激光多普勒测速技术
激光多普勒测速技术..

福建农林大学交通学院 2007级物流管理2班 徐建福
激光多普勒测速技术的原理
激光测速的原理大致是这样:激光束 射向流动着的粒子,粒子发出的散射光的
在测纯净的水或空气速度时,必须由人 工掺入适当的粒子作散射中心。 被测流体要有一定的透明度,管道要有透明 窗口。
激光多普勒测速技术的特点
尽管如此,这种测速方法所具有的优越性,使它在许多场合成为一种
必不可少的检测手段。多年的研究使多普勒测速仪技术得以迅速发展,从
不能辨别流向到可以辨别流向,从一维测量发展到多维测量,围绕这一技 术的基本原理、设计方法和应用技术,学者们曾在有关杂志及重大国际会 议上发表了许多论文。早在七十年代就有重要著作面世,而且它的应用面 也不断扩大,从流体测速到固体测速,从单相流到多相流,从流体力学实 验室速度场测量到实际上较远距离的大气风速测量,从一般气、液体速度 测量到人体血管中血流速度测量,其应用范围有了极大的扩展。反过来, 各类应用对这一测速技术及测速仪器也提出许多更新更高的要求。
频率改变了,通过光电装置测出频率的变
化,就测得了粒子的速度,也就是流动的
速度。
5
激光多普勒测速技术的原理
6
激光多普勒测速技术的原理
7
激光多普勒测速技术的特点
优 点
速度方向的灵敏度好 测量精度高
空间分辨率极高,测量量程大 属于非接触测量,动态响应快
激光多普勒测速技术的特点
(1)属于非接触测量:激光束的交点就是测
激光多普勒测速技术
学院:机械工程学院
激光多普勒测速和激光测距分析解析

fD 1
c
2
fs
2018/10/20
15
激光多普勒测速技术
L
D
S R
激光多普勒测速技术基础 2. 激光多普勒测速原理 1)多普勒测速原理 • 如图。由于v/c非常小,只取 级数展开的前两项,即
α1 Q
α2
v
激光多普勒测速原理图
v f D 1 f s c
考虑流体中的速度为c/n,将v换成纵向分量 v cos1 , v cos 2
Photo courtesy of University of Bristol, UK
Measurement of flow around a ship propeller in a cavitation tank
2018/10/20
28
激光测距技术
•
脉冲激光测距
•
脉冲激光测距是利用激光脉冲连续时间极短、能量在时 间上相对集中、瞬时功率很大(一般可达到兆瓦级)的 特点,在有靶标的情况下,脉冲激光测量可达极远的测 程。
1
激光多普勒测速和激光测距
2
目 录
• 激光多普勒测速技术
• 激光多普勒测速技术基础 • 激光多普勒测速技术应用
• 激光测距技术
• 脉冲激光测距
• 相位激光测距
2018/10/20
3
激光多普勒测速技术
• 概述 • 1842年奥地利科学家Doppler等人首次发现,任何形
式的波传播,波源、接收器、传播介质或散射体的 运动会使频率发生变化——多普勒效应。
观测者D收到这N个波共需时
v cos 2 1 (t2 t1 )1 c
2018/10/20
激光多普勒测速技术

激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。
多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。
例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。
如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。
但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。
设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。
光子多普勒测速技术

光子多普勒测速技术
光子多普勒测速技术是一种基于光学多普勒效应和光束干涉原理的激光多普勒差拍测速技术。
它的优点有调试简单、结构紧凑、测速能力强等。
这项技术可以非接触地连续测量运动物体表面的速度、位移和加速度的变化历程,速度测量范围为0-20km/s。
光子多普勒测速技术主要用于获取材料冲击实验中试样的后自由面速度历程曲线,以研究冲击波在靶体中的传播规律及材料的动态响应行为。
它也可以用于爆破等瞬态高速测量,提供理想的高速时间解析结果和速度场可视化结果。
总的来说,光子多普勒测速技术是一种先进的测速技术,在许多领域都有广泛的应用前景。
激光多普勒测速技术

激光多普勒测速技术王素红多普勒效应多普勒效应是由于波源或观察者的运动而出现观测频率与波源频率不同的现象。
由澳大利亚物理学家J. Doppler1842年发现的。
声波的多普勒效应在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低。
为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低。
这种现象称为多普勒效应。
为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好像波被压缩了。
因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被拉伸了。
光波的多普勒效应当单频的激光源与探测器处于相对运动状态时,探测器所接收到的光频率是变化的。
当光源固定时,光波从运动的物体散射或反射并由固定的探测器接收时,也可观察到这一现象,这就是光学多普勒效应。
它又被称为多普勒-斐索效应,是因为法国物理学家斐索(1819—1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法。
光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化。
如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。
20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去。
1929年哈勃根据光谱红移总结出著名的哈勃定律:星系的远离速度υ与距地球的距离r成正比,即υ = Hr, H 为哈勃常数。
根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小。
由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物. 因而1948年伽莫夫(G. Gamow)和他的同事们提出大爆炸宇宙模型。
激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。
激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。
由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。
激光测速技术的发展大体上可分为三个阶段[1-3]。
第一个阶段是1964 – 1972 年,这是激光测速发展的初期。
在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。
光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。
从1980年到现在,激光测速进入了第三个阶段。
在此期间,应用研究得到快速发展。
在发表的论文中,有关流动研究的论文急剧增加。
多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。
此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。
激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。
激光多普勒测速

2
其中, I 0 E02
当相位差为 的偶数倍时,即( 2m m=0, 1, 2, …) 时,I 4I0 ,P点光强达到最大值。
当相位差为 的奇数倍时,即( (2m 1) m=0, 1, 2, …) 时,I 0 ,P点光强达到最小值。
当相位介于这两者之间变化时,P点光强在0和4I0之间变化。
这种在迭加区域出现的光强稳定的强弱分布的现象称为光的 干涉。在观察时间内,P点平均光强为:
I 1
Id
2 E01 E02
1
cosd
0
如果在观察时间内,各个时刻到达的两束光波迅速而无规
则地变化,多次经理0~2之间的一切值,则,
1
0
cosd
对于恶劣的环境(像燃烧火焰),常常不能 使用小尺寸探头 。
热线和热薄膜风速仪虽然是定量研究紊流 结构的主要实验工具,但它仅限于低温、 低速、低紊流度、常特性的检测,而且必 须在回流区以外。
光学速度测试技术具有测量灵敏 度高,不干扰流场等优点,有着 很强的应用前景。
光学测速技术主要有全息干涉法、 散斑照相法、激光多普勒测速法 和激光双焦点测速法等。
c U e0 c2 (U e0 )2
f0
1U e0 / c 1 (U e0 )2
c
f p f0 (1
e0 ) * c
• 式中,e 为入射光方向的单位向 0
量,c为介质中的光速。
• 光检测器接收的粒子散射光频率:
fS
f
p
(1
es
c
)
*
(5-2)
因此,两迭加光波相位差固定不变是产生干涉的必要条件。
激光多普勒测速matlab代码

激光多普勒测速是一种非常重要的测速技术,它可以用于测量目标的速度、距离和运动状态。
在工程领域广泛应用于雷达、车载测速仪、医学影像和气象预报等方面。
激光多普勒测速通过检测目标表面反射的激光脉冲信号,利用多普勒效应来计算目标的速度。
本文将介绍激光多普勒测速的原理和相关的matlab代码实现方法。
一、激光多普勒测速原理激光多普勒效应是指当激光束与运动物体相互作用时,由于多普勒频移导致激光波长发生变化。
当激光束照射到物体表面并被反射回来时,如果物体在照射过程中发生了运动,那么反射回来的激光波长就会发生变化,从而可以通过探测这种波长变化来计算物体的速度。
二、激光多普勒测速的matlab代码实现在matlab中实现激光多普勒测速的代码可以分为以下几个步骤:1. 生成模拟的激光脉冲信号```matlabfs = 1000; 采样频率t = 0:1/fs:1-1/fs; 采样时间f0 = 100; 信号起始频率f1 = 200; 信号终止频率s = chirp(t,f0,1,f1,'linear'); 生成线性调频信号```2. 模拟目标运动引起的频率变化```matlabv = 10; 目标运动速度c = 3e8; 光速fD = 2*v*f1/c; 多普勒频移```3. 计算多普勒效应后的信号```matlaby = s.*exp(1j*2*pi*fD*t); 多普勒效应后的信号```4. 进行信号处理和频谱分析```matlabN = length(y); 信号长度f = (-N/2:N/2-1)*fs/N; 频率坐标yfft = fft(y,N); 进行傅里叶变换yfftshift = fftshift(yfft); 进行频率移位figure;plot(f,abs(yfftshift)); 绘制频谱图```经过以上步骤,我们就可以得到模拟激光多普勒测速的matlab代码实现。
通过对生成的激光脉冲信号进行频谱分析,可以观察到多普勒频移的效果,从而实现对目标速度的测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大的频移,目前已能测0.1mm/s到2000m/s的速度
,这是普通测速仪不能比拟的。
13
激光多普勒测速技术的特点
(6)测量速度方向的灵敏性好:因光 束分离器旋转时测点不变,所以可方便地
测量任意方向的速度分量,并可用作常量
二维流动的测量研究。
14
激光多普勒测速技术的特点
缺 点
价格较贵
流速很高时要求提高激光输出功率, 由于信号频率很高而使信号 处理困难
16
激光多普勒测速技术的应用
1 多普勒雷达
2 多普勒测速仪 3 血液流动的研究 4 超音速风洞中激光测速
激光多普勒测速技术的应用
多普勒雷达工作原理为:当雷达发射一固定频率的 脉冲波对空扫描时,如遇到活动目标,回波的频率与发 射波的频率出现频率差,称为多普勒频率。根据多普勒 频率的大小,可测出目标对雷达的径向相对运动速度; 根据发射脉冲和接收的时间差,可以测出目标的距离。 同时用频率过滤方法检测目标的多普勒频率谱线,滤除 干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号 。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强 ,能探测出隐蔽在背景中的活动目标。
在测纯净的水或空气速度时,必须由人 工掺入适当的粒子作散射中心。 被测流体要有一定的透明度,管道要有透明 窗口。
激光多普勒测速技术的特点
尽管如此,这种测速方法所具有的优越性,使它在许多场合成为一种
必不可少的检测手段。多年的研究使多普勒测速仪技术得以迅速发展,从
不能辨别流向到可以辨别流向,从一维测量发展到多维测量,围绕这一技 术的基本原理、设计方法和应用技术,学者们曾在有关杂志及重大国际会 议上发表了许多论文。早在七十年代就有重要著作面世,而且它的应用面 也不断扩大,从流体测速到固体测速,从单相流到多相流,从流体力学实 验室速度场测量到实际上较远距离的大气风速测量,从一般气、液体速度 测量到人体血管中血流速度测量,其应用范围有了极大的扩展。反过来, 各类应用对这一测速技术及测速仪器也提出许多更新更高的要求。
19
激光多普勒测速技术的应用
近年来迅速形成的力学分支——生物力学,他把血 液流体力学作为一个重要的研究课题,推动了激光多普 勒测速的研究。它是利用多普勒效应原理,对运动的脏 器和血流进行探测的仪器。其中,经颅多普勒是一个有 效的无创伤性的脑血管检查方法,属超声检查范围,因 此对受检查者毫无创伤和痛苦。许多脑血管检查方法如 放射性核素的脑血流量测定、脑血管造影、数字减影血 管造影等均具有一定创伤性及并发症,经颅多普勒安全 、无创伤性,适宜于普通的临床应用。
量探头。测量过程对流场无干扰,不影响流场分 布,这对回旋流场尤为适用,可测远距离的速度 场分布或狭窄流道中的速度分布。也可很方便地 在恶劣环境中如火焰、腐蚀性流体内进行测量。
9
激光多普勒测速技术的特点
(2)空间分辨率极高:目前测点可小于10-4mm3
,随着所用激光波长的减小,光路和聚焦元件性能
的改进,还可以进一步缩小。已可测出直径10μ m
频率改变了,通过光电装置测出频率的变
化,就测得了粒子的速度,也就是流动的
速度。
5
激光多普勒测速技术的原理
6
激光多普勒测速技术的原理
7
激光多普勒测速技术的特点
优 点
速度方向的灵敏度好 测量精度高
空间分辨率极高,测量量程大 属于非接触测量,动态响应快
激光多普勒测速技术的特点
(1)属于非接触测量:激光束的交点就是测
激光多普勒测速技术
学院:机械工程学院
专业:仪器科学与技术
学号:314101002268
姓名:陈静
1
整 体 框 架
1 激光多普勒测速技术发展
2 激光多普勒测速技术原理 3 激光多普勒测速技术特点 4 激光多普勒测速技术应用
激光多普勒测速技术的发展
激光多普勒测速技术(LDV)是伴随着激光器的 诞生而产生的一种新的测量技术,它是利用激光
血液流速测量原理图
激光多普勒显微镜光路图
20
激光多普勒测速技术的应用
激光风速计在风洞中的使用不如在测量液流中 那样普遍,其一是风洞不易建造,其二是空气中尘 埃下沉,很少甚至不可能产生自然的散射中心,而 在液体中由于存在着细小的尘埃,总是很自然地形 成散射中心。因此在风洞中必须掺入少量烟尘等微 粒,这就使得这种系统变得复杂。美国阿诺德工程 发展中心应用激光多普勒测速技术对一英尺超音速 风洞中激波附面层,机翼外挂物等多种系统进行了 测量,获得了很好的结果。
21
谢 谢
2014ቤተ መጻሕፍቲ ባይዱ11月
22
的多普勒效应来对流体或固体速度进行测量的一
种技术,广泛应用于军事、航空航天、机械、能 源、冶金、水利、计量、医学、环保等领域。
3
激光多普勒测速技术的发展
(1)1964至1972年,这是激光测速发展的初期。在
此期间,大多数的光学装置都比较简单,用各种元件 拼搭而成,光学性能和效率不高
(2)1973至1980年,在此期间,激光测速在光学系
统和信号处理器方面有了很大的发展。光束扩展,空 间滤波,偏振分离,频率分离,光学频移等近代光学 技术相继应用到激光测速仪中。 (3)1981年至今。在此期间,应用研究得到快速发 展。
福建农林大学交通学院 2007级物流管理2班 徐建福
激光多普勒测速技术的原理
激光测速的原理大致是这样:激光束 射向流动着的粒子,粒子发出的散射光的
18
激光多普勒测速技术的应用
激光多普勒测速仪是利用激光多普勒效应来测量 流体或固体运动速度的,通常由五个部分组成:激光 器,入射光学单元,接收或收集光学单元,多普勒信 号处理器和数据处理系统或数据处理器。它可以精确 方便地测算出船舶航行的速度,使现代大型船舶进出 港口变得十分容易。一般的船用测速仪只能测出船与 海水之间的速度,而不能测得船与海底的相对速度。 由于海水是随风浪而动的,有时即使船速很小,但风 浪很大时,船相对于海底的速度仍然很大,这就给船 舶靠岸造成了很大的困难。
确的物理关系式,基本上与流体的其他特征(如温 度、压力、密度及黏度)无关,通过光路计算和保 证制造精确后,可不考虑光路系统误差,系统测量 精度很高,因而可用他来校正其他类型测速仪器。
测速精度一般可达0.5%~1.0%。
12
激光多普勒测速技术的特点
(5)测量量程大:因为频差与速度成简单线性 关系,不论低速或高速都不需校正,他允许有很
中小部位流速。高的空间分辨率经常使用于边界层 、薄层流体及狭通道场合的测量。
10
激光多普勒测速技术的特点
(3)动态响应快:速度信号以光速传 播,惯性极小,只要配以适当的信号处理 机,可进行实时测量,是研究涡流、测量 瞬时脉动速度的新方法。
11
激光多普勒测速技术的特点
(4)测量精度高:测量所采用的公式是一个精