上升.
师:不同函数,其图象上升、
下降规律不同. 且同一函数在
不同区间上的变化规律也不
同. 这是“形”的方面,从“数”
的方面如何反映.
生:函数作图时列表描点过程
中,从列表的数据变化可知自
变量由–4到0变化,函数值
随着变小;而自变量由0到4
变化,函数值随着自变量的变
大而变大.
师:表格数值变化的一般规随
是:自变量x增大,函数值y
也增大,函数图象上升,称函
数为增函数;自变量x增大,
函数值y反而减少,函数图象
下降. 称函数为减函数.
体会同一函
数在不同区
间上的变化
差异.
引导学生从
“形变”过
渡到“数
变”. 从定
性分析到定
量分析.
形成概念函数单调性的概念
一般地,设函数f (x)的定义域为
I:
如果对于定义域I内的某个区间D
上的任意两个自变量的值x1,x2,
当x1<x2时,都有f(x1)<f(x2),
那么就说函数f (x)在区间D上是
增函数(increasing function);
师:增函数、减函数的函数值
随自变量的变化而变化怎么用
数学符号表示呢?
师生合作:
对于函数f (x) = x2在区间(0,
+∞)上. 任取x1、x2. 若x1<x2,
则f (x1)<f (x2),即x12<x22.
师:称f (x) = x2在(0,+∞)
上为增函数.
由实例探究
规律从而获
得定义的数
学符号表
示.
O x
y
如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x
1
<x2时,都有f (x1)>f (x2),那么就说函数f (x)在区间D上是减函数(decreasing function).
应用举例例1 如图是定义在区间[–5,5]
上的函数y = f (x),根据图象说
出函数的单调区间,以及在每一单
调区间上,它是增函数还是减函
数?
训练题1:
(1)请根据下图描述某装配线的
生产率与生产线上工人数量间的
关系.
师:投影例1.
生:合作交流完成例1.
师:引导学生完成教材P36练
习的第1题、第2题.
师:投影训练题1
生:学生通过合作交流自主完
成.
例1【解】:y= f (x)的单调区
间有[–5,–2),[–2,1),
[1,3),[3,5]. 其中y = f (x)
在区间[–5,–2),[1,3)上
是减函数,在区间[–2,1),
[3,5]上是增函数.
训练题1 答案:(1)在一定范
围内,生产效率随着工人数的
增加而提高,当工人数达到某
掌握利用图
象划分函数
单调区间的
方法.
掌握单调性
证明步骤及
原理.内化
定义,强化
划分单调区
间的方法.
x
x1 x2
O
y
f (x1) f (x
2
)
y=f (x)
x
x1 x2
O
y
f (x1)
f (x2)
y=f (x)
(2)整个上午(8∶00~12∶00)天气越来越暖,中午时分(12∶00~13∶00)一场暴风雨使天气骤然凉爽了许多. 暴风雨过后,天气转暖,直到太阳落山(18∶00)才又开始转凉. 画出这一天8∶00~20∶00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.
(3)根据下图说出函数单调区间,以及在每一单调区间上,函数是增函数还是减函数.
例2 物理学中的玻意耳定律
k
p
V
=(k为正常数) 告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大. 试用函数的单调性证明之.
训练题2:证明函数f (x) = –2x +1在R上是减函数. 个数量时,生产效率达到最大
值,而超过这个数量时,生产
效率又随着工人的增加而降
低. 由此可见,并非是工人越
多,生产效率就越高.
(2)
增区间为[8,12],[13,18];
减区间为:[12,13],[18,20].
(3)函数在[–1,0]上是减函
数,在[0,2]上是增函数,在
[2,4]上是减函数,在[4,5]
是增函数.
师:打出例2,请学生阐明应用
定义证明(判定)并总结证明
单调性的基本步骤.
生:学生代表板书证明过程,
教师点评.
例2 分析:按题意,只要证明
函数k
p
V
=在区间(0,+∞)上
是减函数即可.
证明:根据单调性的定义,设
V
1
,V2是定义域(0,+∞)上的
任意两个实数,且V1<V2,即
21
12
1212
()()
V V
k k
p V p V k
V V VV
-
-=-=.
由V1,V2∈(0,+∞),得V1V2>
0.
由V1<V2,得V2 –V1>0.
强化记题步
骤与格式.
又k>0,于是
p (V
1
) –p (V2)>0,

p (V
1
) >p (V2).
所以,函数k
p
V
,V(0,+∞)是减函数,也就是说,当体积V 减小时,压强p将增大.
师:投影训练题2
生:自主完成
训练题2 证明:任取x1,x2∈R,且x1<x2,
因为f (x1) –f (x2) =2 (x2 –x1)>0,
即f (x1)>f (x2),
所以f (x) = –2x +1在R上是减函数.
归纳小结1°体会函数单调性概念的形成过
程.
2°单调性定义.
3°利用图象划分单调区间.
4°利用定义证明单调性步骤.
师生合作:回顾单调性概念的
形式与发展.
师:阐述单调性的意义与作用.
反思回顾
整理知识,
提升能力.
课后练习1.3第一课时习案学生独立完成
巩固知识
培养能力
备选例题:
例1 证明函数f (x) =3x +2在R上是增函数.
【证明】设任意x1、x2R,且x1<x2,
则f (x1) –f (x2) = (3x1 +2) – (3x2 +2) = 3(x1–x2).
由x1<x2得x1 –x2<0. ∴f (x1) –f (x2)<0,即f (x1)<f (x2).
∴f (x ) =3x +2在R 上是增函数.
例2 证明函数f (x ) =1x
在(0,+∞)上是减函数. 【证明】设任意x 1、x 2(0,+ ∞)且x 1<x 2,
则f (x 1) – f (x 2) =21
1212
11x x x x x x --=
, 由x 1,x 2
(0,+∞)得,x 1x 2>0,又x 1<x 2,得x 2 – x 1>0,
∴f (x 1) – f (x 2) >0,即f (x 1)<f (x 2). ∴f (x ) =1x
在(0,+∞)上是减函数.。

相关文档
最新文档