电子控制动力转向系统概述

合集下载

简述电动式电控动力转向系统的组成与工作原理

简述电动式电控动力转向系统的组成与工作原理

简述电动式电控动力转向系统的组成与工作原理一、引言电动式电控动力转向系统是一种新型的转向系统,它采用了电机作为动力源,通过电控器对电机进行控制,实现车辆的转向。

与传统的液压式转向系统相比,它具有响应速度快、能耗低、噪音小等优点,因此在现代汽车中得到了广泛应用。

本文将详细介绍电动式电控动力转向系统的组成和工作原理。

二、组成1. 电机电机是整个系统的核心部件,它提供了转向所需的动力。

目前市场上常见的电机有直流无刷电机和交流异步电机两种。

直流无刷电机具有高效率、高功率密度和长寿命等优点,在小型汽车中得到了广泛应用;交流异步电机则具有低成本和可靠性好等优点,在大型汽车中得到了广泛应用。

2. 传感器传感器主要负责检测车辆当前的行驶状态,并将这些信息反馈给控制器。

目前市场上常见的传感器包括角度传感器、扭矩传感器和速度传感器等。

3. 控制器控制器是整个系统的大脑,它根据传感器反馈的信息对电机进行控制,实现车辆的转向。

控制器通常由微处理器、电源电路、驱动电路和通讯接口等组成。

4. 电源电源为整个系统提供所需的电能。

目前市场上常见的电源有蓄电池和超级电容器两种。

蓄电池具有存储能量大、成本低等优点,在小型汽车中得到了广泛应用;超级电容器则具有充放电速度快、寿命长等优点,在大型汽车中得到了广泛应用。

三、工作原理1. 转向力矩计算在行驶中,车辆需要受到一定的转向力矩才能完成转弯操作。

转向力矩大小与车速、转弯半径和路面摩擦系数等因素有关。

为了保证车辆安全稳定地行驶,系统需要根据当前行驶状态计算出所需的转向力矩。

2. 传感器检测系统通过角度传感器检测方向盘旋转角度,并通过扭矩传感器检测方向盘所施加的扭矩大小,同时通过速度传感器检测车速大小。

3. 控制器控制控制器根据传感器反馈的信息计算出所需的转向力矩,并将这个信息转换成电机控制信号。

电机根据控制信号输出相应的扭矩,实现车辆的转向。

4. 能量回收在车辆行驶过程中,由于转向力矩大小不同,系统需要不断地调整电机输出扭矩大小。

电控动力转向系统工作原理

电控动力转向系统工作原理

电控动力转向系统工作原理电控动力转向系统是一种新型的汽车转向系统,它利用电机代替了传统的液压助力装置,通过电子控制单元(ECU)来实现对电机的控制,从而实现车辆的转向。

下面将详细介绍电控动力转向系统的工作原理。

1. 传感器信号采集在电控动力转向系统中,有多个传感器用于采集车辆的运动状态和驾驶员的操作信息。

其中包括方向盘角度传感器、转向角速度传感器、车速传感器等。

这些传感器将采集到的信息发送给ECU进行处理。

2. ECU计算ECU是电控动力转向系统中最重要的部件之一,它负责接收并处理来自各个传感器的信号,并根据这些信号计算出合适的输出信号。

同时,ECU还会监测其他关键参数,例如发动机负荷、油门开度等,并根据这些参数进行调整。

3. 电机输出在ECU计算出合适的输出信号后,它会将信号发送给电机执行器。

该执行器会根据接收到的信号来调整电机输出功率和方向,并通过齿轮箱将输出功率传递给转向机构。

4. 转向机构转向机构是电控动力转向系统中的另一个重要部件,它将电机输出的能量转换为车辆的转向力。

在传统液压助力转向系统中,液压助力缸通过油液流动来产生转向力,而在电控动力转向系统中,电机通过齿轮箱驱动齿轮来产生转向力。

这种方式可以实现更加精确和高效的转向。

5. 驾驶员操作最后一个环节是驾驶员的操作。

当驾驶员通过方向盘输入指令时,方向盘角度传感器会采集到这个信号,并将其发送给ECU进行处理。

ECU会根据这个信号计算出合适的输出信号,并将其发送给电机执行器,从而实现车辆的转向。

综上所述,电控动力转向系统是一种利用电机代替液压助力装置的新型汽车转向系统。

它利用传感器采集车辆状态和驾驶员操作信息,并通过ECU计算出合适的输出信号,然后通过电机执行器和齿轮箱将输出功率传递给转向机构,从而实现车辆的精确和高效的转向。

电子控制动力转向系的英文简写

电子控制动力转向系的英文简写

Electronic Power Steering System
(EPS)
随着社会的进步,人们希望通过各种最先进的
技术对汽车系统的改进和升级,使其更方便、更安全。

其中,电子控制动力转向系统(ElectronicPowerSteeringSystem,简称EPS),
就是广泛用于轿车、SUV、皮卡和卡车上的一款转向
系统。

电子控制动力转向系统是将汽车原有的液压动
力转向系统(HydraulicPowerSteering System,HPS)和电子技术有机结合,提高汽车转向系统的整体性
能的一项新技术。

EPS系统包括机械和电子系统的
组件,如电动助力位置传感器(EPAS)、转向柱、电
动控制单元(ECU)、电动控制阀、电动控制减速器(DCM)、电机和电池等。

EPS系统的优越性体现在:
(1)性能可靠:EPS系统能够自动感知汽车的
动态状态,根据不同条件自动调节转向角度,使制
动更迅速,操控更轻松,安全可靠;
(2)节能高效:EPS系统采用电动控制,避免了发动机和泵的消耗,不仅减少了发动机的油耗,而且还提高了发动机的燃油效率;
(3)轻巧紧凑:EPS系统采用先进的传感器和电动机,不仅轻巧紧凑,还可以广泛用于不同类型的汽车;
(4)舒适性强:EPS系统可自动施加力度,使转弯操控较轻松,实现汽车舒适和便捷的行车;
(5)安全可靠:EPS系统可以自动改变操控力度,使汽车行驶稳定,有利于行人和车辆的安全。

电子控制动力转向系统的出现,不仅使得车辆的操控变得轻松,而且可以更有效地提升汽车的整体性能,备受购车者和车主的欢迎。

第六章 电控动力转向系统(EPS)

第六章 电控动力转向系统(EPS)

图 蓝鸟牌轿车EPS构成
图 蓝鸟牌轿车EPS 1-机油箱 2-转向管柱 3-转向角速度传感器 4-电子控制单元 5-转向角速度传感器增幅器 6-旁通流量控制阀 7-电磁线圈 8-齿轮齿条转向器 9-机油泵 1
5
一、流量控制式 EPS
2.工作原理
根据车速、转向角速度和控制开关等信号,电控单元向 旁通流量控制阀按照汽车的行驶状态发出控制信号,控
图 6-3 三种不同的转向力特性曲线
图 动力转向特性比较
1
18
三、阀灵敏度控制式 EPS l.系统组成
阀灵敏度控制式 EPS对液压动力转向系统中的转向控 制阀的转子阀作了局部改进,增加了电磁阀、车速传感器 和电子控制单元等。
图 6-3 三种不同的转向力特性曲线
图 典型阀灵敏度控制式EPS系统
图 6-3 三种不同的转向力特性曲线
图 转向控制阀 1-柱塞 2-扭杆 3-凸起 4-油压反力室
图 典型反作用力控制式EPS系统
1 12
二、反力控制式 EPS l.系统组成及工作原理 中高速区域转向时,作用于柱塞的背压(油压反力室压力) 升高 ,转向助力作用弱。
图 6-3 三种不同的转向力特性曲线
分相器型 扭矩传感器
转角传感器
1
转向齿轮单元 • 无电刷式马达 • 减速机构
30
三、电动式EPS系统的类型 根据电动机布置位置不同分为以下三种类型:转向轴 助力式、齿轮助力式和齿条助力式。
图 电动式EPS系统的类型
1 31
四、EPS系统的关键部件 1. 转矩传感器 1)作用 测量驾驶员作用在转向盘上力矩的大小与方向, 还能够测量转向盘转角的大小和方向。 2)类型 有接触式与非接触式两种。

电控动力转向系统(EHPS)介绍

电控动力转向系统(EHPS)介绍

电控动力转向系统(EHPS )介绍汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。

机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向;动力转向系统则是在驾驶员的控制下,借助于汽车发动机产生的液体压力或电动机驱动力来实现车轮转向,所以动力转向系统也称为转向动力放大装置。

随着道路条件的不断改善,汽车速度的不断提高,对转向系统操纵的安全性与舒适性提出了更高的要求。

动力转向系统由于具有使转向操纵灵活、轻便,设计汽车时对转向器结构形式的选择灵活性大,能吸收路面对前轮产生的冲击等优点,因此已在各国的汽车制造中普遍采用。

但是,从易于驾驶和安全性方面考虑,理想的操纵状态是低速时转向始终应当轻快,而在高速时要有适当的手感并且运行平稳,因此,对于传统的液压动力转向器,其固定的放大倍率成为动力转向系统的主要缺点,往往是满足了低速转向轻便的要求便无法满足高速转向时要求的手感,或者满足了高速转向时有良好的手感但低速时又不免转向沉重。

人满意的程度。

电子控制动力转向系统(向系统(液压式EPS,又作EHPS)和电动式电子控制动力转向系统(电动式EPS)。

EHPS是在传统的液压动力转向系统的基础上增设了控制液体流量的电磁阀、车速传感器和电子控制单元等装置构成的,电子控制单元根据检测到的车速信号,控制电磁阀的开度,使转向动力放大倍率实现连续可调,从而满足高、低速时的转向助力要求。

电动式EPS则是利用直流电动机作为动力源,电子控制单元根据转向参数和车速信号,控制电机输出扭矩。

电动机的输出扭矩经由电磁离合器通过减速机构减速增扭后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。

EHPS从控制方式可以分为以下几种类型:中,第(1)种和第(2)种类型是EHPS发展初期的控制方式,主要的控制目标都是将系统中的动力泄荷掉一部分以实现高速时减小助力,但这样做的弊病就是浪费了动力,不利于车辆省油,而且,还有急转弯反应迟钝的缺点,需要安装特别装置才能解决,现在已很少采用。

电控动力转向系统工作原理

电控动力转向系统工作原理

电控动力转向系统工作原理电控动力转向系统是现代汽车中常见的一种转向系统,它通过电子控制单元(ECU)控制电机,实现转向操作。

它相比于传统的机械转向系统,在操控性、舒适性和安全性方面都有明显的优势。

电控动力转向系统的工作原理可以简单地分为三个步骤:传感器检测车辆状态、ECU计算转向力矩、电机执行转向操作。

车辆上安装了一系列传感器,用于检测车辆的状态。

这些传感器可以包括转向角度传感器、车速传感器、转向助力传感器等。

转向角度传感器用于检测方向盘的转向角度,车速传感器用于检测车辆的速度,转向助力传感器用于检测转向助力的力度。

这些传感器会将检测到的数据传送给ECU。

接下来,ECU会根据传感器传来的数据计算出所需的转向力矩。

转向力矩是指车辆在转向时所需要的力矩,它与方向盘的转向角度、车速、转向助力等因素有关。

ECU会根据这些因素进行计算,并输出一个控制信号给电机。

电机根据ECU输出的控制信号执行转向操作。

电机通常安装在转向机或转向柱上,并与方向盘相连。

当ECU输出一个正的控制信号时,电机会产生一个向左转的力矩;当ECU输出一个负的控制信号时,电机会产生一个向右转的力矩。

通过控制电机的力矩大小和方向,就可以实现精确的转向操作。

电控动力转向系统的工作原理基于车辆状态的实时检测和计算,通过电子控制单元和电机的配合,实现了转向的精确控制。

相比传统的机械转向系统,电控动力转向系统具有以下几个优势:电控动力转向系统可以根据车辆状态的变化实时调整转向力矩,提高了操控性和舒适性。

在高速行驶时,电控动力转向系统可以降低转向助力,减少方向盘的反馈力,提高操控的稳定性;在低速行驶时,电控动力转向系统可以增加转向助力,减轻方向盘的转动力,提高操控的轻便性。

电控动力转向系统可以通过软件控制实现多种转向模式的切换。

例如,可以通过调整转向力矩的大小和方向,实现直线行驶、转弯、倒车等不同的转向模式。

这样可以根据不同的驾驶场景和需求,提供更加个性化的转向体验。

汽车电子控制技术第八章 电子控制动力转向系统

汽车电子控制技术第八章 电子控制动力转向系统

油泵油压作用于动力缸的右室(或左室),动力活塞向左(或
向右)运动,从而增加了转向操纵力。
第二节 液压式电子控制动力转向系统
二、液压式电子控制动力转向系统的组成和工作原理
(2)当汽车处于中高速直线行驶状态时,直线行驶转 向角小,扭力杆的相对扭力也比较小,回转阀与控制阀的
连通通道的开度相应减小,使得回转阀一侧的油压升高,
向特性。
EPS。
第一节 电子控制动力转向系统概述
一、电子控制动力转向系统的功用
电子控制动力转向(EPS或ECPS)系统是根据车 速、转向情况等对转向助力实施控制,使动力转向系
统在不同的行驶条件下都有最佳的放大倍率:在低速
时有较大的放大倍率,可以减轻转向操纵力,使转向 轻便、灵活;在高速时则适当减小放大倍率,以稳定 转向手感,提高高速行驶的操纵稳定行。
流量式EPS,主要由车速传感器、电磁阀、整体式动力转向
控制阀、动力转向液压泵和电子控制单元(EPSECU)等组成。 当车速很低时,EPSECU输出的脉冲控制信号占空比很小,通过 电磁阀线圈的平均电流很小,电磁阀阀芯开启程度也很小,旁路 液压油流量小,液压助力作用大,使转向盘操纵轻便。当车速提
高时。EPSECU输出的脉冲控制信号占空比很大,使电磁阀线圈
的平均电流增大,电磁阀阀芯的开启程度增大,旁路液压油流量 增大,从而使液压助力作用力减小,以提高操纵稳定性。 典型 流量控制式EPS如图8-2所示。
第二节 液压式电子控制动力转向系统
二、液压式电子控制动力转向系统的组成和工作原理
图8-2 典型流量控制式EPS 1-动力转向液压泵;2、11-电磁阀;3-整体式动力转向控制阀;4-EPSECU;5、 10-车速传感器;6-蓄电池;7-易熔线;8-点火开关;9-熔断丝(ECU-IG)

电控转向系统的组成及工作原理 -回复

电控转向系统的组成及工作原理 -回复

电控转向系统的组成及工作原理-回复电控转向系统是现代汽车的重要组成部分之一,它通过电子控制单元(ECU)和各种传感器来实现对车辆转向的精确控制。

本文将详细介绍电控转向系统的组成及工作原理,以帮助读者更好地理解该系统的作用和运行方式。

一、电控转向系统的组成1. 电子控制单元(ECU):作为系统的核心,ECU负责接收和处理来自传感器的输入信号,并通过执行器控制实现对转向的操控。

ECU通常由一个或多个微处理器、存储器和接口电路组成。

2. 电动助力转向系统(EPAS):电动助力转向系统通过电动机提供操控助力,以降低驾驶人的转向力度。

该系统由电动助力转向机构、传感器和驱动电机组成。

3. 角位传感器:角位传感器用于检测转向轮的转向角度和角速度,并将这些信息传送给ECU。

常用的角位传感器包括电位器传感器和霍尔传感器。

4. 转向力传感器:转向力传感器用于测量驾驶人在转向时所施加的力或扭矩,并将此信息传送给ECU。

这些传感器使系统能够根据驾驶人的操控力度来调整转向助力的大小。

5. 转向角速度传感器:转向角速度传感器用于测量车辆的转向速度和加速度,并将这些信息传送给ECU。

这些传感器对于实现对车辆转向的精确控制至关重要。

6. 车速传感器:车速传感器用于测量车辆的速度,并将此信息传送给ECU。

车速信息对于系统精确控制车辆转向力度和转向助力的大小起着重要作用。

7. 信号输入和输出接口:这些接口用于与其他车辆系统进行数据交换,例如制动系统、稳定控制系统和巡航控制系统等。

二、电控转向系统的工作原理电控转向系统的工作原理可以分为以下几个步骤:1. 传感器输入:电子控制单元通过接收并处理来自角位传感器、转向力传感器、转向角速度传感器和车速传感器的输入信号,获取车辆转向相关的信息。

2. 数据处理:ECU通过对传感器输入信号进行处理和分析,计算出驾驶人的转向操控需求和车辆当前的转向状态。

3. 助力电机控制:当ECU确定驾驶人施加了转向作用后,它会控制电动助力转向系统中的电动助力转向机构,通过驱动电机产生相应的转向助力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类
转向角 比例控制式
横摆角速度 比例控制式
3.4.1 转向角比例控制式4WS系统
所谓转向角比例控制,就是使后轮的转角与转向盘的转角成比例变化, 并使后轮在汽 车低速行驶时相对于前轮反向转向;在汽车中、高速行驶 时,相对于前轮同向转向。
1.系统的组成
车速传感器 前转向横拉杆 输出小齿轮 转向盘 连接轴 转角比传感器 扇形齿轮
当电磁阀的阀芯完全开启时,两油道就被电磁阀旁路。
▪ EPS ECU根据车速传感器的信号,控制电磁阀阀芯的开
启程度,从而通过控制转向动力缸活塞两侧油室的旁路液 压油流量来改变转向助力。
▪ 当车速很低时,EPS ECU输出的脉冲控制信号占空比很
小,通过电磁阀线圈的平均电流很小,电磁阀阀芯开启程 度也很小,旁路液压油流量小,液压助力作用大,使转向 盘操纵轻便。
电磁离合器
安装在电动机输出轴上的主动轮内装有电磁线圈,通过滑环引 入电流。当离合器通电时,电磁线圈产生的电磁力使压板与主 动轮端面压紧。于是,电动机的动力经主动轮、压板、花键、 从动轴传递给减速机构。
滑环 电磁线圈 压板
花键 从动轴
球轴承 主动轮
减速机构
电动式EPS系统减速机构的组合方式: • 蜗轮 - 蜗杆传动与转向轴驱动 • 两级行星齿轮传动与传动齿轮驱动 为了抑制噪声和提高耐久性,减速机构中的齿轮有 的采用特殊齿形,有的采用树脂材料制成。
大转角控制(机械式转向)
前带轮
控制凸轮
阀套筒
滑阀
支点 A 阀控制杆
功率活塞
液压缸轴
小转角控制(同向转向)
滑阀 阀控制杆
阀套筒
滑阀
支点 A 从动齿轮
阀控制杆
使汽车滑移角为零的控制
使汽车滑移角为零的控制是抑制4WS汽车在转向初期 过渡阶段出现的车身向转向内侧转动滞后的一种控制 方法。这种控制方法可在转向开始的瞬间,控制后轮 反向转动,使车身产生自转运动,抑制公转运动,防 止车身向转向外侧转动。此时,横摆角速度传感器会 检测出自转运动的增大,并反馈给控制系统,控制后 轮产生一个同向转向,取得自转与公转运动的平衡。 这样就能保证从转向初期到转向结束汽车滑移角始终 为零。
2.电动式EPS系统的工作原理
3.4 电子式四轮转向系统(4WS)
作用
在汽车低速行驶时,依靠逆向转向(前、后车轮的转角方向相反),
获得较小的转向半径,改善汽车的操纵便捷性; 在汽车中、高速行驶时,依靠同向转向(前、后车轮的转角方向相 同),减小汽车的横摆运动,使汽车可以利用高速变换行进路线,提高转 向时的操纵稳定性。
作用力。
3.2 液压式电子控制动力转向系统
根据其控制方式的不同,可分为流量控制式、反作用力 控制式和阀灵敏度控制式三种形式。
3.2.1 流量控制式EPS系统
动力转向 液压泵
车速 电磁阀 传感器
点火开关 熔丝(ECU -IG)
易熔线 车速
蓄电池 传感器
电磁阀
EPS ECU
整体式动力 转向控制阀
▪ 电磁阀安装在通向转向动力缸活塞两侧油室的油道之间,
2.转向角比例控制式4WS系统控制原理
转角比控制
ECU根据车速传感器和转角比传感器的输入信号,计算出车速 与转向角的实际数值,然后把它们的实际数值与标准数据作比 较,向主电动机发出控制指令,控制主电动机驱动从动杆转动。 在此过程中,驾驶员可使用 4WS模式切换开关,选择 “NORMAL”或“SPORT”模式。
2WS选择控制
当2WS选择开关被设定在ON(导通)位置,且变速器被挂入倒挡位置 时,ECU就设定后轮转向角的转向量为零。这项控制是为那些习惯于使用 2WS转向系统倒车的驾驶员设置的。
安全保障控制
① 若主电动机异常,则ECU仅利用“NORMAL”模式的同向转向部分驱动
辅助电动机,进行与车速相对应的转角比控制。
反作用力控制式EPS系统具有三种控制形态
停车与 低速状态
中高速直 线行驶状态
中高速 转向行驶
3.2.3 阀灵敏度控制式EPS系统
阀灵敏度控制式EPS系统是根据车速控制电磁阀,直接改变动 力转向控制阀的油压增益(阀灵敏度)来控制油压。
优点
结构简单 部件少 价格便宜 具有较大的选择转向力的自由度 可以获得自然的转向手感和良好的转向特性
制。此时要避免出现反向转向。
3.4.2 横摆角速度比例控制式4WS系统
横摆角速度比例控制,是一种根据检测出的车身横摆角速 度来控制后轮转向量的控制方法。它与转向角比例控制比, 具有两方面优点 。
优点
可以使汽车的车身方向从转向初期开始就与其行进方向保 持高度一致(只有极小偏差); 可以通过检测车身横摆角速度感知车身的自转运动,因此, 即使有转向以外的力(如横向风等)引起车身自转,也能马 上感知到,并可迅速通过对后轮的转向控制来抑制自转运动。
▪ 车辆停止时,电磁阀完全关闭 …… ▪ 随着车辆行驶速度的提高,EPS ECU输出的控制信号
使电磁阀的开度线性增加 ……
3.3 电动式电子控制动力转向系统
电动式EPS系统是一种直接依靠电动机提供辅助转矩的电动助力式转向 系统。该系统仅需要控制电动机电流的方向和幅值,不需要复杂的控制 机构。另外,该系统由于利用微机控制,因此,为转向特性的设置提供 了较高的自由度,同时还降低了成本和重量。
受到横向风作用时的控制
在突然受到横向风作用,车辆将要偏向时,横摆角速度 传感器会立即感知到这一偏转倾向,控制系统就会操纵 后轮向消除将要发生的横摆运动的方向转动。由于后轮 的转动,在车身上会产生一力矩,它会减少由横向风产 生的自转运动,使车身的偏差减低到最小。
ABS作用的控制
一般情况下,由于比较重视中、低速域的转向响应 性,因此其横摆角速度增益会比高速域的有所降低, 但在ABS作用时,更重视的是制动车辆的稳定性。 所以,将把ABS开始起作用时的横摆角速度增益一 直保持到制动结束。
▪ 当车速提高时,EPS ECU输出的脉冲控制信号占空比增
大,使电磁阀线圈的平均电流增大,电磁阀阀芯的开启程 度增大,旁路液压油流量增大,从而使液压助力作用减小, 以提高操纵稳定性。
3.2.2 反作用力控制式EPS系统
储油箱 转向液压泵
扭力杆
转向盘 转阀阀杆 控制阀阀体
分流阀 固定小孔 电磁阀
销子 小齿轮轴
典型阀灵敏度控制式EPS系统
车灯开关
储油箱 车速传感器
发动机
电磁阀
转向油泵
EPS ECU
挡位 开关
蓄电池
前轮
转向动力缸
外体 内体
转子阀的可变小孔分为低速专用小孔(1 R,1 L,2 R,2 L) 和高速专用小孔(3 R,3 L)两种,在高速专用小孔的下边设 有旁通电磁阀回路。
阀部等效液压回路分析
分流阀的作用是将来自转向液压泵的油液向控制阀一侧和
电磁阀一侧分流,按照车速和转向要求,改变控制阀一侧 与电磁阀一侧的油压,确保电磁阀一侧具有稳定的油液流 量。
固定小孔的作用是把供给转向控制阀的一部分流量分配到
油压反作用力室一侧。电磁阀根据需要开启适当的开度, 使油压反作用力室一侧的油液流回储油箱。
在低速时有较大的 放大倍率,可以减 轻转向操纵力,使 转向轻便、灵活。
在高速时则适当减小 放大倍率,以稳定转 向手感,提高高速行 驶的操纵稳定性。
电子控制动力转向系统
A
解决转向轻便与转向灵 活的矛盾。
提高行驶安全性和舒适 B 性。
2.电子控制动力转向系统的组成
转向助力系统 机械转向机构
EPS
电子控制系统
输入小齿轮 从动杆 后转向横拉杆 转向枢轴 辅助电动机 4WS转换器 主电动机
车速传感器 前转向横拉杆
转向盘
输出小齿轮
连接轴
后转向横拉杆
从动杆
输入小齿轮
扇形齿轮 转角比传感器
转向枢轴
辅助电动机 主电动机 4WS转换器
偏置轴与转向枢轴构造
扇形 齿轮
连接座
偏置轴 偏置轴 运动轨迹 从动杆 回转中心
转向枢轴 从动杆
2.电子控制动力转向系统的分类
转向动力源
液压式
增设了控制液体流量的电磁 阀、车速传感器和电子控制 单元等,电子控制单元根据 检测到的车速信号,控制电 磁阀,使转向动力放大倍率 实现连续可调,从而满足高
、低速时的转向助力要求。
电动式
利用直流电动机作为动力源,电 子控制单元根据转向参数和车速 等信号,控制电动机转矩的大小 和转动方向。电动机的转矩由电 磁离合器通过减速机构减速增矩 后,加在汽车的转向机构上,使 之得到一个与工况相适应的转向
转向枢轴左 右回转中心
内套
外套
偏置轴与转向枢轴的工作原理
转向枢轴
扇形齿轮 从动杆
从动杆 转向枢轴
偏置轴
4WS转换器的结构
辅助电动机 4WS转换器 主电动机
偏置轴
4WS转换 器输出轴
从动杆 转角比传感器 蜗轮-蜗杆机构
转角比传感器结构原理图
利用滑动电阻器把反映后转向齿轮箱中的从动杆回转角度变化 的模拟信号电压输入ECU,作为ECU进行转向角比例控制的 基本信号。
1.电动式EPS系统的组成
电动式EPS系统是在机械转向机构的基础上,增加了电动式助
力机构、转向助力控制系统后形成的。它是由转矩传感器、直
流电动机、电磁离合器、减速机构和车速传感器、EPS ECU
组成的。
转向盘
转向轴
EPS ECU
转矩传感器 扭力杆 输出轴
直流电动机
电磁离合器 转向齿轮
转向轮 横拉杆 转向齿条
② 若车速传感器异常,则ECU会以SP1 与SP2输入的较高车速值为依据,
控制主电 动机仅进行同向转向的转角比控制。
③ 若转角比传感器异常,则ECU驱动辅助电动机同向运动到最大值后,中
相关文档
最新文档