微生物遗传育种

合集下载

微生物遗传育种学

微生物遗传育种学

微生物遗传育种学一、名词解释(3*5)1、pcr:聚合酶链式反应,是一项在生物体外复制特定dna片段的核酸合成技术。

2、操纵子:操纵子(operon):原核生物能mRNA出来一条mrna的几个功能有关的结构基因及其上游的调控区域,称作一个操纵子(operon)。

3、启动子(promoter):真核基因启动子是rna聚合酶结合点周围的一组转录控制元件,包括:至少一个转录起始点及一个以上的功能组件。

4、冈崎片段:冈崎片段就是由于解链方向与激活方向不一致,其中一股子链的激活,Gondrecourt母链求出足够多长度才已经开始分解成引物接着缩短。

这种不已连续的激活片段就是冈崎片段。

5、营养缺陷型:指某一菌株在诱变后丧失了合成某种营养成分(生长因子)的能力,使其在基本培养基上不能生长,必须加入相应物质才能生长的突变体。

6、准性生殖:就是一种类似有性生殖但比它更为完整的一种生殖方式。

可使同一种生物的两个相同来源(即为同种相同株)的体细胞经融合后,不通过有丝分裂而引致高频率的基因重组。

准性生殖常见于某些真菌,尤其就是半知菌中。

7、限制性核酸内切酶(restrictionendonuclease):识别并切割特异的双链dna序列的一种内切核酸酶。

8、密码的自旋性:密码的自旋性就是多个密码子编码同一个氨基酸的现象。

9、转座子(transposons):转座子是可以从一个染色体位点转移至另一个位点的分散的重复序列。

转座子也包括含有两个反向重复序列的侧翼,内有转座酶基因,并含有抗生素耐药基因等其他基因。

10、微生物繁育:人为地使用物理、化学的因素,引致有机体产生遗传物质的突变,经选育成为新品种的途径。

二、是非题(2*5)三、选择题(3*5)1、限制性内乌酶的种类、辨识位点、功能、区别根据酶的亚单位组成、识别序列的种类和是否需要辅助因子,限制与修饰系统主要分成三大类。

ⅱ型酶所占到的比例最小,相对来说最简单,它们辨识回文等距序列,在回文序列内部或附近研磨dna。

基因工程育种微生物遗传育种

基因工程育种微生物遗传育种
基因工程育种与微生物遗 传育种
• 基因工程育种与微生物遗传育种概述 • 基因工程育种技术 • 微生物遗传育种技术 • 基因工程育种与微生物遗传育种的应
用 • 基因工程育种与微生物遗传育种的挑
战与前景
01
基因工程育种与微生物遗传育种概述
基因工程育种定义与特点
定义
基因工程育种是通过基因工程技术对 生物体的基因进行改造,以达到改良 生物性状和提高产量等目的的育种方 法。
工业领域的应用
工业酶
利用基因工程技术生产具有特殊功能的工业酶,广泛应用于洗涤 剂、食品、纺织和制药等行业。
生物燃料
通过基因工程技术改良微生物,生产高效、环保的生物燃料,减少 对化石燃料的依赖。
生物材料
利用基因工程技术生产具有特殊性能的生物材料,如可降解塑料、 生物纤维等,替代传统石化材料。
05
基因工程育种与微生物遗传育种的挑
战与前景
技术挑战与伦理问题
技术挑战
基因工程育种和微生物遗传育种技术需要高 水平的科学知识和技术能力,同时面临着技 术难度大、成本高、周期长等问题。
伦理问题
基因工程育种和微生物遗传育种涉及到人类 基因和生命形式的改变,可能引发伦理和道 德方面的争议,需要慎重考虑和规范。
未来发展方向与前景
精准育种
随着基因组学和生物信息学的发展,基因工程育种和微生物遗传育种将更加精准和高效, 能够更好地满足农业生产和生物医药等领域的需求。
VS
细胞工厂构建
通过代谢工程手段改造微生物细胞,使其 具备生产特定化学品、燃料或材料的能力 。
04
基因工程育种与微生物遗传育种的应

医药领域的应用
基因治疗
利用基因工程技术修复或替换缺陷基因,以达到治疗 遗传性疾病和恶性肿瘤等疾病的目。

微生物遗传育种名词解释(二)

微生物遗传育种名词解释(二)

微⽣物遗传育种名词解释(⼆)1、⾃然选育:从⾃然界直接分离和筛选菌种或在⽣产中利⽤⾃发突变选育优良菌株。

2、诱变育种:对出发菌株进⾏诱变,然后运⽤合理的程序与⽅法筛选符合要求的优良菌株。

3、代谢调控育种:利⽤现有的代谢调控知识,筛选特定突变型,改变代谢流量或流向,从⽽提⾼⽬的产物产量的⼀种育种技术。

4、重组育种;利⽤微⽣物间的遗传重组来改变其遗传物质组成及结构的⼯业微⽣物育种技术。

5、原⽣质体融合育种;通过⼈为⽅法,使遗传性状不同的两细胞的原⽣质体发⽣融合,从⽽实现遗传重组的⼯业微⽣物育种技术。

6、基因⼯程育种技术:在体外构建重组DNA分⼦并导⼊宿主内⾼效表达,从⽽获得重组微⽣物的育种技术。

7、突变:遗传物质核酸中的核苷酸序列发⽣了稳定的可遗传的变化。

8、突变体:带有突变基因的细胞或个体9、突变型:突变体的基因型或表型称为突变型,和其相对的原存在状态称为野⽣型。

10、⾃发突变(spontaneous mutagenesis):未经任何⼈为处理⽽⾃然发⽣的突变;11、诱发突变(induced mutagenesis):由⼈们有意识地利⽤物理或化学⼿段对⽣物体进⾏处理⽽引起的突变。

12、整倍体:含有完整的染⾊体组。

13、⾮整倍体:含有不完整状态的染⾊体组,⼀般是指⼆倍体中成对染⾊体成员的增加或减少。

14、部分⼆倍体:原核⽣物中由⼀整条染⾊体和外来染⾊体⽚段所构成的不完整⼆倍体。

增变基因(mutator gene):其基因突变会导致整个基因组的突变频率明显上升的⼀些基因。

15、前突变:诱变剂所造成的DNA分⼦某⼀位置的损伤16、光复活:指细菌在紫外线照射后⽴即⽤可见光照射,可以显著地增加细菌的存活率,降低突变率。

17、表型延迟phenotype lag:突变体表型改变落后于其基因型改变的现象。

18、分离性延迟segregational lag :突变基因由杂合状态到纯合状态所造成的表型迟延19、⽣理性延迟physiological lag :由于基因产物的“稀释”过程所造成的表型迟延野⽣型(wild type):从⾃然界分离到的任何微⽣物在其发⽣营养缺陷突变前的原始菌株;基因重组:由于不同DNA链的断裂和连接⽽产⽣DNA⽚段的交换和重新组合,形成新的DNA分⼦,进⽽形成新遗传个体的⽅式称为基因重组。

微生物遗传育种(1)

微生物遗传育种(1)

微生物遗传育种答案第一章微生物的遗传物质一、名词1 转化: 指一种生物由于接受了另一种生物的遗传物质而发生遗传性状的改变2 cccDNA——共价、闭合、环状DNA3 复制子:指能独立进行复制的DNA部分, 一个复制子包括复制起点及其复制区4 启动子(promoter)——是位于结构基因5’端,启始结构基因转录的DNA顺序。

它决定转录的准确启始,并与转录效率有关。

5 Pribnow框(Pribnow box): 又称-10区或Rc区,与核心酶结合的位置,一致顺序:TATPuA二、问题1证明核酸是遗传物质有哪些实验证据答:肺炎双球菌的转化实验和噬菌体的侵染实验证明DNA为遗传物质。

烟草花叶病毒的遗传物质的发现及重组实验证明RNA也是遗传物质。

2 1928年, F Griffith 发现转化现象的过程答:肺炎双球菌野生型,有毒力菌落光滑产荚膜为S型;突变型无毒力菌落粗糙无荚膜为R 型,然而讲加热杀死的S型细菌与R型细菌混合培养,能分离得到S型细菌,说明加热杀死的S型菌中存在能将R型菌转化为S型菌的因子。

3 1944年,Avery证明DNA是遗传物质的过程答:Avery他们从S型细菌细胞物质中抽提并纯化出转化因子,将它用多种蛋白水解酶处理后,并不影响转化效果,如果用脱氧核糖核酸酶去处理则转化消失,从而直接证明了转化因子是DNA.四、选择题:1 E.coli含有一个cccDNA,约编码2000个基因。

2 E.coli的基因组测序1997年完成,E.coli cccDNA 有基因4.6×106 bp,含4288个基因第二章基因突变和损伤DNA的修复一、名词1基因突变(gene mutation) : 是指基因的分子结构(核苷酸顺序)的改变1.形态突变——可见突变2.生化突变:指没有形态效应的突变(去年考题)3.致死突变:指引起个体死亡或生活力下降的突变4.条件致死突变:指在某些条件下能成活, 而在另一些条件下是致死的突变二、问题1根据突变对表型的效应,基因突变分为哪些类型?(去年考题)答:1形态突变:肉眼可见,即有关形状、大小、生育状态、颜色、颜色分布等表型变化的突变;2:生化突变:没有形态:指没有形态效应的突变;3致死突变:引起个体死亡或活力下降的突变4:条件致死突变:指在某些条件下能成活而在另一些条件下是致死的突变。

微生物遗传育种学

微生物遗传育种学

微生物遗传育种学
微生物遗传育种学是研究微生物的遗传变异、遗传改良及育种技术的学科。

微生物指的是细菌、真菌、病毒等单细胞生物。

微生物遗传育种学主要关注微生物在遗传水平上的变异、变异的调控机制以及如何通过遗传改良来获得具有特定性状的微生物株系。

微生物遗传育种学的研究内容包括:
1. 遗传变异的检测与分析:通过分子生物学、基因组学等技术手段,研究微生物中存在的遗传变异,探究变异的产生机制和变异位点的定位。

2. 遗传改良的策略和方法:通过基因工程、突变育种、自然选择等手段,改良微生物的遗传性状,如产量、耐受性、代谢能力等,以提高微生物在工业生产、环境修复、药物开发等方面的应用性能。

3. 突变育种的应用:通过诱变剂或辐射等方法,诱发微生物的突变,筛选出具有特定性状的突变株系,进一步进行遗传改良。

4. 基因工程的应用:通过外源基因的引入、基因的删除或修改等手段,改变微生物的基因组,使其具有特定的功能或产物。

通过微生物遗传育种学的研究与应用,可以获得具有工业、农业、医疗等方面应用潜力的微生物种类,为人类社会的发展和生活带来诸多好处。

微生物遗传育种第二章

微生物遗传育种第二章

1952年,J. 和E. Lederberg 夫妇发明了一种直接证明突变自发 性的方法 -----影印培养法,证明了 细菌的抗药性是发生在加入药物之 前的,而药物的作用仅是把突变型 筛选出来。
第二节 基因突变的规律
Lederberg等设计的平板影印培养法
第二节 基因突变的规律
二、自发性
各种性状的突变,可以在没有人 为的诱变因素下自发地发生。
第三节 诱变的机制
(5)NTG(NNG)的作用特点:
第三节 诱变的机制
三、嵌合剂的致突变作用
吖啶类染料和ICR类化合物是通过同 DNA分子结合而发生诱变作用的两类主要的 化学诱变剂。吖啶类化合物主要有原黄素, 5-氨基吖啶、吖啶橙等。ICR化合物是指由 美国癌症研究所应用化学方法合成的 (Institute for Cancer Research),是一些由 烷化剂和吖啶类相结合的化合物。
分子结构,引起生物体发生突变。
第三节 诱变的机制
A 直接诱发碱基错配:
鸟嘌呤N7位置上的烷化有利于发生
电离作用,而离子化的鸟嘌呤则应该具
有同T而不是同C配对的倾向,因此,便
能产生GC→AT的转换。
第三节 诱变的机制
B 错误修复: 鸟嘌呤N7烷化作用的另一种效应是使 鸟嘌呤碱基与糖-磷酸的键合削弱,从而导 致烷化的鸟嘌呤从DNA上逐渐地脱落下来, 这个过程就是所谓的“烷化脱嘌呤作用”。 脱嘌呤形成了分子裂缝,在随后的DNA复 制过程中便会产生转换或颠换。
1、突变(Mutation):指遗传物质发生了稳定 的可遗传的变化,所有的突变都是DNA结构中碱 基所发生的改变。 2、突变体(Mutant):携带突变的生物个体或 群体或株系,称为突变体。
3、突变基因(Mutant Gene)和野生型基因 (Wild Gene):发生了突变的基因称为突变基 因,没有发生突变的基因称为野生型基因。

微生物的遗传变异和育种

微生物的遗传变异和育种

第一节 微生物遗传的物质基础
三、基因表达 在所有的生物中,基因的主要功能是把遗传信息转变 为特定氨基酸顺序的多肽,从而决定生物性状的过程,这 一过程称为基因表达。基因表达包括以下两个步骤,首先 以DNA为模板,通过RNA聚合酶转录出mRNA(信使RNA), 然后将mRNA的碱基顺序翻译成由相应氨基酸顺序组成的蛋 白质(图6-1)。
第一节 微生物遗传的物质基础
(四)核苷酸 各种遗传密码子储存着各自对应的信息,而单个核苷 酸或碱基则是密码子的组成单位,是基因突变的最小单位。 从绝大多数微生物的DNA组分来看,其分别由腺苷酸、胸 苷酸、鸟苷酸和胞苷酸4种脱氧核苷酸组成。其上的碱基 分别为腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞 嘧啶(C)。
第一节 微生物遗传的物质基础
相结合。不论真核微生物的细胞核还是原核微生物细胞的 核区都是该微生物遗传信息的大本营和信息库,因此被称 为核基因组、核染色体组或简称基因组。再从细胞内的染 色体数目来看,不同的微生物的染色体数目差别很大,真 核微生物常有较多的染色体,如酵母菌属中有的种有17条 之多,而原核微生物中常只有一条裸露的环状DNA大分子 核酸,即一条染色体。
第一节 微生物遗传的物质基础
二、DNA的结构与复制 (一)DNA的结构 1953年,Watson和Crick首先提出DNA的结构模型,认 为DNA是由两条反向平行的多核苷酸组成的双螺旋结构, 两条多核苷酸链通过碱基间的氢键相结合。此结构已经扫 描隧道显微镜所证实。
第一节 微生物遗传的物质基础
(二)DNA的复制 在细胞分裂和传代的过程中,作为微生物遗传物质 的DNA必须准确无误地复制,才能使子代细胞含有相同的 遗 传 信 息 , 以 保 持 物 种 的 稳 定 。 1 9 5 8 年 , Meselson 和 Stahl用15N标记的碱基培养大肠杆菌,并定时取样分离DNA, 进行密度梯度离心。研究结果证明,DNA是以独特的半保 留方式进行复制的,即每一子代DNA分子的一条链来自亲 代,另一条链是新合成的。

微生物的遗传和育种

微生物的遗传和育种

微生物育种的社会和经济影响
社会影响
随着微生物遗传和育种技术的不 断发展,人们需要关注相关的伦 理、安全和环境问题,以确保技 术的可持续发展和应用。
经济影响
微生物育种技术的发展有望为工 业、农业、医药等领域带来巨大 的经济效益,同时也需要关注技 术的成本和商业化前景。
感谢您的观看
THANKS
土壤修复
微生物育种技术可用于土壤修复领域,通过改良土壤中微生物的种 类和数量,改善土壤质量,提高土壤肥力。
空气净化
某些微生物具有降解空气中有害物质的能力,通过微生物育种技术 可以改良这些微生物的降解能力,用于空气净化。
05
未来展望
基因编辑技术的发展
基因编辑技术
随着CRISPR等基因编辑技术的发展, 科学家们能够更精确、高效地修改微 生物基因,从而改良微生物的性状和 生产性能。
代谢工程育种
代谢途径分析
对微生物的代谢途径进行分析, 了解各代谢途径之间的相互关系 和调控机制。
代谢流量调控
通过调节代谢途径中的关键酶活 性或改变代谢流量的方向,以提 高目标产物的合成效率。
细胞工厂构建
通过基因工程技术对微生物进行 改造,构建具有特定代谢特征的 细胞工厂,实现目标产物的定向 生产。
基因编辑的应用
基因编辑技术有望在医药、农业、工 业等领域发挥重要作用,例如用于生 产新型药物、改良农作物、提高微生 物产物的产量和品质等。
合成生物学在微生物育种中的应用
合成生物学
合成生物学是一门新兴的交叉学科,旨 在通过设计和构建人工生物系统来改良 和优化生物功能。
VS
微生物育种中的应用
合成生物学在微生物育种中具有广阔的应 用前景,例如通过设计和构建人工微生物 来生产燃料、化学品、药物等,同时也有 助于解决环境问题和粮食安全问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一名词解释1 突变:泛指细胞内(或病毒颗粒内)遗传物质分子结构或数量发生可遗传的变化,他是一种遗传状态,往往引起新的等位基因的形成和新的表型2 表型:指一个生物体(或细胞)可以观察到的性状或特征,是特定的基因型和环境相互作用的结果3 抗性突变:指由于发生基因突变而对某些化学药物.致死物理因子或噬菌体产生抗性的变异菌株.抗性突变型包括抗药性突变型.抗噬菌体突变型.抗辐射突变型.抗高温突变型,抗高浓度酒精突变型.抗高渗透压突变型等4 基因重组:凡把两个不同形状个体内的遗传物质转移到一起,经过遗传分子间的重新组合,形成新遗传个体的方式5 诱变育种:用物理和化学等因素,人为的对出发菌株进行诱变处理,然后运用合理的筛选方案和适当的筛选方法把符合要求的优良的变异菌株筛选出来的一种方法6 营养缺陷型:某一野生菌株由于发生基因突变而丧失合成一种或多种生长因子的能力,因而不能在基本培养基上生长繁殖的变异类型。

主要有氨基酸缺陷型、维生素缺陷型、嘌呤嘧啶缺陷型。

二解答题1 筛选生物活性物质产生菌的成功因素有哪些,并简述筛选的一般思路因素:(1)待筛选样品的性质;(2)产生菌的选择;(3)采用什么样的筛选方案,选择筛选方案有两个要点即选择性和灵敏度;(4)筛选方案的设计;思路:(1)定方案:首先要查阅资料,了解所需菌生长培养特性;(2)采样:有针对性的采取样品;(3)增殖:人为的通过控制养分或培养条件,使所需菌种增殖后,在数量上占优势;(4)分离:利用分离技术得到纯种(5)发酵性能的测定:进行生产性能测定。

这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种质量、耐受最高温度、生长和发酵最适PH、提取工艺等2 微生物遗传育种工作中突变产生的突变类型有哪些?3 突变引起的遗传性状有哪几种类型?答:(1)形态突变型:指发生在细胞个体形态或菌落形态改变的突变型,是一种可见的突变;(2)营养缺陷型:某一野生菌株由于发生基因突变而丧失合成一种或多种生长因子的能力,因而不能在基本培养基上生长繁殖的变异类型。

主要有氨基酸缺陷型、维生素缺陷型、嘌呤嘧啶缺陷型;(3)抗性突变型:指由于发生基因突变而对某些化学药物.致死物理因子或噬菌体产生抗性的变异菌株.抗性突变型包括抗药性突变型.抗噬菌体突变型.抗辐射突变型.抗高温突变型,抗高浓度酒精突变型.抗高渗透压突变型等;(4)致死突变型:由于基因突变而导致个体死亡的突变型。

分为显性致死和隐性致死;(5)条件致死突变型:在某种条件下可以正常生长繁殖并呈现其固有的表型,而在另一条件下却是致死的突变型叫做条件致死突变型。

温度敏感突变型是典型的条件致死突变型;(6)产量突变型:所产生的代谢产物的产量明显有别于原始菌株的突变株称产量突变型;产量高于原始菌株的成为正突变菌株,反之称为负突变菌株。

4 诱变育种有哪些特点? 答:(1)提高突变率,扩大突变谱。

自发突变的频率较低但稳定,一般在10-6 --10-9间。

通过各种物理化学诱变剂的作用,可提高突变率。

一般诱变率在千分子一左右,多种突变因素可使突变率提高到3%;(2)改良单一性状比较有效,同时改良多个形状较困难。

在一个突变体中,很难出现多个理想 性状的变异;(3)性状稳定快,育种年限短。

诱发变异大多是一个主基因的改变,因此稳定较快,一般经3~4代即可基本稳定,有利于较短时间育成新品种; (4)诱发突变的方向和性质难于掌握。

突变类型多种多样,但有益变性状少,要求大群体。

5 诱变育种工作的原则 答:(1)选择简便有效的诱变剂; (2)选择优良的出发菌株;(3)处理单细胞或单孢子悬液,使成分散状态均匀接触诱变剂。

细菌或酵母菌悬液中加玻璃珠并震荡,或用脱脂棉过滤,可获得均匀分散的单细胞悬液。

放线菌和霉菌的菌丝是多核的,诱变育种应用其单核的孢子。

(4)选用最适的剂量:在高诱变率的前提下,既能扩大变异幅度,又能促使变异移向正变范围的剂量,即为最适剂量;(5)利用复合处理的协同效应:两种或多种诱变剂的先后使用,同一种诱变剂的重复使用,两种或多种诱变剂的同时使用,均常呈现一定的协同效应,会取得更好的诱变效果 ; (6)利用微生物形态、生理与产量间的相关指标,如变色圈、水解圈、抑菌圈、反应圈的大小等,以便在初筛中即可从形态性状估计其生产力;(7)设计和采用高效的筛选方案和方法,以期花费最少的工作量,在最短的时间内,取得最大的成效。

6 简述原生质体融合的一般步奏及其与常规杂交有哪些优势? 答:遗传标记亲株筛选 原生质体制备原生质体再生及再生频率计算 原生质体融合 异核检出重组体检出和鉴定重组体的形态、生理生化和遗传分析微生物原生质体融合程序与常规杂交相比,优势:(1)大幅度提高亲本之间重组频率:细胞壁是微生物细胞之间物质、能量和信息交流的主要屏障,同时也阻碍丁细胞遗传物质交换和重组。

原生质体剥离了细胞壁,去除了细胞间物质交换的主要障碍,也避免了修复系统的制约,加上融合过程中促融合剂的诱导作用,重组频率显著提高。

1 亲本标记:作为原生质体融合的二亲本菌株都应该带有一定的遗传标记,便于重组体的筛选2 原生质体的制备与再生:制备大量具有活性的原生质体是微生物原生质体融合育种的前提。

活性原生质体制备过程包括原生质体的分离、收集、纯化、活性鉴定和保存等操作步骤。

3原生质体的鉴定:低渗爆破法、荧光染色法(2)扩大重组亲本的范围:常规杂交的亲本间必须具有感受态,有些菌株由于其表面结构缘故而无法用常规方法进行杂交重组。

原生质体由于完全或部分去除了细胞壁,因此,实现常规杂交无法做到的种间、属间、门间等远缘杂交。

(3)原生质体融合时亲本整会染色体参与交换,遗传物质转移和重组性状较多,集中双亲本优良件状机会更大。

常规杂交仅为供体与受体菌株间部分遗传物质的转移,形成部分结合子,参与交换和重组的染色体片段较短,优良性状的整合率低。

原生质体融合时除了染色体交换和重组外,还能传递细胞质,产生更丰富的性状整合。

除双亲融合杂交之外,还能进行多亲融合。

7生产菌应该具备哪些基本特征 答:(1)生产菌 应具有在较短的发酵周期内产生大量的发酵产物的能力;(2)在发酵过程中不产生或者少产生与目标产物性质相近的副产物及其他产物;(3)生长繁殖能力强,有较强的生长速率,产生孢子的菌种应具有较强的产孢子能力; (4)能够高效地将原料转化为产品;(5)有利用广泛来源原材料的能力,并对发酵原料成分的波动敏感较小;(6)对需要添加的前体物质有耐受能力,并且不能将这些前体物质作为一般碳源利用; (7)遗传特性稳定泡沫要少; (8)具有抗噬菌体感染。

8简述诱发突变体形成的过程 答: 细胞外的诱变剂细胞膜细胞内的诱变剂细胞质诱变剂可能失活或被激活接触DNA造成DNA 损伤(前突变)修复 不修复存活 促进差错避免差 的修复 死亡错的修复恢复正常 基因突变分离突变基因型突变表型 细胞分裂 突变型克隆 突变形成过程9 简述诱变育种的一般步骤 答:诱变育种流程主要包括诱变与筛选两步以及培养环境的优化:(1)出发菌株的选择;(2)诱变菌株的培养;(3)诱变菌悬液的制备;(4)诱变处理;(5)后培养;(6)高产菌株的分离与筛选。

一、诱变剂接触DNA 之前:当化学诱变剂处理微生物细胞时,首先是和细胞充分接触,通过扩散作用,诱变物质穿过细胞壁、膜及细胞质,才能到达核质体,与DNA 接触。

这个过程中,诱变剂受多种因素的影响。

二、DNA 的损伤:诱变剂与DNA 接触后能否发生突变,与DNA 是否处于复制状态密切相关,而DNA 复制活跃程度与某些营养条件和细胞的生理状态有关。

三、DNA 的修复:在长期的进化中,生物体演化出了一系列保障DNA安全的修复系统,包括纠正偶然的复制错误的系统。

四、突变体的形成:DNA 结构发生改变后,进过多种修复作用后有两种可能性:一种是DNA 变异分子经过修复系统修补后恢复成原有的DNA 分子结构,不能形成突变体;而另一种是DNA 突变分子在复制过程中排出或克服修复系统的作用而成为突变体。

五、从突变到突变表型:突变基因的出现并不意味着突变表型的出现,表型的改变落后于基因的改变称为表型延迟。

基本步骤如图:2 各步应注意的事项 :(1)挑选优良的出发菌株出发菌株就是用于育种的原始菌株。

出发菌株适合,育种工作效率就高。

(2)菌悬液的制备一般采用生理状态一致 (3)选择简便有效、最适剂量的诱变剂(4)利用复合处理的协同效应诱变剂的复合处理常呈现一定的协同效应,因而对育种有利。

(5)多次筛选10 简述微生物杂交育种的基本程序答:亲本菌株的选择(原始亲本、直接亲本)、标记、杂交、筛选、重组菌株的鉴定诱变剂处理1 亲本菌株选择原始亲本:原始亲本是微生物杂交育种中具有不同遗传背景的优质出发菌株,主要根据杂交的目的来选择。

从育种角度出发,通常选择具有优良性状如产量高、代谢快、产孢子能力强、无色素、泡沫少、黏性小等发酵性能好的菌株为原始亲本。

直接亲本:在杂交育种中具有遗传标记和亲和能力而直接用于杂交配对的菌株,称为直接亲本。

它是由原始亲本菌株经诱变别处理后选出的具营养缺陷型标记或其他遗传标记,又通过亲和力测定的直接用于杂交的菌株。

2 遗传标记:一般杂交亲本用营养缺陷型或抗药性突变型等遗传标记.作为选择重组体的标准和依据。

除此,还要利用亲本菌株本身具有的某些特殊遗传性状作为辅助标记。

遗传标记菌株的获得,要通过诱变剂处理,按常规筛选方法进行,。

相关文档
最新文档