(参考资料)电大工程数学(本)1作业答案
工程数学(本科)形考任务答案

工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组( A )可被该向量组其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 奖券中含有 3 中奖的奖券,每人购买 1 ,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时,0.65 , 0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:- -- - 专业资料- 故所求置信区间为:( 2 )当 未知时,用 替代 ,查 t (4, 0.05 ) ,得故所求置信区间为: 4 .设某产品的性能指标服从正态分布,从历史资料已知 ,抽查 10 个样品,求得均值为 17 ,取显著性水平,问原假设 是否成立. 解: ,由,查表得:因为> 1.96 ,所以拒绝 5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5 问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。
最新国家开放大学电大本科《工程数学》网络课网考形考作业一试题及答案 (2)

最新国家开放大学电大本科《工程数学》网络课网考形考作业一试题及答案试题一1.已知下列方程:(1)2x - 3y = 7(2)x + y = 8(a)请利用消元法求解该方程组的解;(b)请利用代入法求解该方程组的解;(c)请利用反代法求解该方程组的解;(d)请利用矩阵法求解该方程组的解。
2.某商场购进了成衣1200件,其中男装和女装的数量之比是2:3,女装比男装多出180件,请问男装和女装各有多少件?答案一(a)利用消元法求解该方程组的解:首先,将两个方程相加,得到新方程:(1)=> x + y + 2x - 3y = 8 + 7 化简得:3x- 2y = 15 接下来,将新方程与原方程(2)相加,得到新方程:•(3x - 2y = 15) => x + y + 3x - 3y = 8 + 15 化简得:4x - 2y = 23 解方程组得:x = 6, y = 2 所以,方程组的解为 x = 6, y = 2。
(b)利用代入法求解该方程组的解:将方程(2)代入方程(1)中,得到新方程: 2x - 3*(8 - x) = 7 化简得:2x - 24 + 3x = 7 化简得:5x = 31 解方程得:x = 31/5= 6.2 将 x 的值代入方程(2)中,得到 y 的值: 6.2 + y= 8 解方程得:y = 1.8 所以,方程组的解为 x = 6.2, y= 1.8。
(c)利用反代法求解该方程组的解:先假设x = 6,代入方程(2)中,得到 y 的值: 6 + y = 8 解方程得:y= 2 所以,当 x = 6 时,方程组的解为 x = 6, y = 2。
(d)利用矩阵法求解该方程组的解:将方程组的系数矩阵 A 和常数矩阵 B 做增广矩阵 [A|B] 如下: | 2 -3| 7 | | 1 1 | 8 | 通过初等行变换将增广矩阵转为行阶梯矩阵,得到如下矩阵: | 1 1 | 8 | | 0 -5 | -9 | 再通过初等行变换将行阶梯矩阵转为阶梯行矩阵,得到如下矩阵: | 1 1 | 8 | | 0 1 | 9/5 | 解矩阵得:x = 6, y = 2 所以,方程组的解为 x = 6, y = 2。
国开电大 工程数学(本) 形考任务1-5答案 (2)

国开电大工程数学(本) 形考任务1-5答案任务1答案在工程数学中,任务1通常包括对于给定的函数或方程求解、求导或求积分等基本运算。
以下是对任务1的答案:1.1 求解方程对于给定的方程,求解意味着找到使方程成立的变量的值。
解方程的一般步骤如下:1.将方程移项,整理为标准形式;2.根据运算法则,对方程进行简化;3.通过合适的代数运算,解出变量的值。
例如,对于方程2x+5=15,我们可以按照以下步骤求解:1.将方程移项得到2x=15−5;2.简化方程为2x=10;3.通过除法运算解出x的值,得到 $x = \\frac{10}{2}= 5$。
因此,方程2x+5=15的解为x=5。
1.2 求导求导是对给定函数的导数进行计算。
函数的导数反映了函数在每个点上的变化率。
求导的一般步骤如下:1.根据导数的定义,写出函数的导数表达式;2.使用导数的基本运算法则,对函数进行求导。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求导:1.写出函数x(x)的导数表达式为x′(x)=6x+2;2.使用导数的基本运算法则得到x′(x)=6x+2。
因此,函数x(x)=3x2+2x+1的导数为x′(x)=6x+2。
1.3 求积分求积分是对给定函数的积分进行计算。
函数的积分表示了函数在指定区间上的面积或曲线长度。
求积分的一般步骤如下:1.根据积分的定义,写出函数的积分表达式;2.使用积分的基本运算法则,对函数进行积分。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求积分:1.写出函数x(x)的积分表达式为 $\\int{(3x^2 + 2x +1)dx}$;2.使用积分的基本运算法则得到 $\\int{(3x^2 + 2x +1)dx} = x^3 + x^2 + x + C$,其中x为常数。
因此,函数x(x)=3x2+2x+1的积分为 $\\int{(3x^2 +2x + 1)dx} = x^3 + x^2 + x + C$。
国开《工程数学(本)》形成性考核作业1-4参考答案(1)

国家开放大学《工程数学(本)》形成性考核作业 1-4 参考答案15501-1.n阶行列式中元素的代数余子式与余子式之间的关系是(A).a.b.c.d.正确答案是:1-2. 三阶行列式的余子式M23=(B).a.b.c.d.正确答案是:2- 1.设A为3×4 矩阵,B为4×3 矩阵,则下列运算可以进行的是(C) .a. A+Bb. B+Ac. ABd. BA'正确答案是:AB2-2. 若A为3×4 矩阵,B为2×5 矩阵,且乘积AC'B'有意义,则C为 (B) 矩阵.a. 2×4b. 5×4c. 4×2d. 4×5正确答案是:5×43-1.设,则BA-1(B) .a.b.c.d.正确答案是:3-2.设,则 (A) .a.b.c.d.正确答案是:4- 1.设A,B均为n阶可逆矩阵,则下列运算关系正确的是(C).a.b.c.d.正确答案是:4-2.设A,B均为n阶方阵,k>0且,则下列等式正确的是(A).a.b.c.d.正确答案是:5-1.下列结论正确的是(C).a. 若A,B均为n阶非零矩阵,则AB也是非零矩阵b. 若A,B均为n阶非零矩阵,则c. 对任意方阵A,A+A'是对称矩阵d. 若A,B均为n阶对称矩阵,则AB也是对称矩阵正确答案是:对任意方阵A,A+A'是对称矩阵5-2.设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是(A).a.b.c.d.正确答案是:6-1.方阵A可逆的充分必要条件是(B).a.b.c.d.正确答案是:6-2.设矩阵A可逆,则下列不成立的是(C).a.b. c. d.正确答案是:7-1.二阶矩阵(B).a.b.c.d.正确答案是:7-2.二阶矩阵(B)..... dc b a正确答案是:的秩是(D).a. 1b. 2c. 4d. 3正确答案是: 3的秩为(C).a. 2b. 4c. 3d. 5正确答案是: 39-1.设向量组为组.a.b.c. ,则(B)是极大无关8-2.向量组8-1.向量组d.正确答案是:9-2.向量组的极大线性无关组是(D).a.b.c.d.正确答案是:10-1.方程组的解为(A).a.b.c.d.正确答案是:的解为(C).10-2.用消元法得a.b.c.d.正确答案是:11-1.行列式的两行对换,其值不变.(×)11-2.两个不同阶的行列式可以相加.(×)12-1.同阶对角矩阵的乘积仍然是对角矩阵.( √ )12-2.设A是对角矩阵,则A=A'.( √ )13-1.若为对称矩阵,则a=-3.(×)13-2. 若为对称矩阵,则x=0.( √ )14-1.设,则.(×)14-2. 设,则.( √ )15-1.设A是n阶方阵,则A可逆的充要条件是r(A)=n.( √ )15-2.零矩阵是可逆矩阵.(×)16-1.设行列式,则 -6 .正确答案是: -616-2. 7 .正确答案是: 7是关于 x 的一个一次多项式,则该多项式一次项的系数是 .正确答案是: 217-2. 若行列式 ,则 a= 1 .正确答案是: 118-1.乘积矩阵 中元素 C 23= 10 .正确答案是: 1018-2. 乘积矩阵 中元素 C 21= -16 .正确答案是: -1619-1.设 A,B 均为 3 阶矩阵,且正确答案是: -7219-2. 设 A,B 均为 3 阶矩阵,且正确答案是: 920-1.矩阵的秩为 2 .正确答案是: 217-1.29 .-72 .,则 ,则20-2. 矩阵的秩为 1 .正确答案是: 12设线性方程组的两个解,则下列向量中(B)一定是的解.a.b.c.d.设线性方程组的两个解,则下列向量中 (B ) 一定是的解.a.b.c.d.设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D).a.b.c..设与分别代表非齐次线性方程组个方程组有解,则(A).a. b. c. d.以下结论正确的是(D).a. 方程个数小于未知量个数的线性方程组一定有解b. 方程个数等于未知量个数的线性方程组一定有唯一解c. 方程个数大于未知量个数的线性方程组一定有无穷多解d. 齐次线性方程组一定有解若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(D).a. 有无穷多解b. 有唯一解c. 无解d. 可能无解若 向量组线性无关,则齐次线性方程组(D).a. 有非零解b. 有无穷多解d 的系数矩阵和增广矩阵,若这2c. 无解d. 只有零解若向量组线性相关,则向量组内 (D) 可被该向量组内其余向量线性表出.a.至多有一个向量b. 任何一个向量c. 没有一个向量d. 至少有一个向量矩阵A的特征多项式,则A的特征值为(B).a.b.c.d.,,矩阵的特征值为(A).a. -1,4b. -1,2c. 1,4d. 1,-1已知可逆矩阵A的特征值为-3,5 ,则A-1的特征值为 (C) .....的特征值为 0,2,则 3A 的特征值为 (D) .a. 2,6b. 0,0c. 0,2d. 0,6 设是矩阵 A 的属于不同特征值的特征向量,则向量组秩是(D).a. 不能确定b. 1c. 2d. 3设 A ,B 为 n 阶矩阵, 既是 A 又是 B 的特征值,x 既是 A 又是 B 的特征向 量,则结论(A)成立.a. x 是 A+B 的特征向量d c b a 设矩阵 的b. 是A-B的特征值c. 是A+B的特征值d. 是AB的特征值设A,B为两个随机事件,下列事件运算关系正确的是(C).a.b.c.d.设A,B为两个随机事件,则(B)成立.a.b.c.d.若事件A,B满足,则A与B一定(B).a. 互不相容b. 不互斥c. 相互独立d. 不相互独立如果(B)成立,则事件A与B互为对立事件.a.b. 且c. A 与 互为对立事件.袋中有 5 个黑球, 3 个白球, 一次随机地摸出 4 个球, 其中恰有 3 个白球 的概率为(D).....某购物抽奖活动中,每人中奖的概率为 0.3. 则 3 个抽奖者中恰有 1 人中奖的概率为(A).a. b.c. d. 0.3非齐次线性方程组 相容的充分必要条件是 . ( √ )线性方程组 可能无解.(×)当 1 时,线性方程组 只有零解.( √ )当 1 时,线性方程组 有无穷多解.(×)d c b a d 2设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(× )设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.( √ )若向量组线性相关,则也线性相关.(×)若向量组线性无关,则也线性无关.( √ )若A矩阵可逆,则零是A的特征值.(×)特征向量必为非零向量.( √ )当 1 时,齐次线性方程组有非零解.若线性方程组有非零解,则 -1 .一个向量组中如有零向量,则此向量组一定线性相关 .向量组线性相关.向量组的秩与矩阵的秩相等.设齐次线性方程组的系数行列式,则这个方程组有非零解。
2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析(红色标注为正确答案)工程数学作业(第一次)(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B).A. B. C. D.⒐设均为阶可逆矩阵,则(D).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(D).A. B.C. D.(二)填空题(每小题2分,共20分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5×4 矩阵.⒋二阶矩阵.⒌设,则.⒍设均为3阶矩阵,且,则-72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题8分,共48分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.⒉设,求.⒊已知,求满足方程中的.⒋写出4阶行列式中元素的代数余子式,并求其值.⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.⒍求矩阵的秩.(四)证明题(每小题4分,共12分)⒎对任意方阵,试证是对称矩阵.⒏若是阶方阵,且,试证或.⒐若是正交矩阵,试证也是正交矩阵.工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分) ⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 .⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,,3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。
工程数学(本科)形考任务答案

1 )判断该向量组是否线性相关
解: 该向量组线性相关 5.求齐次线性方程组
的一个基础解系. 解:
方程组的一般解为 6.求下列线性方程组的全部解.
令
,得基础解系
解:
令
,
方程组一般解为 ,这里 , 为任意常数,得方程组通解
7.试证:任一4维向量
都可由向量组
,
,
,
线性表示,且表示方式唯一,写出这种表示方式.
著性水平 检验 5.假设检验中的显著性水平
,需选取统计量
.
为 事件
( u为临界值) 发生的概率.
(三)解答题 1.设对总体得到一个容量为 10的样本值 4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0
试分别计算样本均值
和样本方差 .
解:
2.设总体 的概率密度函数为
解:
( 1)当
时,由 1- α = 0.95,
查表得:
故所求置信区间为:
( 2)当 未知时,用 替代 ,查 t (4, 0.05,) 得
故所求置信区间为:
4.设某产品的性能指标服从正态分布 10个样品,求得均值为 17,取显著性水平 立.
,从历史资料已知 ,问原假设
,抽查 是否成
解:
,
由 因为
,查表得: > 1.96,所以拒绝
⑴
中至少有一个发生;
⑵
中只有一个发生;
⑶
中至多有一个发生;
⑷
中至少有两个发生;
⑸
中不多于两个发生;
⑹
中只有 发生.
解 : (1)
(2)
(3)
(4)
(5)
(6)
电大工程数学形成性考核册答案

电大工程数学形成性考核册答案工程数学作业(一)答案第2章矩阵一)单项选择题(每小题2分,共20分)1.设 $b_1=2$,则 $2a_1-3b_1a_2+2a_3-3b_3=-6$,选 D。
2.若 $a_2=1$,则 $a=\frac{1}{2}$,选 A。
3.乘积矩阵 $\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}$ 中元素 $c_{23}=10$,选 C。
4.设 $A,B$ 均为 $n$ 阶可逆矩阵,则 $(AB)^{-1}=B^{-1}A^{-1}$,选 B。
5.设 $A,B$ 均为 $n$ 阶方阵,$k>0$ 且 $k\neq1$,则 $-kA=(-k)^nA$,选 D。
6.若 $A$ 是正交矩阵,则 $A^{-1}$ 也是正交矩阵,选 A。
7.矩阵 $\begin{pmatrix}1&-2\\5&-3\end{pmatrix}$ 的伴随矩阵为 $\begin{pmatrix}5&-3\\2&-1\end{pmatrix}$,选 C。
8.方阵 $A$ 可逆的充分必要条件是 $A\neq0$,选 B。
9.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则 $(ACB')^{-1}=B^{-1}C^{-1}A^{-1}$,选 D。
10.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则$(A+B)^2=A^2+2AB+B^2$,选 A。
二)填空题(每小题2分,共20分)1.$\begin{pmatrix}1&-4\\-1&1\end{pmatrix}^{-1}=\begin{pmatrix}1&4\\1&5\end{pmatrix}$。
2.若 $-1$ 是关于 $x$ 的一个一次多项式,则该多项式一次项的系数为 $2$。
3.$\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}^T=\begin{pmatrix}1&2&-1\\-1&4&3\end{pmatrix}$。
工程数学(本科)形考任务答案

工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:精品文档. ( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⒊若 A 为 3 × 4 矩阵,B 为 2 × 5 矩阵,切乘积 AC′B′ 有意义,则 C 为 5×4
1 ⒋二阶矩阵 A =
1 5
=
1
5
.
0 1 0 1
1
⒌设
A
=
4
−3
2 0 4
,
B
=
−1 3
2 −1
0 4
,则 ( A
+
B′)′
=
0 5
6 −1
− 3 8
⒍设 A , B 均为 3 阶矩阵,且 A = B = −3 ,则 −2 AB = 72
解:
AC
+
BC
=
(
A
+
B)C
=
0
2
2 0
4− 1
1
3 0
1 −2 0
4
1 2
=
6 − 2
−4 2
10
10
3 1 0 1 0 2
⒊已知 A = −1 2 1 , B = −1 1 1 ,求满足方程 3A − 2 X = B 中的 X .
3 4 2
2 1 1
解:Θ 3A − 2 X = B
−
1 3
r2
− 91r3
→
Байду номын сангаас
1 0
0 1
−1 −2 3
2 2
3
2
3 −1
3
1
0
0
2 r3 + r1
− 2 r3+r2 →
1
0
0 1
09 2
0 9
2
9 1
9
2
9 −2
9
0 0
12 9
−2 9
1 9
0
0
12 9
−2 9
1
A. ( B′) −1 A−1C −1
B. B′C −1 A−1
C. A−1C −1 ( B −1 )′
D. ( B −1 )′C −1 A−1
⒑设 A , B , C 均为 n 阶可逆矩阵,则下列等式成立的是(A ).
A. ( A + B)2 = A2 + 2 AB + B2 B. ( A + B)B = BA + B2
2 1
21 −2 0
0 1
0
0
− 2 r1 + r2
− 2 r1+r3 →
1 0
2 −3
21 −6 −2
0 1
0
0
2 3
r2
+
r1
− 2 r2+r3
→
1 0
0 −3
−2 −3 −6 −2
3 1
0
0
2 − 2 1 0 0 1
0 − 6 − 3 − 2 0 1
0 0
9 2 − 2 1
B. -4
C. 6
D. -6
0001
00a 0
⒉若
= 1,则 a = (A ).
02 0 0
100a
1
A.
B. -1
C. − 1
D. 1
2
2
1 −1−1 0 3
⒊乘积矩阵 2
4 5
2
1
中元素 c 23
= (C
).
A. 1
B. 7
C. 10
D. 8
⒋设 A , B 均为 n 阶可逆矩阵,则下列运算关系正确的是(
B. AB = n A B
C. kA = k A
D. −kA = (−k )n A
⒍下列结论正确的是( A).
A. 若 A 是正交矩阵,则 A−1 也是正交矩阵 B. 若 A , B 均为 n 阶对称矩阵,则 AB 也是对称矩阵
C. 若 A , B 均为 n 阶非零矩阵,则 AB 也是非零矩阵 D. 若 A , B 均为 n 阶非零矩阵,则 AB ≠ 0
C. (2 ABC) −1 = 2C −1B −1 A−1 D. (2 ABC)′ = 2C ′B′A′
(二)填空题(每小题 2 分,共 20 分)
2 −1 0
⒈ 1 −4 0 = 7
.
0 0 −1
−1 1 1
⒉ 1 −1 x 是关于 x 的一个一次多项式,则该多项式一次项的系数是 2
.
1 1 −1
4
3
6 =0
a 42
=
(−1) 4+2
−1
3
6 = 45
2 −5 3
0 −5 3
⒌用初等行变换求下列矩阵的逆矩阵:
1 ⑴ 2
2
2 1 −2
2 −2 ; 1
1
⑵
2 1
1
2 3 1 0
3 1 1 −2
4
2
−1
;
−6
1
⑶
1 1
1
0 1 1 1
0 0 1 1
0
0 0
.
1
解:(1)
12
1
[A
|
I
]=
2
A 2
O
O A2−1
.
(三)解答题(每小题 8 分,共 48 分)
1 2 −1 1 5 4 ⒈设 A = −3 5 , B = 4 3 , C = 3 −1 ,求⑴ A + B ;⑵ A + C ;⑶ 2 A + 3C ;
⑷ A + 5B ;⑸ AB ;⑹ ( AB)′C .
答案:
A
+
B
=
A. A + B −1 = A −1 + B −1
B. ( AB) −1 = BA −1
B).
C. ( A + B) −1 = A−1 + B −1
D. ( AB) −1 = A−1 B −1
⒌设 A , B 均为 n 阶方阵, k > 0 且 k ≠ 1 ,则下列等式正确的是(D ).
A. A + B = A + B
∴
8
X
=
1 2
(3A
−
B)
=
1 2
− 2 7
3 5 11
− 2
2
5
=
4 − 1 7
3
2 5
2 11
− 1
1
5
2 2 2
⒋写出 4 阶行列式
1020
−1 4 3 6
0 2 −5 3
3110
中元素
a 41
,
a 42
的代数余子式,并求其值.
020
1 20
答案:
a 41
=
(−1) 4+1
《工程数学(本)》作业评讲(1)
重庆电大远程教育导学中心理工导学部 姚素芬
第 2 章 矩阵
(一)单项选择题(每小题 2 分,共 20 分)
aa a
1
2
3
a
a
a
1
2
3
⒈设 b 1
b 2
b 3
= 2 ,则 2a1 − 3b1
2a2 − 3b2
2a3 − 3b3 = (D ).
cc c
1
2
3
c
c
c
1
2
3
A. 4
0
3
1 8
6 6 A + C = 0 4
17 16 2A + 3C = 3 7
26 22
A + 5B =
12 0
7 7
AB =
23 12
(
AB )′C
=
56
21
151 80
2
−1 ⒉设 A = 0
2 −1
1 1 2 , B = 2
0 1
3 −1
,
C
=
−1
3
0
1 −2 0
4 1 ,求 AC + BC . 2
.
⒎设 A , B 均为 3 阶矩阵,且 A = −1, B = −3 ,则 −3( A′B−1 )2 = -3
矩阵. .
1 a ⒏若 A = 0 1 为正交矩阵,则 a =
0.
2 −1 2 ⒐矩阵 4 0 2 的秩为
0 −3 3
2.
A
⒑设
A 1
,
A 2
是两个可逆矩阵,则
1
O
O −1
=
A1−1
1 3 ⒎矩阵 2 5 的伴随矩阵为(
1 −3 −1 3 A. −2 5 B. 2 −5
5 −3 −5 3 C. −2 1 D. 2 −1
C).
⒏方阵 A 可逆的充分必要条件是(B ).
A. A ≠ 0
B. A ≠ 0
C. A* ≠ 0
D. A * > 0
⒐设 A , B , C 均为 n 阶可逆矩阵,则 ( ACB′) −1 = (D ).