正态分布和线性回归

合集下载

概率问题的解题方法与策略

概率问题的解题方法与策略

概率与统计问题的题型与方法一.复习目标:1. 了解典型分布列:0~1分布,二项分布,几何分布。

2. 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。

3. 在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。

4. 了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质。

5. 了解标准正态分布的意义和性质,掌握正态总体),(2σμN 转化为标准正态总体N (0,1)的公式)()(σμ-Φ=x x F 及其应用。

6. 通过生产过程的质量控制图,了解假设检验的基本思想。

7. 了解相关关系、回归分析、散点图等概念,会求回归直线方程。

8. 了解相关系数的计算公式及其意义,会用相关系数公式进行计算。

了解相关性检验的方法与步骤,会用相关性检验方法进行检验。

二.考试要求:⑴了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。

⑵了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。

⑶会用抽机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。

⑷会用样本频率分布去估计总体分布。

⑸了解正态分布的意义及主要性质。

⑹了解假设检验的基本思想。

⑺会根据样本的特征数估计总体。

⑻了解线性回归的方法。

三.教学过程:(Ⅰ)基础知识详析㈠随机事件和统计的知识结构:㈡随机事件和统计的内容提要1.主要内容是离散型随机变量的分布列、期望与方差,抽样方法,总体分布的估计,正态分布和线性回归。

2.随机变量的概率分布(1)离散型随机变量的分布列: ε 1x 2x … i x … P1p 2p…i p…两条基本性质①,2,1(0=≥i p i …);②P 1+P 2+ (1)(2)连续型随机变量概率分布:由频率分布直方图,估计总体分布密度曲线y=f(x); 总体分布密度函数的两条基本性质: ①f(x) ≥0(x ∈R);②由曲线y=f(x)与x 轴围成面积为1。

正态分布与线性回归

正态分布与线性回归
独立重复试验时事件 A 第一次发生,且 P(ξ=k)=_q_k_-_1_p_(其中 P 是在
一次试题中事件 A 发生的概率;p+q=1,k=1,2,3,…),则称 ξ 服从 几何分布,记作 g(k,p)=qk-1p.
第74讲 │ 要点探究
要点探究
► 探究点1 离散型随机变量的分布列及其应用
例 1 已知某离散型随机变量 ξ 的分布列如下:
A=A1 B 1+ A 1B1+A1B1+A2B2,故所求的概率为
P(A)=P(A1 B 1)+P( A 1B1)+P(A1B1)+P(A2B2)
第74讲 │ 要点探究
=P(A1)P( B 1)+P( A 1)P(B1)+P(A1)P(B1)+P(A2)P(B2) =0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28.
[点评] (1)二项分布是一类重要的分布,要熟练掌握.在写分布列时, 首先要判断随机变量是否满足二项分布的条件.(2)在进行概率计算时, 要注意排列、组合等知识在等可能事件中的应用,要注意互斥事件、相 互独立事件、独立重复试验的概率的应用.
第74讲 │ 要点探究
某厂生产电子元件,其产品的次品率为 5%,现从 一批产品中任意连续取出 2 件.
3.课时安排:本单元共安排了4讲及一个单元能力训练卷, 每讲建议1课时完成,单元能力训练卷建议1课时完成,大约共 需5课时.
第74讲 │ 离散型随机变量的分布列
第74讲 离散型随机变量的分布 列
第74讲 │ 编读互动
编读互动
离散型随机变量及其分布列是高考必考的一个知识点,常常作为 解答题的一问出现.本讲主要复习离散型随机变量及其分布列的计算, 复习时,要抓住离散型随机变量的概率分布的两个本质特征:pi≥0(i =1,2,…,n),p1+p2+…+pn=1,这是确定分布列中参数值的依据.求 离散型随机变量的分布列时,首先要根据具体情况确定随机变量 ξ 的 取值情况,然后利用排列、组合与概率知识求出 ξ 取各个值的概率.掌 握几个典型的分布列:几何分布、二项分布等.

第四章 线性回归分析

第四章 线性回归分析
Y 0 1Z1 2 Z2 3Z3 k Zk
(4-1)
, zki 是 k 个对 Y 有显
其中 j ( j 1,2,
, k ) 是回归系数,Y 是被解释变量, z1i , z2i ,
著影响的解释变量 (k 2) , i 是反映各种误差扰动综合影响的随机项,下标 i 表 示第 i 期观察值 (Yi , z1i , z2i ,
, zki ), i 1,2,
2
,n 。
ˆ ˆZ ˆ Z ˆZ ˆ 假设多元样本回归函数为:Y i 0 1 1i 2 2i 3 3i
ˆ。 差为: i Yi Y i
由于有 n 期的观察值,这一模型实际上包含 n 个方程:
Y2 0 1Z12 Yn 0 1Z1n
另 V 对 b0 ,
bk zki )]2
(4-3)
, bk 的一阶偏导数都等于 0,即下列方程组:
2[Y (b
i
0
b1 z1i b1 z1i b1 z1i
bk zki )]( 1) 0, bk zki )]( z1i ) 0, bk zki )]( zki ) 0
把样本数据分别代入样本回归方程,得到回归方程组为:
ˆ b bz Y 1 0 1 11 ˆ b bz Y n 0 1 1n bk zk 1 ,
(4-4)
(4-5)
bk zkn
写成等价的向量方程,则为:
ˆ ZB Y
这样回归残差向量为:
ˆ Y ZB Y Y
再利用向量,矩阵的运算法则,可以得到残差平方和为:
k Zk ,
, bk 分 别 表 示 模 型 参 数 0 ,

线性回归的前提条件

线性回归的前提条件

线性回归的前提条件线性回归的前提假设条件是:(1)自变量与因变量是否呈直线关系。

(2)因变量是否符合正态分布。

(3)因变量数值之间是否独立。

(4)方差是否齐性。

其实如果正规地来说,应该是看残差(residual)是否正态、独立以及方差齐。

所谓残差,就是因变量的真实值与估计值之间的差值。

回归分析是一类统计方法,包括本次介绍的线性回归以及后面将要介绍的logistic回归、Cox回归等,该类方法内容十分丰富,在医学应用中也极为广泛。

回归分析主要是通过建立回归方程来说明某一个事物随另一个(或多个)事物的变化而变动的规律。

相关分析研究的是两个或多个变量相互依存变动的规律,见统计分析之相关,而回归分析则是探索某变量(因变量)如何依赖于其他变量(自变量)的变化而变动的规律,是单方依存,而不是相互依存。

回归分析主要根据因变量的类型而划分不同方法,线性回归其因变量必须是定量变量,后面介绍的logistic回归、Cox回归等因变量则属于其他类型。

线性回归可以说是回归家族中最为经典的方法,同时也是相对简单、容易理解的方法。

本系列主要介绍线性回归的应用,具体内容包括:(1)线性回归的单因素分析;(2)线性回归的多因素分析;一、线性回归简介线性回归是研究因变量(dependent variable)与自变量(independent variable)相依关系的技术。

因变量又称应变量(response variable),是随机变量,具有一个随机分布,依赖于一个或多个自变量。

自变量有时也被称为解释变量(explanatory variable)或预测变量(predictor variable),是非随机的,不依赖于其他变量。

线性回归中的因变量必须是定量变量,自变量可以是定量变量,也可以是分类变量。

例如研究体重对高血压的影响,体重是自变量,高血压受体重的影响,是因变量。

线性回归大致可分为三类:当因变量有一个,自变量也只有一个时,称之为简单线性回归(simple linear regression);当因变量有一个,自变量有多个时,称之为多重线性回归(multiple linear regression);当因变量有多个,自变量有多个时,称之为多元回归(multi-variate regression)。

正态分布-线性回归

正态分布-线性回归

正态分布、线性回归一、 知识梳理1.正态分布的重要性正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。

一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。

2.正态曲线及其性质正态分布函数:22()2()x f x μσ--=,x ∈(-∞,+∞)3.标准正态曲线标准正态曲线N (0,1)是一种特殊的正态分布曲线,00()1()x x Φ-=-Φ,以及标准正态总体在任一区间(a ,b)内取值概率)()(a b P Φ-Φ=。

4.一般正态分布与标准正态分布的转化由于一般的正态总体),(2σμN 其图像不一定关于y 轴对称,对于任一正态总体),(2σμN ,其取值小于x 的概率)()(σμ-Φ=x x F 。

只要会用它求正态总体),(2σμN 在某个特定区间的概率即可。

5.“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。

这种认识便是进行推断的出发点。

关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。

课本是借助于服从正态分布的有关零件尺寸的例子来介绍假设检验的基本思想。

进行假设检验一般分三步:第一步,提出统计假设。

课本例子里的统计假设是这个工人制造的零件尺寸服从正态分布),(2σμN ; 第二步,确定一次试验中的取值a 是否落入范围(μ-3σ,μ+3σ); 第三步,作出推断。

如果a ∈(μ-3σ,μ+3σ),接受统计假设;如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设。

6.相关关系研究两个变量间的相关关系是学习本节的目的。

高考数学理一轮复习 X1-4正态分布、线性回归精品课件

高考数学理一轮复习 X1-4正态分布、线性回归精品课件

备选例题1 设随机变量ξ服从正态分布:ξ~ N(1,4),试求:
(1)P(0<ξ≤2); (2)求常数C,使P(ξ≤C)=32·P(ξ>C).
参考数据:Φ(0)=0.5,Φ(1)=0.8413,Φ(2) =0.9772,Φ(0.5)=0.6915,Φ(1.88)= 0.9697,Φ(3)=0.9987.
2.小概率事件是指事件发生的概率很小的事, 通常认为这些情况在一次试验中几乎是不可 能发生的.
3.统计中假设检验的基本思想:根据小概率 事件在一次试验中几乎不可能发生的原理和 从总体中抽测的个体的数值,对事先所作的 统计假设作出判断,是拒绝假设,还是接受 假设.
4.利用线性回归方程,可由一个变量的值预 测或控制另一个变量的值.借助计算器,特 别是含统计的计算器,能简化手工的计算, 迅速得出正确结果.
(函数Φ(x0)实际上是正态总体N(0,1)的累积分
布函数),即Φ(x0)=

(5)两个重要公式:ⅰ.Φ(-x)=1Φ(x)


Φ(a)
ⅱ.P(a<ξ<b)=Φ(b)-
. 小于
(6)对于任一正态分布总体N(μ,σ2)来说,取
值 x的概率为F(x)=Φ(
).
(7)假设检验的基本思想
ⅰ.提出统计假设,如假设随机变量服从正态 分布等;
5.“回归”和“相关”含义是不同的:如果 两个变量中的一个变量是人为可以控制、非 随机的,另一变量的变化是随机的且随着控 制变量的变化而变化,则这两变量间的关系 就称为回归关系;若两个变量都是随机的, 则称它们之间的关系为相关关系,在本教材 中,两者不加区别.
方法规律·归纳
题型 一
正态分布的基本运算
思维 提示
①P(x<x0)=Φ(x0); ②Φ(x0)=1-Φ(-x0);

正态分布的条件分布

正态分布的条件分布

正态分布的条件分布
正态分布的条件分布是指在已知某些条件下,所得的随机变量的分布仍然是正态分布的情况。

具体来说,如果已知一个正态分布随机变量X的平均数和方差,以及另一个随机变量Y与X之间的线性关系,那么在已知Y的取值时,X的条件分布仍然是正态分布,其平均数和方差可以通过线性回归方法求得。

条件分布在统计学和机器学习中有着广泛的应用,例如在回归分析、贝叶斯推断、数据挖掘等领域中常常涉及到条件分布的计算和使用。

正态分布的条件分布是其中的一个重要例子,可以帮助我们更好地理解数据的分布规律和预测未知值。

- 1 -。

第十一章(理) 第四节 正态分布、线性回归

第十一章(理)  第四节  正态分布、线性回归

第十一章(理) 第四节 正态分布、线性回归1.111222则有 ( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2解析:μ反映正态分布的平均水平,x =μ是正态曲线的对称轴,由图知μ1<μ2,σ 反映正态分布的离散程度,σ越大,曲线越“矮胖”,表明越分散,σ越小,曲线越 “高瘦”,表明越集中,由图知σ1<σ2. 答案:A2.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)= ( ) A.15 B.14C.13D.12解析:根据正态分布的知识可知此正态分布图象的对称轴为x =3,而P (ξ<3)表示对 称轴左边图象的面积,对称轴左右两边图象面积相等,整个图象的面积为1. 答案:D3.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c = ( ) A .1 B .2 C .3 D .4解析:由题意得随机变量ξ相应的正态密度曲线关于直线x =2对称,又P (ξ>c +1) =P (ξ<c -1),因此(c +1)+(c -1)2=2,c =2.答案:B4.设随机变量ξ服从标准正态分布N (0,1),已知Φ(-1.96)=0.025,则P (|ξ|<1.96)=( ) A .0.025 B .0.050 C .0.950 D .0.975 解析:P (|ξ|<1.96)=Φ(1.96)-Φ(-1.96) =1-2Φ(-1.96)=0.950. 答案:C5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)= ( ) A .0.16 B .0.32C .0.68D .0.84解析:根据正态分布曲线的对称性,得P (ξ≤0)=1-P (ξ≤4)=1-0.84=0.16. 答案:A6.对有线性相关关系的两个变量建立的回归直线方程y =a +bx 中,回归系数b ( ) A .可以小于0 B .大于0 C .能等于0 D .只能小于0解析:因为b =0时,r =0,这时不具有线性相关关系,但b 能大于0也能小于0. 答案:A7.以下是两个变量x 和y 的一组数据:则这两个变量间的回归直线方程为 ( ) A.y ^=x 2 B.y ^=x C.y ^=9x -15 D.y ^=15x -9 解析:根据数据可得x =4.5,y =25.5, ∑i =1n x 2i =204,∑i =1nx i y i =1 296.b =1221niii nii x ynx y xnx ==--∑∑=1 296-8×4.5×25.5204-8×4.52=9,a =y -b x =25.5-9×4.5=-15. ∴y ^=9x -15. 答案:C8.已知回归直线方程y ^=4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 解析:x 与y 的增长速度之比即为回归直线方程的斜率的倒数14.4=1044=522.答案:5229.某肉食鸡养殖小区某种病的发病鸡只数呈上升趋势,统计近4个月这种病的新发病鸡只数的线性回归分析如下表所示:该养殖小区这种病的新发病鸡总只数约为________.解析:由上表可得:y ^=94.7x +1 924.7,当x 分别取9,10,11,12时,得估计值分别 为:2 777,2 871.7,2 966.4,3 061.1,则总只数约为2 777+2 871.7+2 966.4+3 061.1≈11 676. 答案:11 67610.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的 生产能耗y (吨标准煤)的几组对照数据:(1)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=bx +a ;(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的回归 直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x —=3+4+5+64=4.5, y —=2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86,b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a =y —-b x —=3.5-0.7×4.5=0.35. 故回归直线方程为y ^=0.7x +0.35.(2)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:正态分布和线性回归一、基础知识回顾1.正态分布:若总体密度曲线就是或近似地是函数()22()21(),,2x f x ex μσπσ--=∈-∞+∞的图象其中:π是圆周率;e 是自然对数的底;x 是随机变量的取值,μ为正态分布的平均值;σ是正态分布的标准差.这个总体是无限容量的抽样总体,其分布叫做正态分布.正态分布由参数μ,σ唯一确定,记作ξ~2(,)N μσ,E(ξ)=μ,D(ξ)=2σ. 2.函数f(x)图象被称为正态曲线.(1)从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为....x=..μ.,并在...x=..μ.时取..最大值...。

(2)从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的,(3)当μ的值一定时, σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”.总体分布越集中.3. 把ξ~(0,1)N 即μ=0,σ=1称为标准正态分布,这样的正态总体称为标准正态总体,其密度函数为2121()2x f x e π-=,x ∈(-∞,+∞),相应的曲线称为标准正态曲线.4.利用标准正态分布表可求得标准正态总体在某一区间内取值的概率.(1)对于标准正态总体(0,1)N ,)(0x Φ是总体取值小于0x 的概率,即:)()(00x x P x <=Φ,其中00>x ,其值可以通过“标准正态分布表”查得,也就是图中阴影部分的面积,它表示总体取值小于0x 的概率.(2)标准正态曲线关于y 轴对称。

因为当00>x 时,)()(00x x P x <=Φ;而当00<x 时,根据正态曲线的性质可得:)(1)(00x x -Φ-=Φ,并且可以求得在任一区间),(21x x 内取值的概率:)()()(1221x x x x x P Φ-Φ=<<,显然Φ(0)=0.5.5.对于任一正态总体ξ~),(2σμN ,都可以通过ξμησ-=使之标准化η~(0,1)N ,那么, P(x ξ<)=P(η<x μσ-)=()x μσ-Φ,求得其在某一区间内取值的概率.例如: ~ξN(1,4),那么,设η=12ξ-,则η~(0,1)N ,有P(ξ<3)=P(η<1)=(1)Φ=0.8413. 6. Φ(1)=0.8413、Φ(2)=0.9772、Φ(3)=0.9987 二、例题1.下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)2221)(x ex f -=π,(-∞<x <+∞)(2)2(1)81()22x f x eπ--=,(-∞<x <+∞) (3)22(1)2()2x f x e π-+=,(-∞<x <+∞) 2.正态总体的函数表示式是22(1)2()2x f x e π-+=,(-∞<x <+∞)(1)求f (x )的最大值; (2)利用指数函数性质说明其单调区间,以及曲线的对称轴.3.利用标准正态分布表(Φ(1)=0.8413、Φ(2)=0.9772、Φ(3)=0.9987)求标准正态总体在下面区间取值的概率. (1)(0,1); (2)(1,3); (3)(-1,2).4.利用标准正态分布表((Φ(1)=0.8413、Φ(1.84)=0.9671),求正态总体在下面区间取值的概率.(1)在N(1,4)下,求F(3)(2)在),(2σμN 下,求P(μ-1.84σ<X<μ+1.84σ)*5.对于正态总体),(2σμN 取值的概率: (1)(μ-σ,μ+σ): (2)(μ-2σ,μ+2σ): (3)(μ-3σ,μ+3σ):取值的概率分别为68.3%、95.4%、99.7%。

因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分,这一部分情况发生为小概率事件。

6.下列关于正态曲线性质的叙述正确的是(1)曲线关于直线x=μ对称,这个曲线只在x 轴上方;(2)曲线关于直线x=σ对称,这个曲线只有当x ∈(-3σ,3σ)时才在x 轴上方; (3)曲线关于y 轴对称,因为曲线对应的正态密度函数是一个偶函数; (4)曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低; (5)曲线的对称轴由μ确定,曲线的形状由σ确定;(6)σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”.总体分布越集中.( ) (A)只有(1)(4)(5)(6) (B) 只有(2)(4)(5) (C) 只有(3)(4)(5)(6) (D) 只有(1)(5)(6)7.把一个正态曲线a 沿着横轴方向向右移动2个单位,得到一个新的曲线b,下列说法不正确的是 (A)曲线b 仍然是正态曲线 (B)曲线a 和曲线b 的最高点的纵坐标相等 (C)以曲线a 为概率密度曲线的总体的方差比以曲线b 为概率密度曲线的总体的方差大2 (D)以曲线a 为概率密度曲线的总体的期望比以曲线b 为概率密度曲线的总体的期望小28.在正态总体N(0,19)中,数值落在(-∞,-1)∪(1,+∞)里的概率为(A )0.097 (B )0.046 (C)0.03 (D)0.0039.设随机变量ζ~N(2,4),则D(2ξ)等于(A)1 (B)2 (C)0.5 (D)4 10.设随机变量ζ~N(μ,σ2),且P(ζ≤C)=P(ζ>C),则C 等于 ( ) (A)0 (B)μ (C)-μ (D)σ 11.正态总体的概率密度函数为()+∞∞-∈=-,,81)(82x ex f x π,则总体的平均数和标准差分别是(A)0和8 (B)0和4 (C)0和2 (D)0和2 12.填空题(1)若随机变量ζ~N(1,0.25),则2ζ的概率密度函数为 . (2)期望为2,方差为2π的正态分布的密度函数是 .(3)已知正态总体落在区间(0.2,+∞)的概率是0.5,则相应的正态曲线f(x)在x= 时,达到最高点.(4)已知ζ~N(0,1),P(ζ≤1.96)=Ф(1.96)=0.9750,则Ф(-1.96)= .(5)某种零件的尺寸服从正态分布N(0,4),则不属于区间(-4,4)这个尺寸范围的零件约占总数的 .(6)某次抽样调查结果表明,考生的成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的考生占考生总数的 2.3%,则考生成绩在60至84分之间的概率为 . Φ(1)=0.8413、Φ(2)=0.977、Φ(3)=0.9987参考答案:1(1)0,1(2)1,2(3)-1,0.5;2.(1)x=-1时max ()f x =,(2)对称轴为x=-1.3.(1)0.3413(2)0.1574(3)0.81854. (1)F(3)=0.8413(2) P(μ-1.84σ<X<μ+1.84σ)=0.9342;6.A;7.C;8.D;9.A;10.B;11.C;12.(1)22(1)()x f x --=;(2) 2(2)41()4x f x e ππ--=;(3)0.2;(4)0.025;(5)4.56%;(6)σ=12;P=0.6826. F(96)=)2(9770.0023.01)7296(φδφ==-=-,12=δ,F(84)- F(60)= 6826.01)1(2)1()1()127260()127284(=-=--=---φφφφφ正态分布和线性回归高考要求1.了解正态分布的意义及主要性质2.了解线性回归的方法和简单应用知识点归纳1.正态分布密度函数:22()2()x f x μσ--=,(σ>0,-∞<x <∞)其中π是圆周率;e 是自然对数的底;x 是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为),(2σμN2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布例1、下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)2221)(x ex f -=π,(-∞<x <+∞)(2)2(1)81()22x f x e π--=,(-∞<x <+∞)解: (1)0,1 (2)1,23.正态曲线的性质:正态分布由参数μ、σ唯一确定,如果随机变量ξ~N(μ,σ2),根据定义有:μ=E ξ,σ=D ξ。

正态曲线具有以下性质:(1)曲线在x 轴的上方,与x 轴不相交。

(2)曲线关于直线x =μ对称。

(3)曲线在x =μ时位于最高点。

(4)当x <μ时,曲线上升;当x >μ时,曲线下降。

并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近。

(5)当μ一定时,曲线的形状由σ确定。

σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。

五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学4.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x ex f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题5.标准正态总体的概率问题:对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率, 即 )()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率0()P x x <只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)例2 设),(~2σμN X ,且总体密度曲线的函数表达式为:412221)(+--=x x ex f π,x ∈R 。

(1)求μ,σ;(2)求)2|1(|<-x P 的值。

分析:根据表示正态曲线函数的结构特征,对照已知函数求出μ和σ。

利用一般正态总体),(2σμN 与标准正态总体N (0,1)概率间的关系,将一般正态总体划归为标准正态总体来解决。

解:(1)由于222)2(2)1(41222121)(--+--⋅==x x x eex f ππ,根据一般正态分布的函数表达形式,可知μ=1,2=σ,故X ~N (1,2)。

(2))2121()2|1(|+<<-=<-x P x P(1(1(1)(1)2(1)120.84131F F =-=Φ-Φ=Φ-Φ-=Φ-=⨯- 6826.0=。

点评:在解决数学问题的过程中,将未知的,不熟悉的问题转化为已知的、熟悉的、已解决了的问题,是我们常用的手段与思考问题的出发点。

通过本例我们还可以看出一般正态分布与标准正态分布间的内在关联。

相关文档
最新文档