材料力学_第二版_范钦珊_第4章习题答案

合集下载

理论力学课后答案(范钦珊)

理论力学课后答案(范钦珊)

(a-2)(a-3)(a) 第1篇工程静力学基础第1章受力分析概述1-1图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。

试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。

习题1-1 解:((b1-2a 和b 两种情形下各物体的受力图,并进行比较。

习题1-2图a-1)与图(b-1)不同,因两者之F 1-试画出图示各物体的受力图。

习题1-31-4图a 所示为三角架结构。

荷载F 1作用在铰B 上。

杆AB 不计自重,杆BC 自重为W 。

试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。

习题1-4图1-5图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。

试问如果将力F 沿其作用线移至D 或E (如图示),是否会改为销钉A 的受力状况。

解:由受力图1-5a ,1-5b 和1-5c 分析可知,F 从C 移至E ,A 端受力不变,这是因为力F 在自身刚体ABC 上滑移;而F 从C 移至D ,则A 端受力改变,因为HG 与ABC 为不同的刚体。

(a-1)(b-1)或(b-2)(d-1)(e-1)(f-1)(e-3)(f-2)F A(d-2)(c-1)(b-1)(b-2)(b-3)(c-2)(d-1)(b) (c) 习题1-5图(a-3)(a-2)(b-2)(b-1)(a-1)1-6试画出图示连续梁中的AC 和CD 梁的受力图。

习题1-6图1-7画出下列每个标注字符的物体的受力图,各题的整体受力图未画重力的物体的自重均不计,所有接触面均为光滑面接触。

1-7d 1-7e 1-7f 1-7g 1-7h 1-7i 1-7j2-(b )l F M O ⋅=αsin )(F(c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF(d )2221sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF2-2图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。

材料力学_范钦珊_习题参考解答

材料力学_范钦珊_习题参考解答
FP = 60 kN
OB
B F P 60kN
Ea
1 .2 m
A
FP
x
解:1.铝筒: u A − u B
=
−FPl AB Ea Aa
(其中 uA = 0)
As
A' 2.1m
Es
C FP = 60 kN
x
uB
=
60 ×103 ×1.2 ×103 70 ×103 ×1.10 ×10−3 ×106
= 0.935 mm
Mx1= Mx2 2.确定轴和薄壁管横截面上的最大剪应力 设轴受 T = 73.6N·m 时,相对扭转角为 ϕ0 ,于是,有
dφ0 = M x = T dx GIp1 GIp1
(a)
焊接后卸载,管承受扭转,其相对扭转角为 ϕ 2 ,轴上没有恢复的相对扭转角为 ϕ1 = ϕ0 − ϕ2 ,即
其中
ϕ1 + ϕ2 = ϕ0
×103 × 10 −6
= 95.5 MPa
σ BC
=
FN2 A2
=
4 × (50 + 30) ×103 π × 302 ×10−6
= 113 MPa
(2) ∆l = ∆l AB
+ ∆lBC
=
FN1l1 EA1
+ FN2l2 EA2
= 1.06 mm
2-3 长度 l=1.2 m、横截面面积为 1.10×l0-3 m2 的铝制圆筒放置在固定的刚性块上;直 径 d=15.0 mrn 的钢杆 BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。若在钢杆的 C 端施加轴向拉力 FP,且已知钢和铝的弹性模量分别为 Es=200 GPa,Ea=70 GPa;轴向载荷 FP=60 kN, 试求钢杆 C 端向下移动的距离。

清华出版社工程力学答案-第4章 材料力学概述

清华出版社工程力学答案-第4章 材料力学概述

eBook工程力学习题详细解答教师用书(第4章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题4-1 习题4-2 习题4-3 习题4-4工程力学习题详细解答之四第4章 材料力学概述4-1已知两种情形下直杆横截面上的正应力分布分别如图(a )和(b )所示。

请根据应力与内力分量之间的关系,分析两种情形下杆件横截面存在什么内力分量?(不要求进行具体计算)。

解:对于图(a)中的情形,横截面上的应力积分的结果将形成一个沿轴线方向的轴力。

对于图(b)中的情形,横截面上的应力积分的结果将形成一个弯矩。

4-2微元在两种情形下受力后的变形分别如图(a )和(b )中所示,请根据剪应变的定义确定两种情形下微元的剪应变。

解:对于图(a)中的情形,微元的剪应变γα=对于图(b)中的情形,微元的剪应变0γ=4-3 由金属丝弯成的弹性圆环,直径为d (图中的实线),受力变形后变成直径为d +Δd 的圆(图中的虚线)。

如果d 和Δd 都是已知的,请应用正应变的定义确定:(1) 圆环直径的相对改变量;(a) (b)习题4-1图ααπ2ααααααα90°α(a)(b)习题4-2图d xABCDA'B'D'αα(a) (b)习题4一4图(2) 圆环沿圆周方向的正应变。

解:1. 圆环沿直径方向的正应变r d dεΔ=2. 圆环沿圆周方向的正应变()t πππd d d dd dε+Δ−Δ==4-4 微元受力前形状如图中实线ABCD 所示,其中ABC ∠为直角,d x = d y 。

受力变形后各边的长度尺寸不变,如图中虚线''A B C D ′′所示。

(1)请分析微元的四边可能承受什么样的应力才会产生这样的变形?(2)如果已知d 1000xCC ′=求AC 方向上的正应变。

(3)如果已知图中变形后的角度α,求微元的剪应变。

(完整版)工程力学习题答案范钦珊蔡新着工程静力学与材料力学第二版

(完整版)工程力学习题答案范钦珊蔡新着工程静力学与材料力学第二版

比较:图(a-1)与图(b-1)不同,因两者之1 - 3试画出图示各物体的受力图。

1 - 1图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。

试将同一方 F 分别对两坐标系进行分解和投影,并比较分力与力的投影。

解:(a),图(c ):分力: 投影:=90 ° 时, (d ): F cos i 1 FX 1F y1 F sin F y1 F sinj l讨论:(b ),图F X 1 F cos投影与分力的模相等;分力是矢量, X 2投影是代数量。

F sinsin分力: j2BD(b)D(b-1)(a-3)投影: 工90°时, F X 2 F cos , 投影与分量的模不等。

讨论:1 -2试画出图a 、b 两情形下各物体的受力图,并进行比较。

F y2 F cos(F X 2 (F cos F sin tan )i 2 F y2(a)l F AyF A X1F RD 值大小也不同。

a5A■dFBFF CABB(a-1)(b-1)BC DBCBCWDAy或(b-2)(c-1)(d-1)DCABCDFt D或(d-2)(e-2)(e-1)CO iOyBFA(f-3)(e-3)IV2[fW(f-1)(c)习题1—3图F BF BF AxF AF DB FF cW(f-2)AOAF A力 F i 作用在,并加以讨论。

----------------- :B 铰上。

杆AB 不计自重,杆BD 杆自重为 W 。

试画出图1 —4图a 所示为三角架结构 b 、c 、d 所示的隔离体的受力图 A zz ” X Xzr 'i/A1rC[------------DF AxAB虾F 或(a_2)1 — 6图示刚性构件 ABC 由销钉A 和拉杆GH 支撑,在构件的点C 作用有一水平力F 。

试问如果将力 F 沿其作用线移至点 D 或点E (如图示),是否会改变销钉 A 的受力状况。

范钦珊版材料力学习题全解第4章圆轴扭转时的强度与刚度计算.

范钦珊版材料力学习题全解第4章圆轴扭转时的强度与刚度计算.

解:1、轴的强度计算M T τ 轴max = x = 1 3 ≤ 60 × 10 6 Wp1 π d 16 T1 ≤ 60 × 10 6 × 2、轴套的强度计算π × 66 3 × 10 −9 = 3387 N ⋅ m 16 习题 4-6 图τ 套 max = Mx T2 = ≤ 60 × 106 3 68 4 ⎞ Wp2 πD ⎛⎜1 − ( ⎟ 16 ⎝ 80 ⎠ 6 ⎡⎛ 17 ⎞ 4 ⎤ π × 80 3 −9 T2 ≤ 60 × 10 × × 10 ⎢1 − ⎜⎟⎥ = 2883 N ⋅ m 16 ⎢⎣⎝ 20 ⎠⎥⎦ 3、结论Tmax ≤ T2 = 2883 N ⋅ m = 2.883 kN ⋅ m 4-7 图示开口和闭口薄壁圆管横截面的平均直径均为 D、壁厚均为δ ,横截面上的扭矩均为 T = Mx。

试:习题 4-7 图1.证明闭口圆管受扭时横截面上最大剪应力 6τ max ≈ τ max ≈ 2M x δπ D2 3M x 2.证明开口圆管受扭时横截面上最大剪应力δ 2πD 3.画出两种情形下,剪应力沿壁厚方向的分布。

解:1.证明闭口圆管受扭时横截面上最大剪应力由于是薄壁,所以圆环横截面上的剪应力可以认为沿壁厚均匀分布(图 a1),于是有习题 4-7 解图Mx = ∫ A D D ⋅ τd A = ⋅ τ ⋅ π Dδ 2 2 由此得到δπ D 2 δπ D2 2.证明开口圆管受扭时横截面上最大剪应力根据狭长矩形扭转剪应力公式,有3M x 3M x 3M x τ max = = = 2 2 hb π D ⋅δ δ 2π D τ= 2M x 即:τ max = 2M x 3.画出两种情形下,剪应力沿壁厚方向的分布两种情形下剪应力沿壁厚方向的分布分别如图 a1 和 b2 所示。

4-8 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。

《理论力学》(范钦珊)习题解答第2篇第46章.doc

《理论力学》(范钦珊)习题解答第2篇第46章.doc

(b)第2篇 工程运动学基础第4章 运动分析基础4-1 小环A 套在光滑的钢丝圈上运动,钢丝圈半径为R (如图所示)。

已知小环的初速度为v 0,并且在运动过程中小环的速度和加速度成定角θ,且 0 < θ <2π,试确定小环 A的运动规律。

解:Rv a a 2ns in ==θ,θs in 2R v a =θθt an co s d d 2tR v a tv a ===,⎰⎰=t v v t R v v 02d t an 1d 0θ t v R R v t s v 00t an t an d d -==θθ⎰⎰-=t s t t v R R v s 0000d tan tan d θθtv R R R s 0t an t an ln tan -=θθθ4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的 1.⎪⎩⎪⎨⎧-=-=225.1324t t y tt x , 2.⎩⎨⎧==t y t x 2cos 2sin 3解:1.由已知得 3x = 4y (1) ⎩⎨⎧-=-=t y t x3344 t v 55-=⎩⎨⎧-=-=34y x5-=a 为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。

2.由已知,得2ar cco s 213ar cs i n y x =化简得轨迹方程:2942x y -=(2)轨迹如图(b ),其v 、a 图像从略。

4-3 点作圆周运动,孤坐标的原点在O 点,顺钟向为孤坐标的正方向,运动方程为221Rt s π=,式中s 以厘米计,t 以秒计。

轨迹图形和直角坐标的关系如右图所示。

当点第一次到达y 坐标值最大的位置时,求点的加速度在x 和y 轴上的投影。

解:Rt s v π== ,R v a π== t,222n Rt Rv a π==y 坐标值最大的位置时:R Rt s 2212ππ== ,12=∴tR a a x π==t ,R a y 2π-=4-4 滑块A ,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮A习题4-1图习题4-2图习题4-3图e e -t (c)e e -t υ (b)R t R +υ (a)习题4-6图以匀角速度ω转动,如图所示。

理论力学课后答案范钦珊

理论力学课后答案范钦珊

(a-2)(a-3)(b-1)(a-1)(a) 第1篇 工程静力学基础第1章 受力分析概述1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。

试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。

习题1-1图解:(a )图(c ):11 s i n c o s j i F ααF F +=分力:11 cos i F αF x = , 11 sin j F αF y = 投影:αcos 1F F x = , αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。

(b )图(d ): 分力:22)cot sin cos (i F ϕααF F x -= ,22sin sin j F ϕαF y = 投影:αcos 2F F x = , )cos(2αϕ-=F F y讨论:ϕ≠90°时,投影与分量的模不等。

1-2 试画出图a 和b 两种情形下各物体的受力图,并进行比较。

习题1-2图比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。

1-3 试画出图示各物体的受力图。

习题1-3图1-4 图a 所示为三角架结构。

荷载F 1作用在铰B 上。

杆AB 不计自重,杆BC 自重为W 。

试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。

习题1-4图1-5 图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。

试问如果将力F 沿其作用线移至D 或E (如图示),是否会改为销钉A 的受力状况。

解:由受力图1-5a ,1-5b 和1-5c 分析可知,F 从C 移至E ,A 端受力不变,这是因为力F 在自身刚体ABC 上滑移;而F 从C 移至D ,则A 端受力改变,因为HG 与ABC 为不同的刚体。

(c ) (d )或(a-2)(a-1) (b-1)(c-1)或(b-2)(d-1)(e-1)或(d-2)(e-2)(f-1)(e-3)(f-2)(f-3)F AF BF A(d-2)(c-1)(b-1)(b-2)(b-3)(c-2)(d-1)(b-3)(a-3)(a-2)(b-2)(b-1)(c)(a-1)1-6 试画出图示连续梁中的AC 和CD 梁的受力图。

高教范钦珊材料力学习题集 有答案

高教范钦珊材料力学习题集 有答案

材料力学习题集第1章引论1-1图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M。

关于固定端处横截面A -A上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。

A-A在(b-1)(a-1) (b-1)(a-2) (b-2)(c) (d)(c-2) (d-2)(e) (f)(e-1) (f-1)(e-2) (a) (b)(c) (d)(a-1)(c-1) (d-1)(f-2)(b )0=∑A M ,022R 2=⋅+⋅+⋅--l F l ql lql ql B , ql F B 41R =(↑) 0=∑y F ,ql F A 41R =(↓), 2R 4141ql l ql l F M B C =⋅=⋅=(+) 2ql M A =(c )0=∑y F ,ql F A =R (↑) 0=∑A M ,2ql M A =0=∑D M ,022=-⋅-⋅+D M lql l ql ql(d )0=∑B Mql F A 45R =(↑) 0=∑y F ,ql F B 43R =(↑)0=∑B M ,22l qM B =0=∑D M ,23225ql M D = (e )0=∑y F ,F R C = 00=∑C M ,0223=+⋅+⋅-C M lql l ql0=∑B M ,221ql M B =0=∑y F ,ql F B =Q2max ||ql M =(f )0=∑A M ,ql F B 21R =(↑)0=∑y F ,ql F A 21R =(↓)0=∑y F ,021Q =-+-B F ql ql0=∑D M ,042221=+⋅-⋅D M ll q l ql281ql M E =∴ ql F 21||max Q =2-5 试作图示刚架的弯矩图,并确定max ||M 。

解: 图(a ):0=∑A M ,02P P R =⋅-⋅-⋅l F l F l F B P R F F B =(↑)0=∑y F ,P F F Ay =(↓) 0=∑x F ,P F F Ax =(←)弯距图如图(a-1),其中l F M P max 2||=,位于刚节点C 截面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学_第二版_范钦珊_第4章习题答案第4章 弹性杆件横截面上的切应力分析4-1 扭转切应力公式p /)(I M x ρρτ=的应用范围有以下几种,试判断哪一种是正确的。

(A )等截面圆轴,弹性范围内加载; (B )等截面圆轴;(C )等截面圆轴与椭圆轴;(D )等截面圆轴与椭圆轴,弹性范围内加载。

*正确答案是 A 。

解:p )(I M x ρρτ=在推导时利用了等截面圆轴受扭后,其横截面保持平面的假设,同时推导过程中还应用了剪切胡克定律,要求在线弹性范围加载。

4-2 两根长度相等、直径不等的圆轴受扭后,轴表面上母线转过相同的角度。

设直径大的轴和直径小的轴的横截面上的最大切应力分别为max 1τ和max 2τ,切变模量分别为G 1和G 2。

试判断下列结论的正确性。

(A )max 1τ>max 2τ; (B )max 1τ<max 2τ;(C )若G 1>G 2,则有max 1τ>max 2τ; (D )若G 1>G 2,则有max 1τ<max 2τ。

正确答案是 C 。

-解:因两圆轴等长,轴表面上母线转过相同角度,指切应变相同,即γγγ==21由剪切胡克定律γτG =知21G G >时,max 2max 1ττ>。

4-3 承受相同扭矩且长度相等的直径为d 1的实心圆轴与内、外径分别为d 2、)/(222D d D =α的空心圆轴,二者横截面上的最大切应力相等。

关于二者重之比(W 1/W 2)有如下结论,试判断哪一种是正确的。

(A )34)1(α-; (B ))1()1(2234αα--; (C ))1)(1(24αα--; (D ))1/()1(2324αα--。

正确答案是 D 。

解:由max 2max 1ττ=得)1(π16π1643231α-=d M d M xx 即 31421)1(α-=D d(1)@)1(222212121α-==D d A A W W (2)(1)代入(2),得 2324211)1(αα--=W W4-4 由两种不同材料组成的圆轴,里层和外层材料的切变模量分别为G 1和G 2,且G 1 = 2G 2。

圆轴尺寸如图所示。

圆轴受扭时,里、外层之间无相对滑动。

关于横截面上的切应力分布,有图中所示的四种结论,试判断哪一种是正确的。

正确答案是 C 。

解:因内、外层间无相对滑动,所以交界面上切应变相等21γγ=,因212G G =,由剪切胡克定律得交界面上:212ττ=。

…习题8-4图习题4-5图习题4-6图4-5 等截面圆轴材料的切应力-切应变关系如图中所示。

圆轴受扭后,已知横截面上点)4/(d a a =ρ的切应变s γγ=a ,若扭转时截面依然保持平面,则根据图示的γτ-关系,可以推知横截面上的切应力分布。

试判断图中所示的四种切应力分布哪一种是正确的。

正确答案是 A 。

4-6图示实心圆轴承受外扭转力偶,其力偶矩T = 3kN ·m 。

试求: 1.轴横截面上的最大切应力; …2.轴横截面上半径r = 15mm 以内部分承受的扭矩所占全部横截面上扭矩的百分比; 3.去掉r = 15mm 以内部分,横截面上的最大切应力增加的百分比。

解:1.7.7006.0π1610316π333P P max 1=⨯⨯⨯====d T W T W M x τMPa2. 4π2d π2d 4p p 01r I M I M A M x x r A r ⋅=⋅⋅=⋅=⎰⎰ρρρρτρ ∴ %25.6161)6015(161632π4π24π244444p 4==⨯==⋅==dr d r I r M M x r 3. ⎪⎭⎫⎝⎛-==43p max 2)21(116πd TW M x τ%67.6151)21(1)21(14444max 1max 1max 2==-=-=-=∆αατττττ 4-7 图示芯轴AB 与轴套CD 的轴线重合,二者在B 、C 处连成一体;在D 处无接触。

已知芯轴直径d = 66mm ;轴套的外径D = 80mm ,壁厚δ= 6mm 。

若二者材料相同,所能承受的最大切应力不得超过60MPa 。

试求结构所能承受的最大外扭转力偶矩T 。

解:6311p max 106016π⨯≤==dT W M x 轴τ 3387101666π10609361=⨯⨯⨯⨯≤-T N ·m 64322p max 1060)8068(116π⨯≤⎪⎭⎫⎝⎛-==d T W M x 套τ 2883)2017(1101680π106049362=⎪⎭⎫ ⎝⎛-⨯⨯⨯⨯≤-T N ·m ∴ 28832max =≤T T N ·m 31088.2⨯=N ·m4-8 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。

设实心轴半径为R 0,空心圆轴的内、外半径分别为R 1和R 2,且R 1/R 2 = n ,二者所承受的外扭转力偶矩分别为T s 和T h 。

若二者横截面上的最大切应力相等,试证明:% 22h s 11n n T T +-=解:由已知长度和质量相等得面积相等:)(ππ212220R R R -= (1)2π16π30s3s max R T d T ⋅==τ(2);)1(16)2(π432hmax n R T -=τ (3)由(2)、(3)式)1(4323h s n R R T T -= (4)由(1) 212220R R R -=代入(4)∴ 22222324232432232122h s 11)1)(1()1(1)1()1()(n n n n n n n n R R R T T +-=+--=--=--= .4-9 图示开口和闭口薄壁圆管横截面的平均直径均为D 、壁厚均为δ,横截面上的扭矩均为T = M x 。

试:1.证明闭口圆管受扭时横截面上最大切应力2max π2D M xδτ≈2.证明开口圆管受扭时横截面上最大切应力DMx π32max δτ≈3.画出两种情形下,切应力沿壁厚方向的分布。

解:1.δττD DA D M A x π2d 2⋅⋅=⋅=⎰∴ 2π82DM x =τ 即:2max π2D M x δτ= 2.由课本(8-18)式DM D M hb M xx x π3π32222max δδτ=⋅==4-10 矩形和正方形截面杆下端固定,上端承受外扭转力偶作用,如图所示。

若已知T = 400N ·m ,试分别确定二杆横截面上的最大切应力。

解:4.151********.04009221max a =⨯⨯⨯==-hb c M x τMPa 0.19103570246.04009221max b =⨯⨯⨯==-hb c M x τMPa:4-11 图示三杆受相同的外扭转力偶作用。

已知T = 30N ·m ,且最大切应力均不能超过60MPa 。

试确定杆的横截面尺寸;若三者长度相等,试比较三者的重量。

解:63max a 106016π⨯≤=d M xτ 4.2910π60300161060π163636a =⨯⨯=⨯⨯≥Td mm63b3b 121maxa 1060208.0⨯≤===d M d c M hbc M x x x τ 9.28m 02886.01060208.030036b ==⨯⨯≥d mm 63c21maxc 10602246.0300⨯≤⨯==d hb c M x τ 习题4-9图(a)^习题4-10图习题4-11图习题4-12图(a)66.21m 02166.01060246.0230036c ==⨯⨯⨯≥d mm、三者长度相同,重量之比即为面积之比。

816.0)02886.002942.0(4π4π22b2a b a ===d d A A 724.0)02166.002942.0(8π)(8π24π22c a 2c 2ac a ====d d d d A A ∴ 724.0:816.0:1::c b a =A A A4-12 直径d = 25mm 的钢轴上焊有两凸台,凸台上套有外径D = 75mm 、壁厚δ=的薄壁管,当杆承受外扭转力遇矩T = ·m 时,将薄壁管与凸台焊在一起,然后再卸去外力偶。

假定凸台不变形,薄壁管与轴的材料相同,切变模量G = 40MPa 。

试:1.分析卸载后轴和薄壁管的横截面上有没有内力,二者如何平衡 2.确定轴和薄壁管横截面上的最大切应力。

:解:设轴受T = ·m 时,相对扭转角为0ϕ 且1p 0d d GI Tx =ϕ (1)T 撤消后,管受相对扭转角2ϕ,则轴受相对扭转角201ϕϕϕ-=,此时轴、管受扭矩大小相等,方向相反,整个系统平衡。

021ϕϕϕ=+ (2)2p 1p 1p GI lM GI l M GI Tl x x '+= (3) x x M M '= (4)∴ T I I I M x p21p 2p +=(5)》2p2p12p 2p p2p12p max h DI I T W T I I T W M x ⋅+=⋅+==τ (6)1212441p 105.3834910)25(32π32π--⨯=⨯==d I 12124444p21039392210)755.72(13275π)2(132π--⨯=⨯⎥⎦⎤⎢⎣⎡-⨯=⎥⎦⎤⎢⎣⎡--=D D D I δm 4将I p1、I p2值代入(6)得管:38.610)3939225.38349(102756.73123max h =⨯+⨯⨯=--τMPa轴:86.21105.38349)3939225.38349(103939222256.732d )(2d 1232p 1p 1p 2p 1p maxs =⨯⨯+⨯⨯⨯=⋅+⋅=⋅=--I I I T I I M x τ MPa4-13 由钢芯(直径30mm )和铝壳(外径40mm 、内径30mm )组成的复合材料圆轴,一端固定,另一端承受外加力偶,如图所示。

已知铝壳中的最大切应力60max a =τMPa ,切变模量G a = 27GPa ,钢的切变模量G s = 80GPa 。

试求钢芯横截面上的最大切应力max s τ。

$解:复合材料圆轴交界面上剪应变相同γγγ==a s (r = 15mm )paamax a W M =τ a a paaa )(γτG rI M r ==习题4-13图rI G M apa a a γ=∴ rI G W apa a pa max a γτ=⋅1332027156080)(a max a s pa a pa max a s a s s s ps smax s =⨯⨯⨯=⋅⋅⋅=⋅⋅⋅⋅====R G r G I G r W G G G W M r ττγγτMPa 4-14 若在圆轴表面上画一小圆,试分析圆轴受扭后小圆将变成什么形状使小圆产生如此变形的是什么应力答:小圆变形成椭圆,由切应力引起。

相关文档
最新文档