激光多普勒测速仪介绍(LDV)讲解

合集下载

激光多普勒测速技术..

激光多普勒测速技术..
统和信号处理器方面有了很大的发展。光束扩展,空 间滤波,偏振分离,频率分离,光学频移等近代光学 技术相继应用到激光测速仪中。 (3)1981年至今。在此期间,应用研究得到快速发 展。
福建农林大学交通学院 2007级物流管理2班 徐建福
激光多普勒测速技术的原理
激光测速的原理大致是这样:激光束 射向流动着的粒子,粒子发出的散射光的
在测纯净的水或空气速度时,必须由人 工掺入适当的粒子作散射中心。 被测流体要有一定的透明度,管道要有透明 窗口。
激光多普勒测速技术的特点
尽管如此,这种测速方法所具有的优越性,使它在许多场合成为一种
必不可少的检测手段。多年的研究使多普勒测速仪技术得以迅速发展,从
不能辨别流向到可以辨别流向,从一维测量发展到多维测量,围绕这一技 术的基本原理、设计方法和应用技术,学者们曾在有关杂志及重大国际会 议上发表了许多论文。早在七十年代就有重要著作面世,而且它的应用面 也不断扩大,从流体测速到固体测速,从单相流到多相流,从流体力学实 验室速度场测量到实际上较远距离的大气风速测量,从一般气、液体速度 测量到人体血管中血流速度测量,其应用范围有了极大的扩展。反过来, 各类应用对这一测速技术及测速仪器也提出许多更新更高的要求。
频率改变了,通过光电装置测出频率的变
化,就测得了粒子的速度,也就是流动的
速度。
5
激光多普勒测速技术的原理
6
激光多普勒测速技术的原理
7
激光多普勒测速技术的特点
优 点
速度方向的灵敏度好 测量精度高
空间分辨率极高,测量量程大 属于非接触测量,动态响应快
激光多普勒测速技术的特点
(1)属于非接触测量:激光束的交点就是测
激光多普勒测速技术
学院:机械工程学院

激光多普勒测速仪(LDV)相位多普勒粒子分析仪(PDPA)

激光多普勒测速仪(LDV)相位多普勒粒子分析仪(PDPA)

全息摄影与普通摄影的区别
类别
记录方式
全息摄影
物束光与参考光束
记录内容
成像介质
影像观察 方式
色彩表现 影像特点
物体散射光的强度及相位 信息
记录后称全息片 (全灰色调) 一般借助激光还原观看
彩色干涉条纹图像 三度空间立体感的景物, 只有散射光线而并无实物
一般摄影
光学镜头成像 (物束光) 景物本身或 反射光强度 感光胶片
眼睛直接观看
彩色物体图像 平面物体图像
激光全息摄影包括两步:
◇ 记录 ◇ 再现
全息记录过程
把激光束分成两束;一
束激光直接投射在感光 底片上,称为参考光束; 另一束激光投射在物体 上,经物体反射或者透 射,就携带有物体的有 关信息,称为物光束.物 光束经过处理也投射在 感光底片的同一区域上. 在感光底片上,物光束 与参考光束发生相干叠 加,形成干涉条纹,这 就完成了一张全息图。
预先标定粒 径与信号可 见度或幅值 的关系
LDV信号测粒径只能用于一些
简单、粒子浓度很低的流动
Doppler信号中的最大、最小和基底值
1.3 激光多普勒测速仪的外差检测模式
•参考光束系统:参考光直接照 射到光检测器去同散射光束进 行光学外差。
可用光阑受到严格限制,光路安
பைடு நூலகம்
排、接收光阑、粒子浓度与可达
md (m 1) 4
2sin( / 2) d R
2.2 相位多普勒测粒要点
• PD法的测量原理与光散射干涉法密切相关,即以波长作 为测量标尺。
• PDPA中两入射光束的交角较小(约5°),同时测量容积 保持较少的条纹数(5-8条),但PDPA的接收光学至少基 于2个(通常3个,可解决相位模糊问题)光电检测器。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。

多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。

例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。

如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。

但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。

设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。

第06章 流速测量2-(LDV)

第06章 流速测量2-(LDV)
由于c= , 相对多普勒频移为
v v v'v v V c cos V c
2
2
cos
2
3. 散射物的多普勒频移

从光源S发出的频率为v的 光,被物体P散射,在Q处 来观察散射光相对多普勒 频移为
v v 2V c cos sin a 2
Q

多普勒频移为
v 2V


9. 激光多普勒风速计 (Laser Doppler Velocimeter)
(一)激光风速计(LDV)的组成
1. 2.
激光器:氦氖激光器(mW)、氩离子激光器(W)
入射光学单元:将激光束分成多束互相平行的入射光,
再通过聚焦透镜聚到测量点。
3.
接收光学单元:收集运动微粒通过测量体时的散射光,
再转换成多普勒频移频率的光电流信号。
4.
多普勒信号处理器:对多普勒信号进行处理,如频率
跟踪器、计数式处理器等,将频率量转换成数字量
5.
数据处理系统:得到各种流动参数
激光风速计(LDV)的发展
1、第一代LDV (1970~1980)
光路系统为离散的光学元件,处理器为跟踪型 信号处理器,模拟输出。
2、第二代LDV (1980~2000)

LDV已经应用于火焰、燃烧混合物中流速的测量、旋转机 械中的流速测量。
特点:


动态响应快、测量准确、仅对速度敏感而与流体其他 参数(如温度、压力、密度、成分等)无关。
本节内容

6.3.0 光学和激光的基础知识 6.3.1 多普勒频移 6.3.2 激光多普勒测速原理-差动多普勒技术 6.3.3 多普勒测速的光学系统

激光多普勒测速(LDV)与粒子成像测速(PIV)的应用

激光多普勒测速(LDV)与粒子成像测速(PIV)的应用

图像采集和 速度场计算
由一台基于微机的控制器完成
通过改变PI V 系统的延迟时间, 得到不同喷雾时刻的速度矢量图。
实例4:柴油机燃油喷射雾化的PIV 测量试验研究
PIV 通过CCD 和采集卡, 获得粒子图像.
在喷雾液滴的两相流场内, 由于粒 子像太多, 不能用跟踪单个粒子轨 道的方法( PTV) 来获得速度信息.
3.LDV与PIV测量原理
激光多普勒测速原理
微粒接受到的光波频率与光源频率会
有差异,差异大小同微粒运动速度的
单一频率的激光照射 大小和照射光与微粒速度方向之间的
运动微粒
夹角有关。
微粒以一定速度穿过时
接收散射光的多普 频移获得微粒速度
若微粒速度与流体团速度 一致,则可以获得该点的 流场速度。其关系如下:
Satoru Sasak i等运用自相关PIV 技术, 从曝光图像中得到了喷雾 周围的空气流动速度。研究结果显示, 喷射开始后喷油嘴周围的空 气被喷雾前端向外挤压, 随后流速向相反方向进行。 M iyazak i等将PIV 技术成功应用到水平管内螺旋气固两相流粒子 运动, 实验中包括用粒子群获得的高密度图象模型来得到速度, 对单 个粒子的追踪来得到低密度粒子数。
激光多普勒测速(LDV)与粒子 成像测速(PIV)在柴油机流场
特性方面的应用
报告主要内容
1. 意义与背景 2. 国内外研究现状 3. LDV与PIV测量原理 4. 实例应用介绍 5. LDV与PIV测试方法对比 6. 适用范围 7. 影响测试精度因素与测量误差分析 8. LDV与PIV局限性 9. LDV与PIV展望 10.参考文献
激光多普勒测速技术应用于浓缩燃烧器湍流流场的测量:在煤粉 浓缩燃烧器中加入示踪颗粒,利用激光多普勒测速技术对湍流流场 的速度场及湍流参数进行测量研究,通过自动数据采集及处理分析 系统,获得不同钝体结构的煤粉浓缩燃烧器的速度及湍流强度分布。

激光多普勒测速技术LDV

激光多普勒测速技术LDV

《现代流体测试技术》第八章激光多普勒测速技术刘宝杰,于贤君2015年6月15日主要内容8.1关键背景8.2基本原理8.3 测量精度的影响因素8.4典型应用案例8.5思考题测速技术的分类测量技术激光多普勒测速仪(LDV)皮托管接触式非接触式气动探针热线风速仪粒子图像测速技术(PIV、SPIV)激光诱导荧光技术(LIF、PLIF )DGV、MTV ……Laser Doppler Velocimeter简称LDV激光多普勒效应什么是多普勒效应?多普勒效应声波设光源O、运动微粒P和静止的光检测器S之间的相对位置如,粒子的运动速度为下图所示。

其中光源光波的频率为f Array则粒子接收到的光波频率为:当U << c时,上式可以非常近似地表示为:激光多普勒效应当静止的光检测器接收到微粒散射的光波时,其间同样存在多普勒效应,其频率为:粒子向四周散射的光的频率,就是其接受到光的频率:激光多普勒效应由以上两式可得:激光多普勒效应多普勒频移f D:激光多普勒测速仪(LDV/LDA)激光器入射光学单元被测流场收集光学单元信号采集和处理激光多普勒测速仪(LDV/LDA)1964年,Yeh和Cummins三个阶段:1964-1972年:发展阶段——平均速度测量1973-1978年:成熟阶段——湍流速度测量1979年-至今:应用发展阶段——计算机化8.2.2 示踪粒子8.2.3 信号采集和处理激光光源:氩(Ar)离子激光器:476.5nm、488nm、514.5nmLDV的光源能不能不用激光光源?定向性高亮度,高能量密度相干性8.2.2示踪粒子>>>跟得上>> 粒子的跟随性问题>> 粒子的光散射性问题>>> 看得见8.2.2示踪粒子>> 粒子的跟随性8.2.2示踪粒子湍流中粒子的跟随性水中粒子的跟随性>> 粒子的跟随性8.2.2示踪粒子湍流中粒子的跟随性空气中粒子的跟随性>> 粒子的跟随性8.2.2示踪粒子高速气流中粒子的跟随性可压流中粒子的阻力系数:为Knudsen数激波波前速度波后速度x(激波下游的距离),inch在超声速或高亚音速中理想的粒子直径应小于>> 粒子的跟随性mm8.2.2示踪粒子 粒子的直径粒子的密度粒子的形状除了流体的性质外,粒子对其跟随性的主要影响因素:>> 粒子的跟随性8.2.2示踪粒子1.散射光是由包括不同阶的球谐波组成的,它们是强度取决于两种介质的特性和粒子直径与光波波长的比值;米氏(G.Mie)散射理论:1908年2.当粒子直径远小于光波波长时,散射光强度分布如下图所示,这种散射称为瑞利(Rayleigh)散射;瑞利(Rayleigh)散射>> 粒子的光散射性8.2.2示踪粒子3.当粒子直径逐渐增大,散射光强度分布逐渐偏离对称,前向比后向散射更多的光线,这种效应称为米氏效应。

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光多普勒测速仪
1 激光多普勒测速仪概念
激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种
仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风
速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速
度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空
气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性
和LDV测量的要求。

相关文档
最新文档