一元线性回归模型与多元线性回归模型对比
一元与多元线性回归

1.1 1.2 1.3 1.4 1.5 一元线性回归模型 参数的最小二乘估计 回归直线的拟合优度 显著性检验 预测与估计
什么是回归分析?
1. 从一组样本数据出发,确定变量之间的数学 关系式 2. 对这些关系式的可信程度进行各种统计检验, 并从影响某一特定变量的诸多变量中找出哪 些变量的影响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的 取值来预测或控制另一个特定变量的取值, 并给出这种预测或控制的精确程度
2. 回归平方和(SSR—sum squares of regression)
3. 残差平方和(SSE—sum squares of error)
–
判定系数R2
1. 回归平方和占总误差平方和的比例
2. 反映回归直线的拟合程度 3. 取值范围在 [ 0 , 1 ] 之间 4. R2 1,说明回归方程拟合的越好;R20, 说明回归方程拟合的越差
8 6 4 2 0 0 10 20 30 40 贷款项目个数
不良贷款
10
10 8 6 4 2 0 0 50 100 150 200 固定资产投资额
不良贷款与贷款项目个数的散点图
不良贷款与固定资产投资额的散点图
相关系数
(例题分析)
用Excel计算相关系数
估计方程的求法
(例题分析)
【例】求不良贷款对贷款余额的回归方程
ˆ 0 t 2 (n 2) S xy y 1 + n
x0 x n 2 xi x
2 i 1
式中: Sy 为估 计标准误差
利用回归方程进行估计和预测
(预测区间估计)
• y 的个别值的预测区间 估计 1. 利用估计的回归方程 ,对于自变量 x 的一 个给定值 x0 ,求出因 变量 y 的一个个别值 的估计区间,这一区 间称为预测区间 2. y0在1-置信水平下的 预测区间为
线性统计模型知识点总结

线性统计模型知识点总结一、线性回归模型1. 线性回归模型的基本思想线性回归模型是一种用于建立自变量和因变量之间线性关系的统计模型。
它的基本思想是假设自变量与因变量之间存在线性关系,通过对数据进行拟合和预测,以找到最佳拟合直线来描述这种关系。
2. 线性回归模型的假设线性回归模型有一些假设条件,包括:自变量与因变量之间存在线性关系、误差项服从正态分布、误差项的方差是常数、自变量之间不存在多重共线性等。
3. 线性回归模型的公式线性回归模型可以用如下的数学公式来表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y 是因变量,X是自变量,β是模型的系数,ε是误差项。
4. 线性回归模型的参数估计线性回归模型的参数估计通常使用最小二乘法来进行。
最小二乘法的目标是通过最小化残差平方和来寻找到最佳的模型系数。
5. 线性回归模型的模型评估线性回归模型的好坏可以通过很多指标来进行评价,如R-squared(R^2)、调整后的R-squared、残差标准差、F统计量等。
6. 线性回归模型的应用线性回归模型广泛应用于经济学、金融学、市场营销、社会科学等领域,用以解释变量之间的关系并进行预测。
二、一般线性模型(GLM)1. 一般线性模型的基本概念一般线性模型是一种用于探索因变量与自变量之间关系的统计模型。
它是线性回归模型的一种推广形式,可以处理更为复杂的数据情况。
2. 一般线性模型的模型构建一般线性模型与线性回归模型相似,只是在因变量和自变量之间的联系上,进行了更为灵活的变化。
除了线性模型,一般线性模型还可以包括对数线性模型、逻辑斯蒂回归模型等。
3. 一般线性模型的假设一般线性模型与线性回归模型一样,也有一些假设条件需要满足,如误差项的正态分布、误差项方差的齐性等。
4. 一般线性模型的模型评估一般线性模型的模型评估通常涉及到对应的似然函数、AIC、BIC、残差分析等指标。
5. 一般线性模型的应用一般线性模型可以应用于各种不同的领域,包括医学、生物学、社会科学等,用以研究因变量与自变量之间的关系。
线性回归模型的经典假定及检验修正

线性回归模型的经典假定及检验、修正一、线性回归模型的基本假定1、一元线性回归模型一元线性回归模型是最简单的计量经济学模型,在模型中只有一个解释变量,其一般形式是Y =β0+β1X 1+μ其中,Y 为被解释变量,X 为解释变量,β0与β1为待估参数,μ为随机干扰项。
回归分析的主要目的是要通过样本回归函数(模型)尽可能准确地估计总体回归函数(模型)。
为保证函数估计量具有良好的性质,通常对模型提出若干基本假设。
假设1:回归模型是正确设定的。
模型的正确设定主要包括两个方面的内容:(1)模型选择了正确的变量,即未遗漏重要变量,也不含无关变量;(2)模型选择了正确的函数形式,即当被解释变量与解释变量间呈现某种函数形式时,我们所设定的总体回归方程恰为该函数形式。
假设2:解释变量X 是确定性变量,而不是随机变量,在重复抽样中取固定值。
这里假定解释变量为非随机的,可以简化对参数估计性质的讨论。
假设3:解释变量X 在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X 的样本方差趋于一个非零的有限常数,即∑(X i −X ̅)2n i=1n→Q,n →∞ 在以因果关系为基础的回归分析中,往往就是通过解释变量X 的变化来解释被解释变量Y 的变化的,因此,解释变量X 要有足够的变异性。
对其样本方差的极限为非零有限常数的假设,旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生伪回归问题。
假设4:随机误差项μ具有给定X 条件下的零均值、同方差以及无序列相关性,即E(μi|X i)=0Var(μi|X i)=σ2Cov(μi,μj|X i,X j)=0, i≠j随机误差项μ的条件零均值假设意味着μ的期望不依赖于X的变化而变化,且总为常数零。
该假设表明μ与X不存在任何形式的相关性,因此该假设成立时也往往称X为外生性解释变量随机误差项μ的条件同方差假设意味着μ的方差不依赖于X的变化而变化,且总为常数σ2。
计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
计量经济学复习

第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
一元线性回归模型与多元线性回归模型对比

参数估计量的性质线性性、无偏性、有效性线性性、无偏性、有效性参数估计量的概率分布),(~ˆ), (~ˆ222002211σββσββ∑∑∑iiix n X N x N ---样本容量问题 ----样本容量n 必须不少于模型中解释变量的个数(包括常数项),即1+≥k n 才能得到参数估计值,8-≥k n 时t 分布才比较稳定,能够进行变量的显著性检验,一般认为30≥n 活着至少()13+≥k n 时才能满足模型估计要求。
如果样本量过小,则只依靠样本信息是无法完成估计的,需要用其他方法去估计。
统计检验一元线性回归模型 多元线性回归模型拟合优度检验总离差平方和的分解 TSS=ESS+RSSTSSESS R =2,[]1,02∈R 越接近于1,拟合优度越高。
总离差平方和的分解 TSS=ESS+RSSTSSRSSTSS ESS R -==12,(即总平方和中回归平方和的比例) []1,02∈R 对于同一个模型,2R 越接近于1,拟合优度越高。
)1/()1(12----=n TSS k n RSS R (调整的思路是残差平方和RSS 和总平方和TSS各自除以它们的自由度)为什么要对2R 进行调整?解释变量个数越多,它们对Y 所能解释的部分越大(即回归平方和部分越大),残差平方和部分越小,2R 越高,由增加解释变量引起的2R 的增大与拟合好坏无关,因此在多元回归模型之间比较拟合优度, 2R 就不是一个合适的指标,必须加以调整。
方程总体显著性检验------目的:对模型中被解释变量与解释变量之间的线性关系在总体上是否成立做出判断。
原假设备择假设:统计量的构造:判断步骤:①计算F 统计量的值②给定显著性水平,查F 分布的临界值表获得)③比较F与的值,若,拒绝原假设,认为原方程总体线性关系在的置信水平下显著。
若,接受原假设,不能认为原方程总体线性关系在的置信水平下显著。
变量的显著性检验目的:对模型中被解释变量对每一个解释变量之间的线性关系是否成立作出判断,或者说考察所选择的解释变量对被解释变量是否有显著的线性影响。
计量经济学-综合练习题:多元线性回归模型

第二部分:多元线性回归模型一、内容提要本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。
主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。
只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。
本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。
与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。
这里需要注意各回归参数的具体经济含义。
本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。
参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。
检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。
参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。
它们仍以估计无约束模型与受约束模型为基础,但以最大似然χ分布为检验统计原理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2量的分布特征。
非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。
二、典型例题分析例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为36.0.+=-10+094medufedu.0sibsedu210131.0R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。
计量经济学:多元线性回归习题与答案

一、单选题1、多元线性回归模型和一元线性回归模型相比,显著不同的基本假设是?()A.随机误差项具有同方差B.解释变量之间互不相关C.随机误差项具有零均值D.随机误差项无序列相关性正确答案:B2、用矩阵表示多元线性回归模型OLS估计的正规方程组,X的第1列或第1行的元素是什么?()A.1B.变量观测值C.0D.取值不能确定的常数正确答案:A3、多元线性回归模型中,发现各参数估计量的t值都不显著,但模型的拟合优度很大, F值很显著,这说明模型存在()。
A.自相关B.设定偏误C.异方差D.多重共线性正确答案:D4、如果把常数项看成是一个虚变量的系数,该虚变量的样本观测值为()。
A.取值不能确定的常数B.1C.随样本而变的变量D.0正确答案:B5、从统计检验的角度,样本容量要大于多少,Z检验才能应用?()A.40B.20C.30D.10正确答案:C二、多选题1、在一定程度上表征多元线性回归模型整体拟合优度的指标是哪些?()A.SCB.调整可决系数C.AICD.t正确答案:A、B、C2、多元线性回归模型的基本检验包括哪些?()A.方程整体检验:可决系数、调整可决系数、F检验B.预测检验:给定解释变量,被解释变量的观测值,与被解释变量的真实值进行对比C.单参数检验:系数T检验D.经济学含义检验:系数正负是否符合经济逻辑以及经济现实正确答案:A、B、C、D3、估计多元线性回归参数的方法有()。
A.普通最小二乘估计OLSB.最大似然估计C.矩估计GMMD.最大方差法正确答案:A、B、C4、下列说法不正确的是()。
A.RSS=TSS x ESSB.RSS=TSS/ESSC.RSS=TSS - ESSD.RSS=TSS + ESS正确答案:A、B、D5、运用F统计量检验约束回归,下列不正确的说法是()。
A.可以检查一个解释变量的作用是否显著B.可以检查一批解释变量的作用是否显著C.可以判断一个回归参数是否足够大D.可以检查一个多元线性回归方程是否有经济意义正确答案:A、C、D三、判断题1、多元线性回归模型中某个解释变量系数的含义是其他解释变量保持不变,该解释变量变化1个单位,被解释变量的条件均值变化的数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数估计量的性质
线性性、无偏性、有效性
线性性、无偏性、有效性
参数估计量的概率分布
)
,
(~ˆ), (~ˆ22
2002211σββσββ∑∑∑i
i
i
x n X N x N ---
样本容量问题 ----
样本容量n 必须不少于模型中解释变量的个数(包括常数项),
即1+≥k n 才能得到参数估计值,8-≥k n 时t 分布才比较稳定,能够进行变量的显著性检验,一般认为30≥n 活着至少
()13+≥k n 时才能满足模型估计要求。
如果样本量过小,则只
依靠样本信息就是无法完成估计的,需要用其她方法去估计。
统计检验
一元线性回归模型 多元线性回归模型
拟合优度检验
总离差平方与的分解 TSS=ESS+RSS
TSS
ESS R =
2,[]1,02
∈R 越接近于1,拟合优度越高。
总离差平方与的分解 TSS=ESS+RSS
TSS
RSS
TSS ESS R -==
12,(即总平方与中回归平方与的比例) []1,02∈R 对于同一个模型,2R 越接近于1,拟合优度越高。
)
1/()
1(12----
=n TSS k n RSS R (调整的思路就是残差平方与
RSS 与总平方与
TSS 各自除以它们的自由度)
为什么要对2
R 进行调整?解释变量个数越多,它们对
Y 所能解释的部分越
大(即回归平方与部分越大),残差平方与部分越小,2R 越高,由增加解释变量引起的
2R 的增大与拟合好坏无关,因此在多元回归模型之间比较拟合优度, 2R 就不就是一
个合适的指标,必须加以调整。
方程总体显著性检验
------
目的:对模型中被解释变量与解释变量之间的线性关系在总体上就是否成立做出判断。
原假设
备择假设:
统计量的构造:
判断步骤:①计算F 统计量的值
②给定显著性水平,查F 分布的临界值表获得
)
③比较F与的值,
若,拒绝原假设,认为原方程总体线性关系在的置信水平下显著。
若,接受原假设,不能认为原方程总体线性关系在的置信水平下显著。
变量的显著性检验目的:对模型中被解释变量对每一个解释变量之间的线性关系就是否成立作出判断,或者说考察所选择的解释变量对被解释变量就是否有显著的线性影响。
针对某解释变量
,
原假设:备择假设:
最常用的检验方法: t检验
构造统计量:
判断步骤:①计算t统计量的值
②给定显著性水平,查t分布的临界值表获得
)
③比较t值与的值,
若,拒绝原假设,认为变量在的置信水平下通过显著性检验(或者说,在的显著性水平下通过检验),认为解释变量对被解释变量Y有显著线性影响。
若,接受原假设,在显著性水平下没有足够证据表明对Y有显著线性影响。
参数的置信区间目的:考察一次抽样中样本参数的估价值与总体参数的真实值的接近程度。
思路:构造一个以样本参数的估计值为中心的区间,考察它以多大的概率包含总体参数的真实值。
方法:①预先选择一个概率,使得区间包含参数真值
②计算其中的(),从而求出置信度下置信区
间:
掌握概念:置信区间置信度显著性水平
实际应用中,我们希望置信度越高越好,置信区间越小越好(说明估计精度越高)。
如何缩小置信区间?
(1)增大样本容量n(以减小,并减小参数估计值的样本方差)
(2)提高模型的拟合优度(以减小残差平方与,从而减小)
(3)提高样本观测值的分散度(样本值越分散,越小,越小)。