激光多普勒测速技术..

合集下载

激光多普勒测速

激光多普勒测速

(1)波源和观察者相对于介质是静止的(u=0,v=0), 观察者接收到的频率即为波源原有的频率,即f= f0
(2)波源不动,观察者以速度v相对于介质运动
(u=0,v 0),观察者接收到的频率为 观察者背离波源取负号。
f
V v


(1

v V
)
f
0
(3)观察者不动,波源以速度u相对于介质运动(
这种在迭加区域出现的光强稳定的强弱分布的现象称为光的 干涉。在观察时间内,P点平均光强为:
I 1


Id
0

E021

E022

2 E01 E02
1


cosd
0
பைடு நூலகம்
如果在观察时间内,各个时刻到达的两束光波迅速而无规
则地变化,多次经理0~2之间的一切值,则,
1

0
cosd
intensity points
DL
F
1
0 1/e 2 z
x
y
X
Transmitting System
Z
Y X Intensity
Distribution
Z Measurement Volume Y
Measurement Volume
Length:
4F

z


E
DL
sin
2

5-9 激光多普勒流速仪测速
1.概述-激光特性与应用
激光是完全新颖的光源,它以高亮度(比 太阳光亮1010倍)、高纯度(单色性,比 氪灯纯上万倍)、高方向性(既相干性) 而著称。因为普通光源向4立体角发散, 而激光的发散角只有10-6rad,因而单位立 体角单位面积的输出功率就特别大。

激光多普勒测速和激光测距分析解析

激光多普勒测速和激光测距分析解析

fD 1
c
2
fs
2018/10/20
15
激光多普勒测速技术
L
D
S R
激光多普勒测速技术基础 2. 激光多普勒测速原理 1)多普勒测速原理 • 如图。由于v/c非常小,只取 级数展开的前两项,即
α1 Q
α2
v
激光多普勒测速原理图
v f D 1 f s c

考虑流体中的速度为c/n,将v换成纵向分量 v cos1 , v cos 2
Photo courtesy of University of Bristol, UK
Measurement of flow around a ship propeller in a cavitation tank
2018/10/20
28
激光测距技术

脉冲激光测距

脉冲激光测距是利用激光脉冲连续时间极短、能量在时 间上相对集中、瞬时功率很大(一般可达到兆瓦级)的 特点,在有靶标的情况下,脉冲激光测量可达极远的测 程。
1
激光多普勒测速和激光测距
2
目 录
• 激光多普勒测速技术
• 激光多普勒测速技术基础 • 激光多普勒测速技术应用
• 激光测距技术
• 脉冲激光测距
• 相位激光测距
2018/10/20
3
激光多普勒测速技术
• 概述 • 1842年奥地利科学家Doppler等人首次发现,任何形
式的波传播,波源、接收器、传播介质或散射体的 运动会使频率发生变化——多普勒效应。

观测者D收到这N个波共需时
v cos 2 1 (t2 t1 )1 c
2018/10/20

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。

多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。

例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。

如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。

但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。

设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪
1 激光多普勒测速仪概念
激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种
仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风
速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速
度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空
气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性
和LDV测量的要求。

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术王素红多普勒效应多普勒效应是由于波源或观察者的运动而出现观测频率与波源频率不同的现象。

由澳大利亚物理学家J. Doppler1842年发现的。

声波的多普勒效应在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低。

为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低。

这种现象称为多普勒效应。

为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好像波被压缩了。

因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被拉伸了。

光波的多普勒效应当单频的激光源与探测器处于相对运动状态时,探测器所接收到的光频率是变化的。

当光源固定时,光波从运动的物体散射或反射并由固定的探测器接收时,也可观察到这一现象,这就是光学多普勒效应。

它又被称为多普勒-斐索效应,是因为法国物理学家斐索(1819—1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法。

光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化。

如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。

20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去。

1929年哈勃根据光谱红移总结出著名的哈勃定律:星系的远离速度υ与距地球的距离r成正比,即υ = Hr, H 为哈勃常数。

根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小。

由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物. 因而1948年伽莫夫(G. Gamow)和他的同事们提出大爆炸宇宙模型。

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统和信号处理器方面有了很大的发展。光束扩展,空 间滤波,偏振分离,频率分离,光学频移等近代光学 技术相继应用到激光测速仪中。 (3)1981年至今。在此期间,应用研究得到快速发 展。
福建农林大学交通学院 2007级物流管理2班 徐建福
激光多普勒测速技术的原理
激光测速的原理大致是这样:激光束 射向流动着的粒子,粒子发出的散射光的
在测纯净的水或空气速度时,必须由人 工掺入适当的粒子作散射中心。 被测流体要有一定的透明度,管道要有透明 窗口。
激光多普勒测速技术的特点
尽管如此,这种测速方法所具有的优越性,使它在许多场合成为一种
必不可少的检测手段。多年的研究使多普勒测速仪技术得以迅速发展,从
不能辨别流向到可以辨别流向,从一维测量发展到多维测量,围绕这一技 术的基本原理、设计方法和应用技术,学者们曾在有关杂志及重大国际会 议上发表了许多论文。早在七十年代就有重要著作面世,而且它的应用面 也不断扩大,从流体测速到固体测速,从单相流到多相流,从流体力学实 验室速度场测量到实际上较远距离的大气风速测量,从一般气、液体速度 测量到人体血管中血流速度测量,其应用范围有了极大的扩展。反过来, 各类应用对这一测速技术及测速仪器也提出许多更新更高的要求。
频率改变了,通过光电装置测出频率的变
化,就测得了粒子的速度,也就是流动的
速度。
5
激光多普勒测速技术的原理
6
激光多普勒测速技术的原理
7
激光多普勒测速技术的特点
优 点
速度方向的灵敏度好 测量精度高
空间分辨率极高,测量量程大 属于非接触测量,动态响应快
激光多普勒测速技术的特点
(1)属于非接触测量:激光束的交点就是测
激光多普勒测速技术
学院:机械工程学院
专业:仪器科学与技术
学号:314101002268
姓名:陈静
1
整 体 框 架
1 激光多普勒测速技术发展
2 激光多普勒测速技术原理 3 激光多普勒测速技术特点 4 激光多普勒测速技术应用
激光多普勒测速技术的发展
激光多普勒测速技术(LDV)是伴随着激光器的 诞生而产生的一种新的测量技术,它是利用激光
19
激光多普勒测速技术的应用
近年来迅速形成的力学分支——生物力学,他把血 液流体力学作为一个重要的研究课题,推动了激光多普 勒测速的研究。它是利用多普勒效应原理,对运动的脏 器和血流进行探测的仪器。其中,经颅多普勒是一个有 效的无创伤性的脑血管检查方法,属超声检查范围,因 此对受检查者毫无创伤和痛苦。许多脑血管检查方法如 放射性核素的脑血流量测定、脑血管造影、数字减影血 管造影等均具有一定创伤性及并发症,经颅多普勒安全 、无创伤性,适宜于普通的临床应用。
量探头。测量过程对流场无干扰,不影响流场分 布,这对回旋流场尤为适用,可测远距离的速度 场分布或狭窄流道中的速度分布。也可很方便地 在恶劣环境中如火焰、腐蚀性流体内进行测量。
9
激光多普勒测速技术的特点
(2)空间分辨率极高:目前测点可小于10-4mm3
,随着所用激光波长的减小,光路和聚焦元件性能
的改进,还可以进一步缩小。已可测出直径10μm
18
激光多普勒测速技术的应用
激光多普勒测速仪是利用激光多普勒效应来测量 流体或固体运动速度的,通常由五个部分组成:激光 器,入射光学单元,接收或收集光学单元,多普勒信 号处理器和数据处理系统或数据处理器。它可以精确 方便地测算出船舶航行的速度,使现代大型船舶进出 港口变得十分容易。一般的船用测速仪只能测出船与 海水之间的速度,而不能测得船与海底的相对速度。 由于海水是随风浪而动的,有时即使船速很小,但风 浪很大时,船相对于海底的速度仍然很大,这就给船 舶靠岸造成了很大的场合的测量。
10
激光多普勒测速技术的特点
(3)动态响应快:速度信号以光速传 播,惯性极小,只要配以适当的信号处理 机,可进行实时测量,是研究涡流、测量 瞬时脉动速度的新方法。
11
激光多普勒测速技术的特点
(4)测量精度高:测量所采用的公式是一个精
的多普勒效应来对流体或固体速度进行测量的一
种技术,广泛应用于军事、航空航天、机械、能 源、冶金、水利、计量、医学、环保等领域。
3
激光多普勒测速技术的发展
(1)1964至1972年,这是激光测速发展的初期。在
此期间,大多数的光学装置都比较简单,用各种元件 拼搭而成,光学性能和效率不高
(2)1973至1980年,在此期间,激光测速在光学系
确的物理关系式,基本上与流体的其他特征(如温 度、压力、密度及黏度)无关,通过光路计算和保 证制造精确后,可不考虑光路系统误差,系统测量 精度很高,因而可用他来校正其他类型测速仪器。
测速精度一般可达0.5%~1.0%。
12
激光多普勒测速技术的特点
(5)测量量程大:因为频差与速度成简单线性 关系,不论低速或高速都不需校正,他允许有很
16
激光多普勒测速技术的应用
1 多普勒雷达
2 多普勒测速仪 3 血液流动的研究 4 超音速风洞中激光测速
激光多普勒测速技术的应用
多普勒雷达工作原理为:当雷达发射一固定频率的 脉冲波对空扫描时,如遇到活动目标,回波的频率与发 射波的频率出现频率差,称为多普勒频率。根据多普勒 频率的大小,可测出目标对雷达的径向相对运动速度; 根据发射脉冲和接收的时间差,可以测出目标的距离。 同时用频率过滤方法检测目标的多普勒频率谱线,滤除 干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号 。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强 ,能探测出隐蔽在背景中的活动目标。
血液流速测量原理图
激光多普勒显微镜光路图
20
激光多普勒测速技术的应用
激光风速计在风洞中的使用不如在测量液流中 那样普遍,其一是风洞不易建造,其二是空气中尘 埃下沉,很少甚至不可能产生自然的散射中心,而 在液体中由于存在着细小的尘埃,总是很自然地形 成散射中心。因此在风洞中必须掺入少量烟尘等微 粒,这就使得这种系统变得复杂。美国阿诺德工程 发展中心应用激光多普勒测速技术对一英尺超音速 风洞中激波附面层,机翼外挂物等多种系统进行了 测量,获得了很好的结果。
大的频移,目前已能测0.1mm/s到2000m/s的速度
,这是普通测速仪不能比拟的。
13
激光多普勒测速技术的特点
(6)测量速度方向的灵敏性好:因光 束分离器旋转时测点不变,所以可方便地
测量任意方向的速度分量,并可用作常量
二维流动的测量研究。
14
激光多普勒测速技术的特点
缺 点
价格较贵
流速很高时要求提高激光输出功率, 由于信号频率很高而使信号 处理困难
相关文档
最新文档