给排水外文翻译
给排水专业英语翻译技巧

(给水排水专业英语)
给排水专业英语概述
Unit 1 Water and Hydrological Cycle
toxic pathogenic microorganism congregate metropolitan a. a. n. v. a. 有毒的,中毒的 致病的,病愿的 微生物 聚集 大城市的
n. a.
污染物质 水文学的
designate nutrient medium microbial algae
vt. n. n. a. n.(alga的复数)
表示,称为 养分,养科 介质,培养基 微生物的,细菌的 藻类,海藻
protozoa inorganics predominantly seep particulate
Source of water
¡ [2] All water comes in the form ofprecipitation.
The heat of the sun evaporates water from the oceans, seas, rivers and lakes. The heat also evaporates water from the ground and from plants and animals. Water vapor is formed. This rises and forms clouds in the air. When the clouds come near a mountain, they are forced to rise.
fall a prey to=suffer from
给排水专业英语汇总

给排水专业英语汇总废水 abwasser 排水系统 drainage system UNIT 1给水工程 water supply engineering 废水收集 wastewater collection 生活排水系统 sanitary system排水工程 sewetage engineering 废水处理 wastewater disposal 工业排水系统 industrial system市政工程 civil engineering 受纳水体 receiving waters 雨水排水系统stormwater system市政工程师 civil engineer 污染 pollution pollute 合流制 combined sewers环境工程 environmental engineering 污染物 pollntant 分流制 separate sewers水文学 hydrology 玷污、污染 contamination 建筑排水系统 building drainage system水力学 hydranlies 致污物 contaminant 卫生洁具 plumbing fixtures 水环境 natural aquatic environment 未污染 uncontaminated 卫浴设备bathroom fixtures流域 watershed 水污染 water pollution 输水系统 water transmission system水体 waterbody 水污染控制 water pollution control 漏水率 leakage rate地表水 surface water 水污染防治 water pollution prevention 配水系统water distribution system新鲜水 freshwater 污水回用 wastewater reuse 环状管网 grid system 地下水 groundwater 支状管网 branching system UNIT 2含水层 aquifer 水短缺 water scarcity 下水管道 sanitary sewer天然含水层 natural aquifer 地表水资源 surface water resource 污水节流管 intercepting sewer地下含水层 underground aquifer 管网 Pipe Network 污水节流系统intercepting sewer system水文循环 natural hydrologic cycle 供水系统 water supply system 污水节流井 sewage intercepting cell渗滤 infiltration 市政配水系统 municipal distribution system 支管collection sewer collector sewer降水 precipitation 建筑给水系统house water supply system 生活污水sanitary sewage渗入 precolation 分区供水系统 dual distribution system domestic sewage蒸发 evaporation 小区 micro district domestic wastewater蒸腾 transpiration 小社区 small community 工业污水 industrial wastewater城市水文循环 urban hydrologic cycle 冷水供水系统 cold water supply system 工业污水/液/物 industrial wastes水源 water source 热水供水系统 hot water supply system 农业用水agricultural wastewater/wastes水资源 water resource 消防系统 fire protection system 雨水 rainwater stormwater取水 water withdrawal 喷淋系统 fire protection sprinkler system 水位waterlevel水处理 water treatment 自动水幕系统 automatic drencher system 海拔、标高 elevation配水 water distribution 半自动水幕系统坡度 grade用水 water use semi automatic drencher system 倾斜度 slope污水 wastewater 消火栓 hydrant 明渠 Open channel1开挖 excavation 层流 Laminar flow 病原微生物 Pathogenic micro organisms深度 excavation depth 滞流粘性流 viscous flow 病原体 Pathogenic 水力分析 hydraulic analysis 过渡流 Transitional flow 病毒 Pathogenic bacterin水头 pressure head 湍流 Turbulent flow 细菌 Bacteria总水头 total head 紊流 Turbulence flow 大肠杆菌 Coliform bacteria 涡流 Eddying flow 病毒 Viruses Unit 3水头损失 Head loss 雷诺数 Teynolds number 藻类 Algae速度头动压头 Velocity head 水质 Water guality 浊度 Turbidity 静压Static head 水源 Water sources 放射性 Radionuclide 摩擦水头 Friction head 供水水源 Water supples 感官性状 Esthetic qualities 水力坡度线Hydranlic grade line 原水 Raw water 审美 Esthetic 重力流 Gravity flow 未处理水 Untreated water 味 Taste水塔 Water castle 出水 Finished water 嗅 Odo贮水箱 Cistern 原水水质 Raw-water quality 色 Colour泵站 Pump station 水质标准 Water quality standards 变色Discolouration 给水泵站 Water pump station 水质要求 Water quality requirements 变色 Discolor 污水泵站 Sewage station 饮用水 Drinkwater\potable water 水质物理参数 Physical parameters of water quality 提升泵站 Lift pumping plant 自来水 Tap water 水的物理性质 Physical quality of water 增压泵 Booster pump 纯水 Pure water 浊度值 Turbidity values 离心泵 Centrifugal pump 饮用水标准 Drinking water standards 浊度单位 Turdidity unit 潜水泵 Submer sible pump 饮用水一级标Primarydrinking water standards 浑浊单位 Turdid 潜水艇 Submerine 最大允许浓度Maxmum permissible levels 嗅阈值 Threshold odor number 深井泵 Well pump maxmum allowable levels 化学性质 Chemical quality 虹吸虹吸管 Siphon 最大污染物浓度 Maxmum contaminant levels 水质化学参数Chemical parametersof water quality 人孔 Manhole 主要污染物 Primary contaminants 溶解氧Dissolved oxygen (DO) 法兰 Flange 有机化合物 Organic chemicals 溶解氧浓度 Do level 阀门 Valve 合成有机化合物 Synthetic organic chemicals 溶解氧平衡 Do balance 闸阀 Gate valve 挥发性有机化合物 Volatile organic ohemicals 氧损 Oxygen depletion 泵送系统 Pumping system 无机化合物Inorganic chemical 有机污染物 Organic pollutant 流量 Flow rate 微生物Micro organisms\microbes 生化需氧量 Biochemical oxygen demand (BOD) 流速Fluid velocity 微生物污染 Microbial contaminants 总氮 Total nitrogen (TN)2总凯式氮 Total Kjeldahl nitrogen (TKN) 保证 Preserve 分离 Separate悬浮固体 Suspended solids (SS) 清洗剂 Cleaning agent 隔离 Separation 总悬浮固体 Total suspended solids (TSS) 洗涤剂 Detergent 物理法 Physicalprocess 溶解 Dissolved (DS) 发泡剂 Foaming agent 物理处理 Physical treatment 总溶解 Total dissolved (TDS) 泡沫 Foam 物理处理过程 Physical treatment process化肥 Fertilizer 一级处理 Primary treatment Unit 4溶解的铁和锰 Dissolved iron and manganese 肥沃的 Fertile 初步处理Preliminary treatment 硬度 Hardness 富营养化 Eutrophication 格栅筛滤Screening 碱度 Alkalinity 营养的 Trophic 格栅 Screen盐度 Salinity 营养水平 Trophic level 格栅 Bar screen 有害物质 Toxic and hazardous materials 生态位 Niche 栅条 Bars氰化物 Cyanides 钢栅条 Steel bars Unit 5急性毒性 Acute toxity 原污水 Raw sewage 渣耙 Cleaning rakes 慢性毒性Chronic toxity 原废水 Raw wastes 圆形破碎机 Circular grinder 基因毒性Genetic toxicity 处理水 Treated wastes 破碎 Grind基因 Gene 回用水 Redaimed water 除砂 Degritting 难降解有机化合物Refractory organic chemicals 水处理过程 Water processing 砂 Grit 永久性有机污染物 Persistent organic pollutants 收集 Collect 沙 Sand 致癌化学性 Carcinogenic chemicals 处置 Dispose 除砂 Grit removal 三卤甲烷 Trihalo methanes 处理方法 Treatment method 沉砂池 Grit chamber 卤素 Halogen 处理费用 Treatment costs 沉淀 Settling 甲基 Methyl 处理单元Treatment process 沉淀池 Settling tank 氯仿 Trichloromethane 运行模式Operational mode 澄清池 Clarifier 三氯甲烷 Chloroform 间歇处理方式 Batch treatment approach 初澄清池 Primary clarifier 杀虫剂农药 Pesticide 均匀均化 Equalization 初沉池 Primary settling tank 害虫 Pest 均匀 Equalize 一级出水 Primary effluent 杀虫剂 Insecticide 调蓄水池 Equalizationstorage 二级处理 Secondary treatment 除草剂 Herbicide 调节池Equalization tank 二级处理工艺 Secondary treatment process 杀菌剂Germicide 蓄水池 Storage tank 生物处理 Biological treatment 细菌 Germ 降解 Degrade 二澄清池 Secondary clarifier 防腐剂 Preservative 分解Decompose 二沉池 Secondary settling tank3最终澄清池 Final clarifier 第五部分: 物化处理最终沉淀池 Final settling tank 1(混凝 n. coagulation 2(沉淀 n. sedimentation 二级出水 Secondary effluent 混凝过程 coagulation process 沉降 n. sedimentation 三级处理 Tertiary treatment 化学混凝 chemical coagulation 自由沉降 plain settling 深度处理 Advanced treatment 凝聚 n. aggregation 拥挤沉降 hindered settling 废水消毒 Waste disinfection 絮凝n. flocculation 重力沉降 gravity settling 出流出水 Effluent flow v. flocculate 沉淀池 settling tank 允许浓度 Allowable levels 异向絮凝perikinetic flocculation 沉淀池,沉降池 sedimentation tank 优异出水High-quality polished effluent 同向絮凝 orthokinetic flocculation 矩形沉淀池 rectangular settling tank 废水处理厂 Wastewater treatment plant 混凝剂 n. coagulant 圆形沉淀池 circular settling tank 污水处理厂 Sewage treatment plant 混凝剂投量 coagulant dosage 管式沉淀池 tube settler 二级处理厂 Secondary treatment plant 烧杯实验 jar test 斜管沉淀池 steeply inclined tube settler 城市污水处理最佳混凝剂投量 optimum coagulant dosage 板式沉淀池 parallel-plate settlerMunicipal wastewater treatment 助凝剂 coagulant aid 板式沉淀池 plate separator 市政工程 Municipal engineering 助凝剂 flocculation aid 气浮 n.floatation 土木工程 Civil engineering 聚电解质 n. polyelectrolytes 泡沫分离 foam separation 城市污水处理厂快速混合 flash-mix , 溶气气浮dissolved-air floatationMunicipal wastewater treatment plant rapid-mix 气浮池 floatationtank 污水处理能力 Sewage treatment capacity 快速混合器 flash mixer , 表面撇渣装置 surface-skimming device 电容 Capacitance rapid mixer 撇去 v. skim污水处理设施 Municipal treatment facilities 混合池 mixer tank 浮渣 n. scum多反应器设施 Multi-reactor facility 快速混合池 flash-mix tank 浮渣槽scum trough 处理池 Treatment tank 絮凝器 n. flocculator 刮泥机 sludge scraper 负荷 Load 絮凝池 flocculation tank 排泥 sludge drawoff 负荷Loadings sludge withdrawal 水力负荷 Hydrautic loading 固体接触池 solids-contact tank 预沉淀 n. presedimentation 污染负荷 Pollutant load 澄清 n. clarification 预沉淀池 presedimentation basin 有机负荷 Organic load v. clarify无机负荷 Inorganic load 澄清池 n. clarifier 3(过滤 n. filtration 不含化肥、农药无机的 Unorganic 高负荷澄清池 high rate clarifier 滤池 n. filter 周期性负荷 Periodic(intermitlent) loading 澄清水 clarifying water 慢滤池 slow filter4快滤池 rapid filter 自由氯,游离氯 free chlorine ,高速(负荷)滤池 high rate filter 4(消毒 n. disinfection freeavailable chlorine砂滤池 sand filter v. disinfect 化合氯 combined chlorine慢砂滤池 slow sand filter 消毒剂 n. disinfectant 剩余保护 residual protection快砂滤池 rapid sand filter disinfection agent 余氯 residual chlorine 重力滤池 gravity filter 杀菌剂 n. germicide 余氯量 chlorine residual 压力滤池 pressure filter 消毒过程 disinfection process 自由余氯 free residual chlorine过滤介质,滤料 filter medium 消毒副产物 disinfection by-products 自由氯余量 free chlorine residual石英砂 silica sand 氯化 n. chlorination 化合余氯 combined residual chlorine无烟煤 n. anthracite v. chlorinate 化合氯余量 combined chlorine residuals硅藻土 diatomaceous earth 氯化水 chlorinated water 折点氯化(法) breakpoint chlorination煤—砂滤床 coal-sand beds 预氯化 n. prechlorination 折点氯化曲线breakpoint chlorination curve多层滤料 multilayered media 氯化消毒副产物 by-products ofchlorination 折点加氯量 breakpoint dosage混合滤料 mixed media 化学消毒剂 chemical disinfectants 氯折点chlorine breakpoint双层滤料滤池 dual media filter 液氯 liquid chlorine , 压力钢瓶pressured steel cylinder双层滤池 two-layer filter liquefied chlorine 臭氧发生器 ozone generator粗滤料 coarse media 氯胺 n. chloramines 需臭氧量 ozone demand细滤料 fine media 次氯酸盐 hypochlorites 剩余臭氧量 ozone residual 助滤剂 filter aid 次氯酸钠 sodium hypochlorite 剩余臭氧 residual ozone滤后水,滤出水 filtered water 二氧化氯 chlorine dioxide滤后水,滤池出水 filter effluent 臭氧 n. ozone 致病微生物,病源微生物滤前水,滤池进水 filter influent 臭氧化,臭氧消毒 n. ozonation pathogenic microorganisms浊度穿透 turbidity breakthrough 臭氧化 v. ozonate 病原体 n. pathogens过滤周期 filter cycle 紫外线 (UV) ultraviolet radiation (UV) 致病细菌或病毒 pathogenic bacteria or viruses清洗周期 cleaning cycle 伽马射线 gamma radiation 细菌 n. bacteria 刮砂法 scraping method 灭活 n. inactivation 大肠杆菌 coliform bacteria表面刮砂 surface scraping v. inactivate 阿米巴氏菌 amoebic cysts 反冲洗 backwashing 接触时间 contact time 孢子,芽孢 n. spores水力反冲洗 hydraulic backwashing 需氯量 chlorine demand 病毒 n. viruses水力反冲洗 hydraulic backwash 加氯量,投氯量 chlorine dosage , 藻类n. algae水力分级 hydraulic grading applied chlorine 原生动物 n. protozoa5离子交换柱 ion exchange column 沉淀软化 precipitation softening 5(氧化 n. oxidation 硬度 n. hardness 电解 n. electrolysis还原 n. reduction 除硬 hardness removal 电除盐 (EDI) n. electrodeionization氧化剂 n. oxidant 软化 n. softening 吹脱、汽提法 n. stripping强氧化剂 strong oxidizing agent v. soften高级氧化法 (AOP) advanced oxidation process 化学软化 chemical softening 冷却 n. cooling高级氧化工艺 (AOP) advanced oxidation process 沉淀软化 precipitation softening 冷却水 cooling water高级氧化过程 (AOP) advanced oxidation process 除盐,脱盐 n. desaltination 冷却塔 cooling tower高级氧化技术 (AOT) v. desalt 第六部分生物处理advanced oxidation technology 去矿化 n. demineralization 生物反应器n. bioreactorv. demineralize 微生物 n. microorganisms 6(吸附 n. adsorption 离子交换软化法 ion exchange softening process n. microbes活性炭 (AC) activated carbon 离子交换除盐法 ion exchange desalting process 微生物种群 microbial population粉末炭 (PAC) powdered activated carbon 复床 combined bed 混合群落mixed communities粒状炭 (GAC) granular activated carbon 混合床 mixed bed 细菌 n. bacteria颗粒活性炭(GAC) granular activated carbon 原生动物 n. protozoa活性炭纤维 (ACF) activated carbon fiber 8(膜分离 membrane separation 真菌 n. fungi再生 n. regeneration 微滤 n. microfiltration 轮虫 n. rotifersv. regenerate 超滤 n. hyperfiltration 生长 n. growth吸附剂 n. adsorbent 纳滤 n. nanofiltration 繁殖 n. reproduction 吸附质 n. adsorbate 反渗透 reverse osmosis 世代时间 generation time 吸附塔,吸附柱 adsorption column 渗透 n. osmosis 生长速率 growth rates吸附床 adsorption bed 半透膜 semipermeable membrane 环境因子environmental factors空床接触时间 empty bed contact time 电渗析 n. electrodialysis 生态因子 ecological factors吸附带 mass transfer zone 渗析 n. dialysis 微生物生长动力学microbial growth kinetics快速小柱试验 rapid small scale column test 1. 迟滞期 lag phase生物活性炭 (BAC) biological activated carbon 9(其它处理方法 2. 对数生长期 exponential-growth phase中和 n. neutralization 3. 减速生长期 decling growth phase 7(离子交换n. ion exchange v. neutralize 稳定期 stationary phase离子交换树脂 ion exchange resin 酸性废水 acidic wastes 4. 内源呼吸阶段 endogenous stage离子交换器 ion exchanger 化学沉淀 chemical precipitation 内源生长期endogenous growth phase6内源呼吸 endogenous respiration v. stabilize 回流活性污泥 (RAS) returned activated sludge生物代谢 biological metabolism 回流污泥 returned sludge底物,基质 n. substrate 微生物代谢 microbial metabolism 回流污泥recycled sludge底物(基质)利用 substrate utilization 好氧的 a. aerobic 剩余污泥excess sludge生物量 n. biomass 好氧菌 aerobic bacteria 废活性污泥 (WAS) waste activated sludge生物反应 biological reaction 好氧微生物 aerobic microorganisms 废污泥 waste sludge生物氧化 biological oxidation 好氧氧化 aerobic oxidation 曝气池aeration tank生物降解 n. biodegradation 厌氧的 a. anaerobic 曝气池 aeration basin 生物降解性 n. biodegradability 厌氧菌 anaerobic bacteria 曝气池aeration chamber生物可降解的,可生物降解的 a. biodegradable 厌氧氧化 anaerobic oxidation 完全混合曝气池 completely mixed aeration basin 不可生物降解的 a. nonbiodegradable 兼性的 a. facultative 活性污泥池activated sludge tank生物处理 biological treatment 兼性菌 facultative bacteria 曝气 n. aeration废水生物处理 biological wastewater treatment 好氧环境 aerobic environment 混合 n. mixing废水生物处理系统 biological wastewater treatment 厌氧环境 anaerobic environment 曝气系统 aeration system system 营养物 n. nutrients 曝气器 n. aerator污水生物处理系统 biological sewage treatment 无机营养物 inorganic nutrients 压缩空气 compressed air system 营养物去除 nutrient removal 空气压缩机,空压机 air compressor生物处理法 biological treatment process 营养物生物去除biological nutrient removal 鼓风机,风机 n. blower生物处理装置 biological treatment unit 脱氮除磷 nitrogen and phosphorus removal 循环/切换 n. cycling/switchover串联 in series 生物硝化 biological nitrification 扩散装置,扩散器 n. diffuser悬浮生长处理法 suspended-growth treatment processes 硝化菌nitrifying bacteria 空气扩散装置,空气扩散器 air diffuser 生物固体 biological solids 生物反硝化,生物脱氮 biological denitrification 鼓泡空气扩散装置(扩散器) bubble air diffuser 活性污泥 activated sludge 生物除磷 biological phosphorus removal 微气泡扩散装置(扩散器) fine-bubble diffuser附着生长处理法 attached-growth treatment processes 扩散板 plate diffuser附着的微生物 attached microbes 1(活性污泥法 activated sludge process 扩散管 tube diffuser微生物附着生长 attached microbial growth 微生物 n. microorganisms n. microbes 扩散罩 dome diffuser生物膜 n. biofilm 细菌 n. bacteria 微气泡扩散曝气 fine-bubblediffused aeration生物絮体 biological floc 微气泡 fine-bubble代谢 n. metabolism 微生物絮体 microbial floc 大气泡 coarse-bubble v. metabolize 活性污泥 activated sludge 静态混合器 static mixer稳定,稳定化 n. stabilization 絮状活性污泥 flocculate-bacterial sludge 机械曝气系统 mechanical aeration systems7机械曝气 mechanical aeration 传统活性污泥厂 conventional activated sludge plant 序批式反应器 (SBR) sequencing batch reactor (SBR) 表面曝气 surface aeration 阶段曝气活性污泥step aeration activated sludge process 序批式反应器 (SBR) sequential batch reactor 表面曝气器 surface aerator 分段 v. step 初沉 primary clarification 需氧量 oxygen demand 进水负荷 influent load 曝气 n. aeration供气量 air supply 分段进水 step loading 二沉 secondary clarification 氧转移效率 oxygen tansfer efficiency 渐减 v. taper 初沉池 primary clarifier渐减曝气 tapered aeration 二沉池 secondary clarifier可沉降固体 settleable solids 接触稳定活性污泥法泵送系统 pumping system挥发性固体 volatile solids contact stabilization activated sludge process 活性污泥法 activated sludge process非挥发性固体 nonvolatile solids 再曝气 n. reaeration 变体 n. variant 挥发性悬浮固体 (VSS) volatile suspended solids 曝气—沉淀—再曝气SBR运行周期 SBR cycle混合液 mixed liquor aeration-sedimentation-reaeration 处理周期process cycle混合液悬浮固体 (MLSS) mixed liquor suspended 完全好氧处理法进水阶段fill phase solids complete aerobic treatment process 进水阀 influent valve混合液挥发性悬浮固体 (MLVSS) mixed liquor volatile 高负荷(完全混合)活性污泥法反应阶段 react phase suspended solids high-rate (completely mixed) activated sludge process 沉淀阶段 settle phase污泥沉降比 (SV) settling velocity 延时曝气活性污泥法清水,上清液clear water污泥容积指数 (SVI) sludge volume index extended aeration activated sludge process 上清液 n. supernatant比耗氧速率 (SOUR) specific oxygen uptake rate 延时曝气法 extended aeration process 排水阶段 draw phase延时曝气 extended aeration 滗水阶段 decant phase污泥龄 sludge age 氧化沟 oxidation ditch 滗水装置 decant mechanism 曝气池容积 aeration tank volume 水平转刷 horizontal rotor 闲置阶段,待机阶段 idle phase 曝气时间 aeration period 转刷曝气 rotor aeration曝气时间 aeration time 笼型转刷 caged rotor 营养物去除 nutrient removal 水力停留时间 (HRT) hydraulic residence time 吸附—生物降解工艺(AB法) 营养物生物去除 biological nutrient removal水力负荷 hydraulic loading adsorption-biodegradation process 碳源carbon sourceBOD负荷 BOD loading 序批式活性污泥法 (SBR法) sequencing batchreactor 硝化 n. nitrification(SBR) process、 v. nitrify普通活性污泥法 conventional activated sludge process 序批式活性污泥法 (SBR法) sequential batch reactor 硝化菌 nitrifying bacteria 传统活性污泥法 conventional activated sludge process (SBR) process反硝化 n. denitrification标准活性污泥法 standard activated sludge process SBR法 SBR process v. denitrify8脱氮 n. denitrification methane-forming bacteria生物反硝化,生物脱氮生物转盘法 biodisc process 有机酸 organic acids biological denitrification 生物转盘 rotating biological contactor 挥发性脂肪酸 (VFAs) volatile fatty acids缺氧—好氧脱氮工艺 (A/O法) 生物转盘 n. biodiscanoxic-oxic process 塑料盘片 plastic discs 硫酸盐还原 sulfate reduction2 厌氧—缺氧—好氧法 (A/O法) 轻质盘片 lightweight discs 硫酸盐还原菌sulfate-reducing bacteriaanaerobic-anoxic-aerobic process 水平轴 horizontal shaftA-A-O法同步脱氮除磷工艺生物粘液 biological slime 上流式厌氧污泥床(UASB)anaerobic-anoxic-aerobic process 粘液层 slime layer upflow anaerobic sludge blanket脱氮除磷 nitrogen and phosphorus removal 上升流速 upflow velocity 厌氧氨氧化 (ANAMMOX) 生物流化床 biological fluidized bedanaerobic ammonium oxidation biological fluidised bed 厌氧折流板反应器 (ABR)生物除磷 biological phosphorus removal 生物流化床反应器 fluidized-bed bioreactor anaerobic baffled reactor移动床生物膜反应器 (MBBR)膜生物反应器 (MBR) moving-bed biofilm reactor 两段或两级厌氧生物处理two-stage anaerobicmembrane biological reactor biotreatment2(生物膜法 3(厌氧生物处理两相厌氧生物处理 two-phase anaerobic biotreatment产酸相 acidogenic phase生物膜 n. biofilm 发酵 n. fermentation 产甲烷相 methanogenic phase 生物膜反应器 biofilm reactor v. fermentate生物滤池 n. biofilter 产酸细菌 n. acidogens 消化 n. digestion生物过滤 n. biofiltration 产甲烷细菌 n. methanogens v. digest旋转布水器 rotary sprinkler 产酸阶段 acidogenic phase 消化池 n. digestor填料 n. packings 产甲烷阶段 methanogenic phase 厌氧消化 anaerobic digestion塑料管状或蜂窝状填料 plastic tubular or 水解 n. hydrolysis 污泥消化sludge digestion honeycomb-shaped packings v. hydrolysis 厌氧消化池anaerobic digestor滴滤池 trickling filter 产酸发酵 acidogenic fermentation 厌氧接触法anaerobic contact process普通生物滤池 trickling filter 产氢产乙酸 H-producing acetogenesis 厌氧膨胀床反应器 2高负荷生物滤池 high-rate filter 产甲烷 methanogenesis anaerobic expanded-bed reactor塔式生物滤池 tower biofilter 产酸菌 acid formers 厌氧流化床反应器曝气生物滤池 (BAF) biological aerated filter 产甲烷菌 methane formers , anaerobic fluidized-bed reactor9厌氧生物转盘厌氧塘 anaerobic pond 过滤作用 filtering actionanaerobic rotating biological contactor 曝气塘 aerated pond 吸附作用adsorption action修饰塘 polishing pond 地表漫流土地处理系统 4(自然生物处理系统熟化塘maturation lagoon overland flow land treatment system深度处理塘 advanced treatment pond 地表漫流 overland flow自然净化系统 natural purification system 三级处理塘 tertiary treatment pond 径流集水沟 runoff collection ditch稳定塘 stabilization ponds 物理、化学和生物过程stabilization lagoons 土地处理工艺(过程) land treatment processes physical , chemical , and biological processes氧化塘 oxidation ponds 关键因素 critical factors 湿地 n. wetland 土地处理系统 land treatment systems 土壤类型 soil type 天然湿地natural wetland废水土地处理 land treatment of wastewater 气候 n. climate 人工湿地constructed wetland净化过程 purification process 土地处理系统 land treatment systems man-made wetland自然净化 natural purification 慢速土地处理系统slow rate land treatment system 第七部分:污泥处理、处置与利用污水塘 sewage lagoon 低负荷土地处理系统污泥 n. sludge稳定塘 stabilization ponds low-rate land treatment system 生活污水污泥 sewage sludgestabilization lagoons 三级处理水平 tertiary treatment level 污泥体积,污泥量 sludge volume氧化塘 oxidation ponds 灌溉 n. irrigation 原污泥,生污泥 raw sludge 好氧塘 aerobic pond v. irrigate 新鲜污泥,生污泥 fresh sludge兼性塘 facultative pond 土壤的天然过滤和吸附性质消化污泥,熟污泥digested sludge好氧生化反应 aerobic biochemical reaction natural filtration and adsorption properties of soil 混合污泥 mixed sludge厌氧生化反应 anaerobic biochemical reaction 投配的废水 applied wastewater 污泥处理 sludge treatment厌氧分解 anaerobic decomposition 垄—沟表面布水污泥处置 sludge disposal厌氧分解 decompose anaerobically ridge-and-furrow surface spreading 最终处置 ultimate disposal好氧稳定 aerobic stabilization 喷洒布水系统,喷灌布水系统 sprinkler systems 填埋 n. landfill细菌 n. bacteria 快速渗滤土地处理系统 rapid infiltration land藻类 n. algae treatment system 污泥减量 sludge volume reduction 微型植物 microscopic plants 渗滤—渗透土地处理 infiltration-percolation land 污泥稳定化 sludge stabilization出流,出水 effluent flow treatment光合作用 n. photosynthesis 快速渗滤 rapid infiltration (污泥)浓缩 n. thickening快速渗滤法 rapid infiltration method 污泥浓缩 sludge thickening10稳定,稳定化 n. stabilization 溢流 v. overflowv. stabilize 堰 n. weir 厌氧消化 anaerobic digestion稳定了的污泥 stabilized sludge 气浮浓缩 floatation thickening 厌氧污泥消化 anaerobic sludge digestion调理(调节) n. conditioning 溶气气浮 dissolved-air floatation 有盖的圆形池 covered circular tankv. condition 气浮池 floatation tank 消化过程 digestion process脱水 n. dewatering 入流污泥 influent sludge 厌氧消化过程 anaerobic digestion processv. dewater 污泥絮体 sludge flocs 生化反应 biochemical reactions 干化 n. drying 撇去 v. skim 有机酸 organic acids污泥干化场 sludge drying bed 漂浮污泥层 floating sludge layer 挥发性脂肪酸 (VFAs) volatile fatty acids污泥干燥 heat drying 甲烷气 methane gas干燥器 n. dryer 污泥消化 sludge digestion 末端产物 end product污泥焚烧,污泥焚化 n. incineration 消化池 n. digester 指示剂 n. indicator焚烧炉,焚化炉 n. incinerator 消化池装置 digester unit 污泥消化池气体 sludge digester gas消化 n. digestion 污泥沉淀 sludge settling污泥浓缩 sludge thickening v. digest 污泥储存 sludge storage物理过程 physical process 有机固体 organic solids 消化污泥 digested sludge含水过多的污泥 watery sludge 生化分解 biochemical decomposition 充分消化的污泥 well-digested sludge稀污泥 thin sludge 好氧消化 aerobic digestion 消化池上清液 digester supernatant处理装置 treatment unit 好氧污泥消化 aerobic sludge digestion 中温消化 mesophilic digestion浓缩池 n. thickener 好氧消化过程 aerobic digestion process 高温消化thermophilic degestion重力浓缩 gravity thickening 活性污泥池 activated sludge tank重力浓缩池 gravity thickener 预制的(成套)活性污泥处理系统污泥脱水sludge dewatering圆形污水沉淀池 prefabricated (package) activated sludge treatment 混合堆肥 co-compostingcircular sewage sedimentation tank systems刮泥机 sludge scraper 预制的接触稳定或污泥处理总成本overall sludge-handling costs搅拌作用 stirring action prefabricated contact stabilization or底流 n. underflow 延时曝气处理系统第八部分:废水回用浓缩的底流 thickened underflow extended aeration treatment systems地表水资源 surface water resource浓缩污泥 thickened sludge BOD负荷 BOD loading 地下水资源 groundwater resource出水 n. effluent 细胞物质 cellular mass 水短缺 water scarcity上清液 n. supernatant 内源衰亡 endogenous decay 回用 n. , v. reuse11废水回用 wastewater reuse 工艺废水,过程废水 process wastewaters 直接回用 direct reuse 工艺补充水,过程补充水 plant process makeup water 直接废水回用 direct wastewater reuse 冷却塔水 cooling tower water 间接回用indirect reuse 选择性处理 optional treatment 间接废水回用 indirect wastewater reuse 水费 water costs出水处理 effluent treatment 回用的城市污水回用水 reclaimed water reclaimed municipal wastewater 排放 n. , v. discharge 工业过程 industrial processes 保留 n. retention 冷却水 cooling water循环 n. recycling 锅炉给水 boiler feedwaterv. recycle 灌溉回用 irrigation reuse 部分处理 n. partial treatment废水直接灌溉direct irrigation with wastewater 最终用途 end use 低负荷土地处理系统 low-rate land treatment system 城市污水回用 municipal wastewater reuse 间接灌溉回用 indirect reuse for irrigation 灌溉 n. irrigation 废水排放 wastewater discharge 景观灌溉 landscape irrigation 雨水回用 storm water reuse 地下水回灌 groundwater recharge 可回用水reusable waterPart ?: 第九部分:市政回用 municipal reuse 投资成本,投资费(用) capital costs 直接市政回用 direct municipal reuse 建设成本,建设费(用) construction costs 深度处理,高级处理 advanced treatment 运行成本,运行费(用) operating costs 分质供水系统 dual-distribution system 能耗成本 energy costs 间接市政回用 indirect municipal reuse 运行维护 operation and maintenance 供水系统,给水系统 water supply system 运行控制 operational control 取水口 n. intake 控制系统 control system 天然同化能力 natural assimilative capacity 仪表/控制系统人工回灌 artificial recharge instrumentation/control system 深井注射deep-well injection 自动控制系统,自控系统浅表布水 shallow surface spreading automatic control system 渗透 n. percolation工业回用 industrial reuse 12。
给水排水中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North ChinaAbstract The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are tomaintain long-term dynamic balance between input and output of theground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve theproblem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,insustuial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.Keywords combination system of water drainage,water supply and eco-environment protection,optimal combination,resourcification of mine water.1Analyses of necessity for the combinationThere are three related problems in the basin.It is well known that the major mine-hydrogeological characteristics of the coal accumulated basin in North China display a stereo water-filling structure,which is formed by multi-layer aquifers connected hydraulically together with various kinds of inner or outer boundaries.Mine water hazards have seriously restricted the healthy development of coal industry in China because of more water-filling sources and stronger water-filling capacity in coal mines of the basin.Coal reserves in the basin are threatened by the water hazards.In Fengfeng,Xingtai,Jiaozuo,Zibao,Huaibei and Huainan coal mine districts,for example,it is estimatedthat coal reserves are threatened by the water hazards up to 52%,71.%40,%,60%,48%and 90%of total prospecting reserves respectively.It is obvious that un-mining phenomenon caused by the water hazards is serious.Water-bursting accidents under coal layers have seriously influenced safe production.Some statistical data show that there were 17 water-bursting accidents with over 1 m3/s inflow from 1985.Water drainage is an increasing burden on coal mines threatened by water hazards:high cost of water drainage raises coal prices and reduces profits of the enterprise.On the other hand,it is more and more difficult to meet the demand of water supply in coal mine districts in the basin.The reasons are not only arid and semi-arid weather conditions,but also a large amount of water drainage with deep drawdown in coal mines and irrational water exploitation.The deterioration of eco-environment is another problem.Phenomena of land surface karst collapse can be found.Many famous karst springs,which are discharge points for the whole karst groundwater syatem,stop flowing or their discharge rates decrease on a large scale.Desert cremophytes in large areas in west China die because of falling groundwater level.These three problems are related and contradictory.In order to solve the problems while ensuring safe mining,meeting water resource demands and slowing down the pace of eco-environment deterioration,it is necessary to study the optimum combination of water drainage,water supply and eco-environment protection in the basin.2The state of the art of research and the problemsAlthough research into the combination of water drainage and water supply started much earlier in some countries,their conception is simple and some shortcomings remain in their study on the theory and pattern of combination.China’s research history on the combination can be divided into three stages.The first stage is the utilization of mine water.A century ago mine water started to be used as water supply for mines.But the utilization scale and efficiency were quite limited at that time.The second stage is a comprehensive one:mine water was used while water hazards were harnessed.Great progress was made both in theory and practice of the combination.For example,the combination of water drainage and water supply not only means the utilization of mine water,but also means that it is a technique of preventing water hazards.It is unfortunate,however,that the combination research in this stage offered less sense ofeco-environment protection.Optimum combination management of water drainage,water supply and eco-environment protection is the third stage.Main features in this stage are to widen traditional research,and to establish an economic-hydraulic management model,in which safe mining,eco-environment protection and sustainable development demands,etc.are simultaneously considered as constraint conditions.3Trinity systemThe trinity system combines water drainage,water supply and eco-environment quality protection.The water-collecting structures of the system consist of land surface pumping wells in the mines,shallow land surface well in groundwater recharge areas and artificial relief wells under the mines.Both integration and coordination for the trinity system are distinguished according to the combination.The integration for the system means to utilize drainage water under the mines and pump water onto the land surface as water supply for different purposes without harming the eco-environmental quality.The coal mines are not only drainage sites,but also water supply sources.The purpose of drilling pumping wells on the land surface is to eliminate special influences on different consumers,which are caused by terminating drainage processes under the mines due to unexpected accidents in mining.The coordination for the system means to bulid some water supply sources for different consumers while ensuring eco-environmental quality in groundwater recharge positions,where pumping groundwater is quite effective on lowering groundwater heads in the mine areas.Itintercepts in advance the recharging groundwater flow towards the mines,which may not only provide consumers with good quality groundwater,achieve the goal of dropping down groundwater heads in the mines,but also effectively reduce the high costs of drainage and water treatment,which are needed by traditional dewatering measures with large drainage flow rates under the mines.The coordination changes the traditional passive pattern of preventing and controlling groundwater hazards under the mines into that of active surface interception.Both very developed karst flow belts and accumulated groundwater recharge ones under the ground are relatively ideal interceptive coordination positions in the system.For the integration of the trinity system,artificial relief wells under the mines and the land surface pumping wells mainly penetrate into direct thin bedded karst aquifers interbedded with the mining coal layers,while for the coordination of the system,the shallow land surface wells mainly penetrate into very thick karst aquifer.Therefore,hydrogeological conceptual model for the system involves the multi-layer aquifers connected hydraulically by different inner boundaries.Setting up stereo hydrogeological conceptual models and corresponding mathematical models is a prerequisite for solving the managemental problems for the system.Management of the trinity system not only considers the effects of lowering groundwater heads and safe operation for water drainage subsystem,but also pays attention to the water demands for water supply subsystem and quality changes for eco-environment protection subsystem.They play the same important role in the whole combination system.It controls the groundwater heads in each aquifer to satisfy the conditions of safe mining with certain water head pressures in the mines,and to guarantee a certain amount of water supply for the mines and near areas,but the maximum drawdown of groundwater must not be ex ceded,which may result in lowering eco-environmental quality.4Economic-hydraulic management modelIn the trinity system management,groundwater resources in the mines and nearby areas,which are assessed on the premise of eco-environment qualities and safe operation in the mines,may be provided as water supply prices,drainage costs,transportation costs(including pipeline and purchasing the land costs)and groundwater quality treatment costs for the three different waterconsumers,the optimum management models may automatically allocate to each consumer a certain amount of groundwater resources and a concrete water supply scenario based on comparisons of each consumer’s economic contribution to the whole system in objective function.Therefore the management studies on the optimal combination among water drainage,water supply and eco-environment protection involve both the management of groundwater hydraulic techniques and the economic evaluations,eco-environment quality protection and industrial structure programs.In addition to realizing an economic operation,they also guarantee a safe operation which is a key point for the combination of the whole system.5The management model for the trinity system can reach water supply goals with drainage water under the mines and the land surface pumping water on the premise of ensuring eco-environmental quality.And it can make use of one model to lay down comprehensively optimum management scenarios for each subsystem by means of selecting proper constraints and maximum economic benefit objective produced by multiple water consumers.The model can raise the security and reliability of operation for the whole trinity system,and the drainage water can be forecast for the mines and the management of water supply resource and the evaluation of eco-environment quality can be performed at the same time so as to respectively stop the separate or closed management,of departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation.This,in economic aspect,can not only avoid much geological survery and special assessment work which are often repeated by the three departments,and save a lot of funds,but also ,in technical aspect,make use of one model to simultaneously consider interference and influence on each other for different groundwater seepage fields so as to guarantee calculating precision of the forecast,the management and the evaluation work.The economic-hydraulic management model can be expressed as follows.6 A case studyA typical sector is chosen.It is located in the east of Jiaozuo coal mine,Henan Province,China.Itconsists of three mines:Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.The land surface is flat,and the whole area is about 30 km2.An intermittent river Shanmen flows through the sector from the north to the south.Average annual precipitation in the sector is about 662.3mm.Theprecipitation mainly concentrates inJune,July,August and September each year.Strata in the sector consist of very thick limestone in Middle Ordovician,coal-bearing rock series in Permo Carboniferous and loose deposits in Quaternary.There are four groups of faulted structures.The first is in northeast-southwest direction such as F3 and F1..The second is in the northwest-southeast direction such as Fangzhuang fault.The third is in the east-west direction such as Fenghuangling fault.The last is almost in north-south.These faults are all found to be normal faults with a high degree of dip angle.Four major aquifers have been found in the sector.The top one is a semi-confined porous aquifer.The next one is a very thin bedded limeston aquifer.The third is a thin bedded limestone aquifer.The last one at the bottom is a very thick limestone aquifer.Objective function of the management model is designed to be maximum economic benefit produced by domestic,industrial and agricultural water supply.Policy making variables of the model are considered as the domestic,industrial and agricultural groundwater supply rates in every management time step,and they are supplied by artificial relief flow wells under the mines,the land surface pumping wells in the mines and the shallow land surface wells in the groundwater recharge areas.All the 135 policy making variables are chosen in the model,27 for drainage wells under the mines in aquifer,27 for the land surface pumping wells in the mine districts in aquifer 27 in aquifer 27 in aquifer O2 27 for the shallow land surface wells in aquifer O2Based on the problems,the following constraint conditions should be considered:(1)Safe mining constraint with groundwater pressure in aquifer L8.There are altogether three coalmines in the typical sector,i.e.Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.Elevations of mining level for these mines are different because it is about 88-150 m in the second mining level for Hanwang Mine,and -200m in the second mining level for Yanmazhuang Mine,and-225 m in the first mining level for Jiulishan Mine.According to mining experiences,pressure-loaded heights for groundwater heads in safe mining state are considered as about 100-130m.Therefore,the groundwater level drawdowns in the three management time steps for aquifer L8 at three mines have to be equivalent to safe drawdown values at least in order to pervert groundwater hazards under the mines and to guarantee their safe operation.(2)Geological eco-environment quality constraint.In order to prevernt groundwater leakage fromupper contaminater porous aquifer into bottom one and then to seepage further down to contaminate the thin bedded limestone aquifer in the position of buried outcrop,the groundwater heads in the bottom porous aquifer must keep a certain height,i.e.the groundwater drawdowns in it are not allowed to exceed maximum values.(3)Groundwater head constraint at the shallow land surface wells in aquifer O2,The shallow landsurface wells should penetrate in aquifer O2 in order to avoid geological environment hazards,such as karst collapse and deep karst groundwater contamination.Groundwater head drawdowns in aquifer O2 for the shallow land surface wells are not allowed to exceed criticalvalues.(4)Industrial water supply constraint for the groundwater source in aquifer O2 .The rate ofindustrial water supply needed by the planned thermal power plant in the north of the sectoris designed to be 1.5 m3/s according to the comprehensive design of the system in thesector.In order to meet the demands of water,the rate industrial water supply for thegroundwater source in aquifer O2 in every management time step must be equivalent at leastto 1.5 m3/s.(5)Maximum amount constraint of groundwater resource available for abstraction.In order tomaintain the balance of the groundwater system in the sector for a long time and to avoid anyharmful results caused by continuous falling of groundwater head,the sum of groundwaterabstraction in each management time step is not allowed to exceed the maximum amount ofgroundwater resource available for abstraction.Since there is not only water drainage in the mines,but also water supply in the whole combination system,management period for the model is selected from June 1,1978 to May 31,1979,in which annual average rate of precipitation is about 50%.Management time steps for the period are divided into three.The first one is from June to September,the second from October to next January,and the last one from next February to May.According to comprehensive information about actual economic ability,economic development program and industrial structure adjustment in the sector at present and in the near future,and different association forms of water collecting structures among the land surface pumping wells,the shallow land surface wells and artificial relief flow wells under the mines,this paper designs 12 management scenarious,all of which take the safe operation in the trinity system as the most important condition.After making comparisons of optimum calculation results for the 12 scenarious,this paper comes to a conclusion that scenarios is the most ideal and applicable one for the typical sector.This scenario not only considers the effective dewatering advantage of the artificial relief flow wells under the mines and safe stable water supply advantage of the land surface pumping wells,but also pays attention to the disadvantage of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment in the land surface pumping wells.Meanwhile,eh shallow land surface wells inaquifer O2in this scenario would not only provide water supply for the thermal power plant as planned,but also play an important role in dewatering the bottom aquifer,which is major recharge source of groundwater for the mines.If the drainage subsystem under the mines runs normally,this scenario could fully offer the effective dewatering functions of the artificial relief flow wells under the mines,and makes the trinity system operate normally.But if the drainage subsystem has to stop suddenly because of unexpected accidents,the scenario could still fully utilize the land surface pumping wells and the shallow land surface wells,and increae their pumping rates in order to make up for temporary shortage of water supply for the trinity system and to make its economic losses reduced to a minimum extent.Increasing groundwater abstraction rate for the land surface pumping wells and the shallow land surface wells,in fact,is very favorable for harnessing the water-accidents under the mines and for recovery production of the mines.To sum up,this scenario sets up a new pattern for the combination of water drainage,water supply and eco-environment protection.It solves quite well the conflicts between the low safe guaranty rate and the effective dewatering result for the artificial relief flow wells under the mines.It makes full use of beneficial aspect of the conflicts,and meanwhile compensates for the unbeneficial one by arranging the land surface pumping wells in the coal mine districts.Therefore,this scenario should be comprehensive and feasible.In this scenario,Hanwan Mine,Yanmazhuang Mine and Jiulishan Mine are distributed optimally for certain amount of domestic and industrial water supply,but not for much agricultural water supply.The land surface pumping wells are also distributed for different purposes of water supply.The water supply for the thermal power plant (1.5 m3/s) is provided by the shallow land surface prehensive effects,produced by the above three kinds of water collecting structures,completely satisfy all of the constraint conditions in the management model,and achieve an extremely good economic objective of 16.520551million RMB yuan per year.In order to examine the uncertainty of the management model,12management scenarios are all tested with sensitive analysis.7Conclusion(1)The optimum combination research among water drainage,water supply and eco-environmentprotection is of great theoretical significance and application value in the basin of North China for solving unbalanced relation between water supply and demands,developing new potential water supply sources and protecting weak eco-environment.(2)The combination research is concerned not only with hydraulic technique management but alsowith constraints of economic benefits,society,ecology,environment quality,safe mining and sustainable development in the coal mines.(3)The combination model,for the first time,breaks up the closed situation existing for a longtime,under which the government departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation work respectively.Economically,it can spare the repeated geological survey and special assessment work done by the three departments and save a lot of funds;technically,one model is made use of to cover the interference and influence each other for different groundwater seepage fields soas to guarantee a high calculating precision of the forecast,the management and the evaluation work.(4)The management scenario presented in the case study is the most ideal and applicable for thetypical sector.This scenario not only makes full use of the effective dewatering advantages of the artificial relief flow wells under the mines and safe stable water supply advantages of the land surface pumping wells,but also pays attention to the disadvantages of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment for the land surface pumping wells.References1.Investigation team on mine-hydrogeology and engineering geology in the Ministry ofGeology and Mineral Resources.Investigation Report on Karst-water-filling Mines(inChinese).Beijing:Geological Publishing House,19962.Liu Qiren,Lin Pengqi,Y u Pei,Investigation comments on mine-hydrogeological conditionsfor national karst-water-filling mines,Journal of Hydrogeology and Engineering Geology(in Chinese),19793.Wang Mengyu,Technology development on preventing and curing mine water in coalmines in foreign countries,Science and Technology in Coal(in Chinese),19834.Coldewey,W.G.Semrau.L.Mine water in the Ruhr Area(Federal Republic of Germany),inProceedings of 5th International Mine Water Congress,Leicestershire:Quorn SelectiveRepro Limited,19945.Sivakumar,M.Morten,S,Singh,RN,Case history analysis of mine water pollution,inProceedings of 5th International Mine Water Congress,Leicestershire;Quorn SelectiveRepro Limited,19946.Ye Guijun.Zhang Dao,Features of Karst-water-filling mines and combination betweenwater drainage and water supply in China,Journal of Hydrogeology and EngineeringGeology(in China),19887.Tan Jiwen,Shao Aijun,Prospect analyses on Combination between water drainage andwater supply in karst water basin in northern China,Jounnal of Hebei College ofGeology(in Chinese),19858.Xin Kuide,Yu Pei,Combination between water drainage and water for seriouskarst-water-filling mines in northern China,Journal of Hydrogeology and Engineering Geology(in Chinese),19869.Wu Qiang,Luo Yuanhua,Sun Weijiang et al.Resourcification of mine water andenvironment protection,Geological Comments(in Chinese),199710.Gao Honglian,Lin Zhengping,Regional characteristics of mine-hydrogeological conditionsof coal deposits in China,Journal of Hydrogeology and Engineering Geology(in Chinese),198511.Jiang Ben,A tentative plan for preventing and curing measures on mine water in coal minesin northern China,Geology and Prospecting for Coaofield(in Chinese),1993中国北方煤炭积聚区的最佳组合排水,供水和生态环境保护摘要为了开采中国北方煤炭资源丰富的区域,不合理的排水使排水、供水和保护生态环境之间的冲突日趋严重。
给排水专业英语汇总

给排水专业英语汇总废水处理 wastewater disposal 合流制 combined sewers UNIT 1给水工程 water supply engineering 受纳水体 receiving waters 分流制separate sewers排水工程 sewetage engineering 污染 pollution pollute 建筑排水系统building drainage system市政工程 civil engineering 污染物 pollntant 卫生洁具 plumbing fixtures市政工程师 civil engineer 玷污、污染 contamination 卫浴设备 bathroom fixtures环境工程 environmental engineering 致污物 contaminant 输水系统 water transmission system水文学 hydrology 未污染 uncontaminated 漏水率 leakage rate水力学 hydranlies 水污染 water pollution 配水系统 water distribution system水环境 natural aquatic environment 水污染控制 water pollutioncontrol 环状管网 grid system流域 watershed 水污染防治 water pollution prevention 支状管网branching system水体 waterbody 污水回用 wastewater reuse 下水管道 sanitary sewer 地表水 surface water 污水节流管 intercepting sewer UNIT 2新鲜水 freshwater 水短缺 water scarcity 污水节流系统 intercepting sewer system地下水 groundwater 地表水资源 surface water resource 污水节流井sewage intercepting cell含水层 aquifer 管网 Pipe Network 支管 collection sewer collector sewer天然含水层 natural aquifer 供水系统 water supply system 生活污水sanitary sewage地下含水层 underground aquifer 市政配水系统 municipal distribution system domestic sewage水文循环 natural hydrologic cycle 建筑给水系统house water supply system domestic wastewater渗滤 infiltration 分区供水系统 dual distribution system 工业污水industrial wastewater降水 precipitation 小区 micro district 工业污水/液/物 industrial wastes渗入 precolation 小社区 small community 农业用水 agricultural wastewater/wastes蒸发 evaporation 冷水供水系统 cold water supply system 雨水rainwater stormwater蒸腾 transpiration 热水供水系统 hot water supply system 水位waterlevel城市水文循环 urban hydrologic cycle 消防系统 fire protection system 海拔、标高 elevation水源 water source 坡度 grade 喷淋系统 fire protection sprinkler system水资源 water resource 自动水幕系统 automatic drencher system 倾斜度slope取水 water withdrawal 半自动水幕系统明渠 Open channel水处理 water treatment 开挖 excavation semi automatic drencher system配水 water distribution 消火栓 hydrant 深度 excavation depth用水 water use 排水系统 drainage system 水力分析 hydraulic analysis 污水 wastewater 生活排水系统 sanitary system 水头 pressure head废水 abwasser 工业排水系统 industrial system 总水头 total head废水收集 wastewater collection 雨水排水系统 stormwater system Unit 3 水头损失 Head loss 水源 Water sources 审美 Esthetic速度头动压头 Velocity head 味 Taste供水水源 Water supples静压 Static head 原水 Raw water 嗅 Odo摩擦水头 Friction head 未处理水 Untreated water 色 Colour水力坡度线 Hydranlic grade line 出水 Finished water 变色Discolouration 重力流 Gravity flow 原水水质 Raw-water quality 变色Discolor水塔 Water castle 水质标准 Water quality standards 水质物理参数Physical parameters of water quality 贮水箱 Cistern 水质要求 Water quality requirements 水的物理性质 Physical quality of water 泵站 Pump station 饮用水 Drink water\potable water 浊度值 Turbidity values 给水泵站 Water pump station 自来水 Tap water 浊度单位 Turdidity unit 污水泵站Sewage station 纯水 Pure water 浑浊单位 Turdid提升泵站 Lift pumping plant 嗅阈值 Threshold odor number 饮用水标准Drinking water standards增压泵 Booster pump 化学性质 Chemical quality 饮用水一级标Primary drinking water standards离心泵 Centrifugal pump 最大允许浓度 Maxmum permissible levels 水质化学参数Chemical parameters of water quality 潜水泵 Submer sible pump 溶解氧 Dissolved oxygen (DO) maxmum allowable levels潜水艇 Submerine 最大污染物浓度 Maxmum contaminant levels 溶解氧浓度Do level深井泵 Well pump 主要污染物 Primary contaminants 溶解氧平衡 Do balance虹吸虹吸管 Siphon 有机化合物 Organic chemicals 氧损 Oxygen depletion 人孔 Manhole 合成有机化合物 Synthetic organic chemicals 有机污染物 Organic pollutant 法兰 Flange 挥发性有机化合物 Volatile organic ohemicals 生化需氧量 Biochemical oxygen demand (BOD) 阀门 Valve 无机化合物 Inorganic chemical 总氮 Total nitrogen (TN) 闸阀 Gate valve 微生物Micro organisms\microbes 总凯式氮 Total Kjeldahl nitrogen (TKN) 微生物污染 Microbial contaminants 悬浮固体 Suspended solids (SS) 泵送系统 Pumping system流量 Flow rate 病原微生物 Pathogenic micro organisms 总悬浮固体Total suspended solids (TSS)病原体 Pathogenic 溶解 D流速 Fluid velocity issolved (DS)层流 Laminar flow 病毒 Pathogenic bacterin 总溶解 Total dissolved (TDS) 滞流粘性流 viscous flow 细菌 Bacteria Unit 4大肠杆菌 Coliform bacteria 过渡流 Transitional flow 溶解的铁和锰Dissolved iron and manganese 湍流 Turbulent flow 病毒 Viruses 硬度Hardness藻类 Algae 紊流 Turbulence flow 碱度 Alkalinity涡流 Eddying flow 浊度 Turbidity 盐度 Salinity雷诺数 Teynolds number 放射性 Radionuclide 有害物质 Toxic and hazardous materials感官性状 Esthetic qualities 水质 Water guality 氰化物 Cyanides急性毒性 Acute toxity 处理水 Treated wastes 砂 Grit慢性毒性 Chronic toxity 回用水 Redaimed water 沙 Sand基因毒性 Genetic toxicity 水处理过程 Water processing 除砂 Grit removal 基因 Gene 收集 Collect 沉砂池 Grit chamber 难降解有机化合物Refractory organic chemicals 处置 Dispose 沉淀 Settling永久性有机污染物 Persistent organic pollutants 处理方法 Treatment method 沉淀池 Settling tank 致癌化学性 Carcinogenic chemicals 处理费用Treatment costs 澄清池 Clarifier 三卤甲烷 Trihalo methanes 处理单元Treatment process 初澄清池 Primary clarifier 卤素 Halogen 运行模式Operational mode 初沉池 Primary settling tank 甲基 Methyl 间歇处理方式Batch treatment approach 一级出水 Primary effluent 氯仿 Trichloromethane 均匀均化 Equalization 二级处理 Secondary treatment 三氯甲烷 Chloroform 均匀 Equalize 二级处理工艺 Secondary treatment process 杀虫剂农药Pesticide 调蓄水池 Equalization storage 生物处理 Biological treatment 害虫 Pest 调节池 Equalization tank 二澄清池 Secondary clarifier 杀虫剂Insecticide 蓄水池二沉池 Secondary settling tank Storage tank除草剂 Herbicide 降解 Degrade 最终澄清池 Final clarifier 杀菌剂Germicide 分解 Decompose 最终沉淀池 Final settling tank 细菌 Germ 分离Separate 二级出水 Secondary effluent 防腐剂 Preservative 隔离 Separation 三级处理 Tertiary treatment 保证 Preserve 物理法 Physical process 深度处理 Advanced treatment 清洗剂 Cleaning agent 物理处理 Physical treatment 废水消毒 Waste disinfection 洗涤剂 Detergent 物理处理过程 Physical treatment process 出流出水 Effluent flow允许浓度 Allowable levels 发泡剂 Foaming agent 一级处理 Primary treatment泡沫 Foam 初步处理 Preliminary treatment 优异出水 High-quality polished effluent格栅筛滤 Screening 废水处理厂 Wastewater treatment plant 化肥Fertilizer肥沃的 Fertile 格栅 Screen 污水处理厂 Sewage treatment plant 富营养化 Eutrophication 格栅 Bar screen 二级处理厂 Secondary treatment plant 城市污水处理营养的 Trophic 栅条 Bars营养水平 Trophic level 钢栅条 Steel bars Municipal wastewater treatment市政工程 Municipal engineering 生态位 Niche 渣耙 Cleaning rakes圆形破碎机 Circular grinder 土木工程 Civil engineering Unit 5原污水 Raw sewage 破碎 Grind 城市污水处理厂原废水 Raw wastes 除砂 Degritting Municipal wastewater treatment plant污水处理能力 Sewage treatment capacity 混合池 mixer tank 刮泥机sludge scraper 电容 Capacitance 快速混合池 flash-mix tank 排泥 sludge drawoff 污水处理设施 Municipal treatment facilities 絮凝器 n.flocculator sludge withdrawal 多反应器设施 Multi-reactor facility 絮凝池flocculation tank 预沉淀 n. presedimentation 处理池 Treatment tank 预沉淀池 presedimentation basin负荷 Load 固体接触池 solids-contact tank负荷 Loadings 澄清 n. clarification 3(过滤 n. filtration 水力负荷Hydrautic loading 滤池 n. filter v. clarify污染负荷 Pollutant load 澄清池 n. clarifier 慢滤池 slow filter 有机负荷 Organic load 高负荷澄清池 high rate clarifier 快滤池 rapid filter 无机负荷 Inorganic load 澄清水 clarifying water 高速(负荷)滤池 high rate filter 不含化肥、农药无机的 Unorganic 砂滤池 sand filter 周期性负荷 Periodic(intermitlent) loading 2(沉淀 n. sedimentation 慢砂滤池 slow sand filter 第五部分: 物化处理沉降 n. sedimentation 快砂滤池 rapid sand filter 1(混凝 n. coagulation 自由沉降 plain settling 重力滤池 gravity filter混凝过程 coagulation process 拥挤沉降 hindered settling 压力滤池pressure filter化学混凝 chemical coagulation 重力沉降 gravity settling 过滤介质,滤料 filter medium凝聚 n. aggregation 沉淀池 settling tank silica sand 石英砂絮凝 n. flocculation 沉淀池,沉降池 sedimentation tank 无烟煤 n. anthracite矩形沉淀池 rectangular settling tank 硅藻土 diatomaceous earth v. flocculate异向絮凝 perikinetic flocculation 圆形沉淀池 circular settling tank 煤—砂滤床 coal-sand beds同向絮凝 orthokinetic flocculation 管式沉淀池 tube settler 多层滤料multilayered media混凝剂 n. coagulant 斜管沉淀池 steeply inclined tube settler 混合滤料 mixed media混凝剂投量 coagulant dosage 板式沉淀池 parallel-plate settler 双层滤料滤池 dual media filter烧杯实验 jar test 双层滤池 two-layer filter 板式沉淀池 plate separator最佳混凝剂投量 optimum coagulant dosage 气浮 n. floatation 粗滤料coarse media助凝剂 coagulant aid 泡沫分离 foam separation 细滤料 fine media 助凝剂 flocculation aid 溶气气浮 dissolved-air floatation 助滤剂filter aid聚电解质 n. polyelectrolytes 气浮池 floatation tank 滤后水,滤出水filtered water快速混合 flash-mix , 表面撇渣装置 surface-skimming device 滤后水,滤池出水 filter effluent撇去 v. skim 滤前水,滤池进水 filter influent rapid-mix快速混合器 flash mixer , 浮渣 n. scum 浊度穿透 turbidity breakthrough浮渣槽 scum trough 过滤周期 filter cycle rapid mixer清洗周期 cleaning cycle 病毒 n. viruses v. inactivate刮砂法 scraping method 藻类 n. algae 接触时间 contact time表面刮砂 surface scraping 需氯量 chlorine demand 原生动物 n.protozoa反冲洗 backwashing 加氯量,投氯量 chlorine dosage ,水力反冲洗 hydraulic backwashing 5(氧化 n. oxidation appliedchlorine水力反冲洗 hydraulic backwash 自由氯,游离氯 free chlorine , 还原 n. reduction水力分级 hydraulic grading 氧化剂 n. oxidant free available chlorine 化合氯 combined chlorine 强氧化剂 strong oxidizing agent4(消毒 n. disinfection 剩余保护 residual protection 高级氧化法 (AOP) advanced oxidation process余氯 residual chlorine 高级氧化工艺 (AOP) advanced oxidation process v. disinfect消毒剂 n. disinfectant 余氯量 chlorine residual 高级氧化过程 (AOP) advanced oxidation process自由余氯 free residual chlorine 高级氧化技术 (AOT) disinfectionagent杀菌剂 n. germicide 自由氯余量 free chlorine residual advanced oxidation technology消毒过程 disinfection process 化合余氯 combined residual chlorine消毒副产物 disinfection by-products 化合氯余量 combined chlorine residuals 6(吸附 n. adsorption氯化 n. chlorination 折点氯化(法) breakpoint chlorination 活性炭 (AC) activated carbon折点氯化曲线 breakpoint chlorination curve 粉末炭 (PAC) powdered activated carbon v. chlorinate氯化水 chlorinated water 折点加氯量 breakpoint dosage 粒状炭 (GAC) granular activated carbon预氯化 n. prechlorination 氯折点 chlorine breakpoint 颗粒活性炭(GAC) granular activated carbon氯化消毒副产物 by压力钢瓶 pressured steel cylinder 活性炭纤维 (ACF) activated carbon fiber -products of chlorination化学消毒剂 chemical disinfectants 臭氧发生器 ozone generator 再生 n. regeneration液氯 liquid chlorine , 需臭氧量 ozone demand v. regenerate剩余臭氧量 ozone residual 吸附剂 n. adsorbent liquefied chlorine氯胺 n. chloramines 剩余臭氧 residual ozone 吸附质 n. adsorbate次氯酸盐 hypochlorites 吸附塔,吸附柱 adsorption column次氯酸钠 sodium hypochlorite 致病微生物,病源微生物吸附床adsorption bed二氧化氯 chlorine dioxide 空床接触时间 empty bed contact time pathogenic microorganisms病原体 n. pathogens 吸附带 mass transfer zone 臭氧 n. ozone臭氧化,臭氧消毒 n. ozonation 致病细菌或病毒 pathogenic bacteria or viruses 快速小柱试验 rapid small scale column test细菌 n. bacteria 臭氧化 v. ozonate 生物活性炭 (BAC) biological activated carbon紫外线 (UV) ultraviolet radiation (UV) 大肠杆菌 coliform bacteria 伽马射线 gamma radiation 阿米巴氏菌 amoebic cysts 7(离子交换 n. ion exchange孢子,芽孢 n. spores 灭活 n. inactivation 离子交换树脂 ion exchange resin离子交换器 ion exchanger 电解 n. electrolysis 底物(基质)利用substrate utilization离子交换柱 ion exchange column 电除盐 (EDI) n. electrodeionization 生物量 n. biomass硬度 n. hardness 吹脱、汽提法 n. stripping 生物反应 biological reaction除硬 hardness removal 生物氧化 biological oxidation软化 n. softening 冷却 n. cooling 生物降解 n. biodegradation冷却水 cooling water 生物降解性 n. biodegradability v. soften化学软化 chemical softening 冷却塔 cooling tower 生物可降解的,可生物降解的 a. biodegradable沉淀软化 precipitation softening 第六部分生物处理不可生物降解的 a. nonbiodegradable除盐,脱盐 n. desaltination 生物反应器 n. bioreactor 生物处理biological treatment微生物 n. microorganisms 废水生物处理 biological wastewater treatment v. desalt去矿化 n. demineralization 废水生物处理系统 biological wastewater treatment n. microbes微生物种群 microbial population v. demineralize system离子交换软化法 ion exchange softening process 混合群落 mixed communities 污水生物处理系统 biological sewage treatment 离子交换除盐法 ion exchange desalting process 细菌 n. bacteria system复床 combined bed 原生动物 n. protozoa 生物处理法 biological treatment process混合床 mixed bed 真菌 n. fungi 生物处理装置 biological treatment unit轮虫 n. rotifers 串联 in series8(膜分离 membrane separation 生长 n. growth 悬浮生长处理法suspended-growth treatment processes微滤 n. microfiltration 繁殖 n. reproduction 生物固体 biological solids超滤 n. hyperfiltration 世代时间 generation time 活性污泥 activated sludge纳滤 n. nanofiltration 生长速率 growth rates 附着生长处理法attached-growth treatment processes反渗透 reverse osmosis 环境因子 environmental factors 附着的微生物attached microbes渗透 n. osmosis 生态因子 ecological factors 微生物附着生长 attached microbial growth半透膜 semipermeable membrane 微生物生长动力学 microbial growth kinetics 生物膜 n. biofilm电渗析 n. electrodialysis 1. 迟滞期 lag phase渗析 n. dialysis 2. 对数生长期 exponential-growth phase 代谢 n. metabolism3. 减速生长期 decling growth phase v. metabolize9(其它处理方法稳定期 stationary phase 稳定,稳定化 n. stabilization 中和 n. neutralization 4. 内源呼吸阶段 endogenous stage v. stabilize 内源生长期 endogenous growth phase 生物代谢 biological metabolism v. neutralize酸性废水 acidic wastes 内源呼吸 endogenous respiration 微生物代谢microbial metabolism化学沉淀 chemical precipitation 好氧的 a. aerobic好氧菌 aerobic bacteria沉淀软化 precipitation softening 底物,基质 n. substrate好氧微生物 aerobic microorganisms 曝气池 aeration basin 非挥发性固体nonvolatile solids好氧氧化 aerobic oxidation 曝气池 aeration chamber 挥发性悬浮固体(VSS) volatile suspended solids厌氧的 a. anaerobic 完全混合曝气池 completely mixed aeration basin混合液 mixed liquor厌氧菌 anaerobic bacteria 活性污泥池 activated sludge tank 混合液悬浮固体 (MLSS) mixed liquor suspended厌氧氧化 anaerobic oxidation 曝气 n. aeration solids兼性的 a. facultative 混合 n. mixing 混合液挥发性悬浮固体 (MLVSS) mixed liquor volatile兼性菌 facultative bacteria 曝气系统 aeration system suspended solids好氧环境 aerobic environment 曝气器 n. aerator 污泥沉降比 (SV) settling velocity厌氧环境 anaerobic environment 压缩空气 compressed air 污泥容积指数(SVI) sludge volume index营养物 n. nutrients 空气压缩机,空压机 air compressor 比耗氧速率(SOUR) specific oxygen uptake rate无机营养物 inorganic nutrients 鼓风机,风机 n. blower营养物去除 nutrient removal 循环/切换 n. cycling/switchover 污泥龄sludge age营养物生物去除biological nutrient removal 扩散装置,扩散器 n. diffuser 曝气池容积 aeration tank volume脱氮除磷 nitrogen and phosphorus removal 空气扩散装置,空气扩散器air diffuser 曝气时间 aeration period生物硝化 biological nitrification 鼓泡空气扩散装置(扩散器) bubble air diffuser 曝气时间 aeration time硝化菌 nitrifying bacteria 微气泡扩散装置(扩散器) fine-bubble diffuser 水力停留时间 (HRT) hydraulic residence time 生物反硝化,生物脱氮 biological denitrification 扩散板 plate diffuser 水力负荷 hydraulic loading生物除磷 biological phosphorus removal 扩散管 tube diffuser BOD负荷BOD loading扩散罩 dome diffuser1(活性污泥法 activated sludge process 微气泡扩散曝气 fine-bubble diffused aeration 普通活性污泥法 conventional activated sludge process 微生物 n. microorganisms n. microbes 微气泡 fine-bubble 传统活性污泥法 conventional activated sludge process细菌 n. bacteria 大气泡 coarse-bubble 标准活性污泥法 standard activated sludge process生物絮体 biological floc 传统活性污泥厂 conventional activatedsludge plant 静态混合器 static mixer微生物絮体 microbial floc 机械曝气系统 mechanical aeration systems阶段曝气活性污泥step aeration activated sludge process活性污泥 activated sludge 机械曝气 mechanical aeration 分段 v. step 絮状活性污泥 flocculate-bacterial sludge 表面曝气 surface aeration进水负荷 influent load回流活性污泥 (RAS) returned activated sludge 表面曝气器 surface aerator 分段进水 step loading回流污泥 returned sludge 需氧量 oxygen demand 渐减 v. taper回流污泥 recycled sludge 供气量 air supply 渐减曝气 tapered aeration 剩余污泥 excess sludge 氧转移效率 oxygen tansfer efficiency 接触稳定活性污泥法废活性污泥 (WAS) waste activated sludge contact stabilization activated sludge process废污泥 waste sludge 可沉降固体 settleable solids 再曝气 n. reaeration曝气曝气池 aeration tank 挥发性固体 volatile solids —沉淀—再曝气进水阀 influent valve aeration-sedimentation-reaeration membrane biological reactor完全好氧处理法反应阶段 react phase 2(生物膜法沉淀阶段 settle phase complete aerobic treatment process高负荷(完全混合)活性污泥法清水,上清液 clear water 生物膜 n. biofilm上清液 n. supernatant 生物膜反应器 biofilm reactor high-rate (completely mixed) activated sludge process延时曝气活性污泥法排水阶段 draw phase 生物滤池 n. biofilter滗水阶段 decant phase 生物过滤 n. biofiltration extended aeration activated sludge process延时曝气法 extended aeration process 滗水装置 decant mechanism 旋转布水器 rotary sprinkler延时曝气 extended aeration 闲置阶段,待机阶段 idle phase 填料 n. packings氧化沟 oxidation ditch 塑料管状或蜂窝状填料 plastic tubular or 水平转刷 horizontal rotor 营养物去除 nutrient removal honeycomb-shaped packings转刷曝气 rotor aeration 营养物生物去除 biological nutrient removal滴滤池 trickling filter笼型转刷 caged rotor 碳源 carbon source 普通生物滤池 tricklingfilter吸附—生物降解工艺 (AB法) 硝化 n. nitrification 高负荷生物滤池 high-rate filter塔式生物滤池 tower biofilter adsorption-biodegradation process v. nitrify序批式活性污泥法 (SBR法) sequencing batch reactor 硝化菌 nitrifying bacteria 曝气生物滤池 (BAF) biological aerated filter (SBR) process、反硝化 n. denitrification序批式活性污泥法 (SBR法) sequential batch reactor 生物转盘法 biodisc process v. denitrify脱氮 n. denitrification 生物转盘 rotating biological contactor (SBR) processSBR法 SBR process 生物反硝化,生物脱氮生物转盘 n. biodisc序批式反应器 (SBR) sequencing batch reactor (SBR) 塑料盘片 plastic discs biological denitrification序批式反应器 (SBR) sequential batch reactor 缺氧—好氧脱氮工艺 (A/O 法) 轻质盘片 lightweight discs初沉 primary clarification 水平轴 horizontal shaft anoxic-oxic process 2 曝气 n. aeration 厌氧—缺氧—好氧法 (A/O法) 生物粘液biological slime二沉 secondary clarification 粘液层 slime layer anaerobic-anoxic-aerobic process初沉池 primary clarifier A-A-O法同步脱氮除磷工艺二沉池 secondary clarifier 生物流化床 biological fluidized bed anaerobic-anoxic-aerobic process泵送系统 pumping system 脱氮除磷 nitrogen and phosphorus removal biological fluidised bed活性污泥法 activated sludge process 厌氧氨氧化 (ANAMMOX) 生物流化床反应器 fluidized-bed bioreactor移动床生物膜反应器 (MBBR) 变体 n. variant anaerobic ammonium oxidationSBR运行周期 SBR cycle 生物除磷 biological phosphorus removal moving-bed biofilm reactor处理周期 process cycle进水阶段 fill phase 膜生物反应器 (MBR) 3(厌氧生物处理厌氧生化反应 anaerobic biochemical reaction发酵 n. fermentation 消化 n. digestion 厌氧分解 anaerobic decomposition厌氧分解 decompose anaerobically v. fermentate v. digest产酸细菌 n. acidogens 消化池 n. digestor 好氧稳定 aerobic stabilization产甲烷细菌 n. methanogens 厌氧消化 anaerobic digestion 细菌 n. bacteria产酸阶段 acidogenic phase 污泥消化 sludge digestion 藻类 n. algae产甲烷阶段 methanogenic phase 厌氧消化池 anaerobic digestor 微型植物microscopic plants水解 n. hydrolysis 厌氧接触法 anaerobic contact process 出流,出水effluent flow厌氧膨胀床反应器光合作用 n. photosynthesis v. hydrolysis产酸发酵 acidogenic fermentation anaerobic expanded-bed reactor 产氢产乙酸 H-producing acetogenesis 厌氧流化床反应器厌氧塘anaerobic pond 2产甲烷 methanogenesis 曝气塘 aerated pond anaerobic fluidized-bed reactor产酸菌 acid formers 厌氧生物转盘修饰塘 polishing pond产甲烷菌 methane formers , 熟化塘 maturation lagoon anaerobic rotating biological contactor深度处理塘 advanced treatment pond methane-forming bacteria有机酸 organic acids 4(自然生物处理系统三级处理塘 tertiary treatment pond挥发性脂肪酸 (VFAs) volatile fatty acids自然净化系统 natural purification system 土地处理工艺(过程) land treatment processes硫酸盐还原 sulfate reduction 稳定塘 stabilization ponds 关键因素critical factors硫酸盐还原菌 sulfate-reducing bacteria 土壤类型 soil type stabilization lagoons氧化塘 oxidation ponds 气候 n. climate上流式厌氧污泥床 (UASB) 土地处理系统 land treatment systems 土地处理系统 land treatment systems废水土地处理 land treatment of wastewater 慢速土地处理系统 upflow anaerobic sludge blanket上升流速 upflow velocity 净化过程 purification process slow rate land treatment system自然净化 natural purification 低负荷土地处理系统厌氧折流板反应器 (ABR) low-rate land treatment system污水塘 sewage lagoon 三级处理水平 tertiary treatment level anaerobic baffled reactor稳定塘 stabilization ponds 灌溉 n. irrigation两段或两级厌氧生物处理 two-stage anaerobic stabilization lagoons v. irrigate氧化塘 oxidation ponds 土壤的天然过滤和吸附性质 biotreatment两相厌氧生物处理 two-phase anaerobic biotreatment 好氧塘 aerobic pond natural filtration and adsorption properties of soil 产酸相 acidogenic phase 兼性塘 facultative pond 投配的废水 applied wastewater好氧生化反应垄—沟表面布水产甲烷相 methanogenic phase aerobic biochemical reaction浓缩的底流 thickened underflow ridge-and-furrow surface spreading 污泥减量 sludge volume reduction 浓缩污泥 thickened sludge 喷洒布水系统,喷灌布水系统 sprinkler systems快速渗滤土地处理系统 rapid infiltration land 污泥稳定化 sludge stabilization 出水 n. effluent上清液 n. supernatant treatment system渗滤—渗透土地处理 infiltration-percolation land (污泥)浓缩 n. thickening 溢流 v. overflow污泥浓缩 sludge thickening 堰 n. weir treatment快速渗滤 rapid infiltration 稳定,稳定化 n. stabilization 气浮浓缩floatation thickening快速渗滤法 rapid infiltration method 溶气气浮 dissolved-air floatation v. stabilize过滤作用 filtering action 稳定了的污泥 stabilized sludge 气浮池floatation tank吸附作用 adsorption action 调理(调节) n. conditioning 入流污泥influent sludge地表漫流土地处理系统污泥絮体 sludge flocs v. condition脱水 n. dewatering 撇去 v. skim overland flow land treatment system 地表漫流 overland flow 漂浮污泥层 floating sludge layer v. dewater 径流集水沟 runoff collection ditch 干化 n. drying物理、化学和生物过程污泥干化场 sludge drying bed 污泥消化 sludge digestion污泥干燥 heat drying 消化池 n. digester physical , chemical , and biological processes湿地 n. wetland 干燥器 n. dryer 消化池装置 digester unit天然湿地 natural wetland 污泥焚烧,污泥焚化 n. incineration 消化 n. digestion人工湿地 constructed wetland 焚烧炉,焚化炉 n. incinerator v. digest 有机固体 organic solids man-made wetland污泥浓缩 sludge thickening 生化分解 biochemical decomposition第七部分:污泥处理、处置与利用物理过程 physical process 好氧消化aerobic digestion污泥 n. sludge 含水过多的污泥 watery sludge 好氧污泥消化 aerobic sludge digestion生活污水污泥 sewage sludge 稀污泥 thin sludge 好氧消化过程 aerobic digestion process污泥体积,污泥量 sludge volume 处理装置 treatment unit 活性污泥池activated sludge tank原污泥,生污泥 raw sludge 浓缩池 n. thickener 预制的(成套)活性污泥处理系统新鲜污泥,生污泥 fresh sludge 重力浓缩 gravity thickening prefabricated (package) activated sludge treatment消化污泥,熟污泥 digested sludge 重力浓缩池 gravity thickener systems混合污泥 mixed sludge 圆形污水沉淀池预制的接触稳定或污泥处理 sludge treatment circular sewage sedimentation tank prefabricated contact stabilization or污泥处置 sludge disposal 刮泥机 sludge scraper 延时曝气处理系统最终处置 ultimate disposal 搅拌作用 stirring action extended aeration treatment systems填埋 n. landfill 底流 n. underflow BOD负荷 BOD loading细胞物质 cellular mass 废水回用 wastewater reuse 冷却塔水 cooling tower water内源衰亡 endogenous decay 直接回用 direct reuse 选择性处理 optional treatment直接废水回用 direct wastewater reuse 水费 water costs厌氧消化 anaerobic digestion 间接回用 indirect reuse 回用的城市污水厌氧污泥消化 anaerobic sludge digestion 间接废水回用 indirect wastewater reuse reclaimed municipal wastewater 有盖的圆形池 covered circular tank 出水处理 effluent treatment 工业过程 industrial processes 消化过程 digestion process 回用水 reclaimed water 冷却水 cooling water 厌氧消化过程 anaerobic digestion process 排放 n. , v. discharge 锅炉给水boiler feedwater 生化反应 biochemical reactions 保留 n. retention 灌溉回用 irrigation reuse 有机酸 organic acids 循环 n. recycling 废水直接灌溉direct irrigation with wastewater 挥发性脂肪酸 (VFAs) volatile fatty acids 低负荷土地处理系统 low-rate land treatment system v. recycle 甲烷气 methane gas 部分处理 n. partial treatment 间接灌溉回用indirect reuse for irrigation 末端产物 end product 最终用途 end use 废水排放 wastewater discharge 指示剂 n. indicator 城市污水回用 municipal wastewater reuse 雨水回用 storm water reuse 污泥消化池气体 sludge digester gas 灌溉 n. irrigation 可回用水 reusable water 污泥沉淀 sludge settling 景观灌溉 landscape irrigation Part ?: 第九部分:污泥储存 sludge storage 地下水回灌 groundwater recharge 投资成本,投资费(用) capital costs 消化污泥 digested sludge 建设成本,建设费(用) construction costs充分消化的污泥 well-digested sludge 市政回用 municipal reuse 运行成本,运行费(用) operating costs 消化池上清液 digester supernatant 直接市政回用 direct municipal reuse 能耗成本 energy costs 中温消化 mesophilic digestion 深度处理,高级处理 advanced treatment 运行维护 operation and maintenance 高温消化 thermophilic degestion 分质供水系统 dual-distribution system 运行控制 operational control间接市政回用 indirect municipal reuse 控制系统 control system污泥脱水 sludge dewatering 供水系统,给水系统 water supply system 仪表/控制系统混合堆肥 co-composting 取水口 n. intake instrumentation/control system天然同化能力 natural assimilative capacity 自动控制系统,自控系统污泥处理总成本overall sludge-handling costs 人工回灌 artificial recharge automatic control system深井注射 deep-well injection第八部分:废水回用浅表布水 shallow surface spreading地表水资源 surface water resource 渗透 n. percolation地下水资源 groundwater resource 工业回用 industrial reuse水短缺 water scarcity 工艺废水,过程废水 process wastewaters回用 n. , v. reuse 工艺补充水,过程补充水 plant process makeup water。
给排水专业英语词汇(上)

Trench n.沟,渠Cistern n.蓄水池,储水器Drainage n.排水,排水设备,排水的水Foul n.污浊的Siphon n.虹吸(管);用虹吸管输送Settle n.澄清,(使)沉淀Hydraulic a.水力学的Distillation n.蒸馏(法)Still n.蒸馏器Filtration n.过滤Clarification n.澄清,净化Coagulation n.絮凝,混凝Sanitation n.(环境)卫生Sedimentation n.沉淀,沉积Grate v.装格栅于Basin n.水池,水槽Catch basin 集水池,沉水池Lagoon n.污水池Patent vt,n.为……取得专利,专利,专利品Anticipate vt.促进Turbidity n.浑浊性,浑浊度Coagulant n.混凝剂,凝结剂Modification n.改变,改进,改良Toxic a.有毒的,中毒的Pathogenic a.致病的,病原的Microorganism n.微生物Congregate v.聚集Contaminate v.污染,弄脏Precipitate v.降水,沉降Precipitation n.沉降物(如雨,雪等)Contaminant n.污染物质Hydrological a.水文学的Nutrient n.养分,养料Medium n.介质,培养基Microbial a.微生物的,细菌的Algae n.藻类,海藻Protozoa n.原生动物Inorganics n.无机物Seep vi.渗入Effluent n.污水,废水Epidemic n.流行病,时疫Trace n.痕量,微量,微量金属Monitor v.检验(放射性污染物)Bacteriology n.细菌学Discharge n.排泄(水汽),排泄物Annual a.一年一度的,每年的Typhoid n.伤寒Cholera n.霍乱Round n.循环,周期Eradicate vt.根除,杜绝Lay down 制定,提出Superimpose vt.添加,附加Distil v.蒸馏Distillation n.蒸馏法Electrodialysis n.电渗析Brackish a.稍咸的Estuary n.河口,海湾Osmosis n.渗透性Estuarine a,河口的,港湾的Barrage n.拦河坝Sterilize vt.消毒,杀菌Wholesome a.卫生的,有益于健康的Injurious a.有害的Conductive a.有助于……的,促进的Be conductive to 对……有益的Constituent n.组成物,构成物Turbid a.浑浊的,混乱的Pathogen n.病原体,病菌Sedimentation n.沉积法,沉积作用Flocculate v.絮凝,绒聚Flocculating agent 絮凝剂Settlting n.沉淀Settling out 沉淀出来Coarse a.粗粒的,大的Floc n.絮体,絮凝物体Filtration n.过滤,澄清Chlorinate vt.用氯消毒Sanitary properties 卫生系数(性能,特点等)Colloidal a.胶体(状,质)的Suspension n.悬浮(液),悬浮(体)Portability a.可饮用Detract v.降低,减损Rayon n.人造丝Cellulose n.纤维素Starch n.淀粉Odour n.气味,臭气Secretion n.分泌液Fungi n.真菌Phenol n.(苯)酚Chlorine n.氯气Malodorous a.恶臭的Chlorophenols n.氯酚Break-point chlorination 折点加氯Activated carbon 活性炭Chlorine dioxide 二氧化氯Ozone n.臭氧Silica n.二氧化硅Transparency n.透明(性,度)Mastic n.胶粘剂p.p.m=parts per million 百万分之(几)Coalesce vi.凝聚Decolorize vt.漂白Conductivity n.传导性Resistivity n.电阻性Bacteriological a.细菌学的Alkaline n./a.碱性,碱性的Acidity n.酸性(度)Alkalinity n.酸性(度)Alkalinity n.(强)碱性Corrosive a.腐蚀的Water-supply 给水的Storage reservoir 蓄水库(池)Pipeline n.管道(线)Distribution reservoir 配水库(池)Distribution pipe 配水管网High demands 高峰用水量Supply source 水源Air conditioning equipment 空调设备Water (supply)engineer 给水工程师The fire department 消防部门Catchment n.集水(量),汇水Catchment area 集水区Rainfall n.降雨量Refill v.再装满Runoff n.径流(量)Infiltration n.渗透(入)Infiltration water 渗透水Evaporation n.蒸发Evaporation water 蒸发水Impounding v.贮(水)备灌溉用Impounding reservoir 蓄水池Recharge v.再装,再补充Purify v.使纯净,使洁净Compressor n.压缩机Limestone n.石灰石Porous a.多孔的Formation n.地(岩)层Limestone formation 石灰岩层Porous formation 多空岩层Plumbing n.(自来水,卫生)管道(装置)室内给排水系统(管道,工程)System of plumbing 卫生工程系统(体系)Circulatory a.循环的,流通的Outbreak n.爆发,破裂Epidemic n.流行病,时疫Cross-connection 交叉传染Submerged a.水面下的Inlet n.进(气,水)口Submerged inlet 淹没式入口,进水口淹没Vent n.通风(排气)管(口);排除,放气Deteriorate v.变质,损坏Appurtenance n.附属物,设备,附件,附属建筑(装置)Sanitary or storm drainage 生活用水或雨水的排放Distribution n.分布,配给Multitude n.许多,大批(量)A multitude of 许多的,众多的Uphill n.a.ad. 上坡,向上Valve n.阀门,开关Microbe n.微生物Lactic a.乳的Lactic acid 乳酸Breakdown n.分解,离解Fermentation n.发酵Equation n.反应式,公式Oxidize v.使氧化Acetic a.醋酸的,醋酸Oxidation n.氧化作用Atmospheric a.大气中的,空气的Butyric a.丁酸的,奶油的,丁酸Bacteria n.细菌Proliferate v.繁殖,繁衍Anaerobic a.厌氧的,厌气的Derivative a.转生的,派生的,衍生物Specialize v.使专门化,特殊化Attack vt.(化学)腐蚀,锈蚀Nutrition n.营养(学)Culture n.培养,养殖Media n.培养基Synthesize v.(人工)合成Preform vt.预先形成Biochemical a.生物化学的Municipal a.城市的Unsaturated a.未饱和的Suspended water 悬着水Intermolecular a.分子间的Aeration n.曝气,通气The zone of aeration 通气层Remainder n.剩余物Capillary a.n.毛细管的Fringe n.边缘,端Transpire v.蒸发,气化Compaction n.压实,压缩Pore n.小孔Intergranular a.颗粒间的Permeability n.渗透性,透气性Recharge well 回灌井Hydraulic a.水力学的Coefficient n.系数Substrate n.基质,底质Sediment n.沉积物Adjacent a.邻近的,相邻的Sodium n.钠Sodium chloride 氯化钠Ion n.离子Conduit n.导管,水管Sewerage n.下水道,污水(排水)工程(系统)Elevation n.高度,海拔Confines n.界限,范围,边界Rectangular a.矩(长方)形的Laminar a.层(式、状、流)的Turbulent a.湍流的Irrigation n.灌溉Nonuniform a.不均匀的,变化的Retard vt.延迟,减速流Retarded flow 滞流,减速流Component n.分(力,量,支)The component of the gravity 重力的分量Shear n.剪(切,力)切(变,力)Shear force 切力,剪力Spillway n.溢洪道Profile n.轮廓,断面(图)Resulting a.所引起(产生)的Resulting profile 所形成的剖面图Sanitary a.关于环境卫生的,卫生的Hydraulic a.水力的,水力学的,水压的Aqueduct n.沟渠,导水管,高架渠Reveal v.泄露,显示Archeological a.考古学的Pipeline n.管道线,输送管Cloaca n.暗渠,下水道,厕所Sewer n.污水池Cesspool n.阴沟,污水管,排水管,下水道Metropolis 首都,大城市,文化商业中心Tributary a.附属的,支流的Lawsuit n.诉讼Downstream a.ad.顺流的,在下游的Sewage n.污水,污物Range v.延伸,探寻,涉及Watershed n.流域,集水区Bedrock n.基岩Rainfall n.降雨,降水,降雨量Divert vt.转移,使转向Ecosystem n.生态系统Biosphere n.生物圈Biotope n.群落生境Inanimate a.非动物的Spatial a.空间的Biocoenosis n.生物群落Moor n.荒野,沼Savannah n.热带大草原Deciduous a.(在成熟期或一定季节)脱落的Flora n.植物群Fauna n.动物群Habitat n.栖息地Climatic a.气候的Terrestrial a.陆地的Aquatic a.水生的Abiotic a.非生物的Ecological a.生态的Autotrophic a.自养的Chloroplast a.叶绿体Herbaceous a.草本的Carbohydrate n.碳水化合物Assimilation n.吸收Heterotrophic a.异养的Herbivore a.食草的Decompose vt.分解Detritus n.腐质Invertebrate a.无脊椎的Carnivore n.食肉动物Arable a.适于耕作的Fluctuate v.波动,涨落Quantitative a.定量的Amplitude n.广大,充足Genetic a.遗传的Botanic a.植物的Compensate vt.补偿Integrated plant protection 综合植物保护Terminal community 最终群落Burgeon vt.发展,展开Deterioration n.恶化,变质Airborne a.空中的Adverse effect 反作用,不利影响Manifest a.明显的vt.表明,证明Catalytic a.催化的Copolymer n.共聚物Toxicity n.毒性,毒力Abatement n.减少,除去Emission n.散发,发射(物)Unrelenting a.不退让的,不松懈的Fusion n.合并,联合Megalopolis n.大城市(由几个城市及郊区连成者)Sparsely ad.稀疏地,稀少地Pollutant n.污染物Reside v.住(留),属于,与……靠得很近Juxtaposition n.并列,并置Severity n.严重性Intensification n.加强,强化Segment n.部分,分布Contaminant n.污染物质,杂质Internal combustion engine 内燃机Per capita 每人口Solid refuse 固体废物,固体垃圾Incinerator n.焚化炉,化灰炉Degradation n.退化,降低Originate vi.发起,发生Affluent a.富足的,丰富Dilution n.冲淡,稀释Dispersion n.分散(作用)弥散Irritation n.刺激,兴奋Hazardous a.有害的Handling characteristics 处理特性Garbage n.垃圾,废料Serve to 用于……Inoffensive a.无害的Inherent a.固有的,内在的Compost vt.把……做成堆肥Raw material 原材料Incineration n.焚化Supervision n.监督,管理Overweight vt.在重量上超过Densely ad.密集地,稠密地Landfill vi.土地掩埋Haul vt.用力拖(或拉)Option n.选择,选择权Municipal solid waste(MSW) 城市固体废物Ecological perspective 生态学观点Recoverable a.可重获的,可找到的Burial n.埋葬Pyrolysis n.热解作用Pyrolysis furnace 干馏炉,热解炉Destructive a.破坏性的Endothermic a.吸热的Exothermic a.放热的Oxygen-free environment 无氧环境Self-sustaining a.自给的Methane n.甲烷Methanol n.甲醇Tar n.焦油Combustible a.可燃的,易燃的Pose vt.造成,形成Aesthetic a.美学的Restrain…from(doing) 制止……(干)……Waste disposal 废物处理Feasibility n.可行性Enactment n.颁布Enforcement n.实施Combined sewer (system)合流制下水管(系统)Separated sewer (system) 分流制下水管(系统)Drain off 把……排除Bypass vt.越过,绕……走Minimize vt.使减少到最少Dilute vt.冲淡Settle out 沉淀出来Municipality n.市,市政府Undesirable a.讨厌的,令人不快的Inadequate a.不足的,不适当的Be acted on 受……作用Notably ad.显著地,著名地Tertiary a.第三极的Leach vt.滤去(物质)Leaching field 滤液场Septic a.引起腐烂的Septic tank 化粪池Detention n.滞留Interact vi.互相作用,互相影响Quest vi.追求,探索Biophysical a.生物物理学的Arithmetical a.算术的Coverage n.覆盖率Priority n.重点,优先Quantitative a.数量的,定量的Hygienic a.卫生的,卫生学的Indisputable a.无可争辩的,无可置疑的Programmer n.规划,订计划者Nationwide a.全国性的Criterion n.(批评,判断的)标准,准则Continuity n.连续性,持续性Forthcoming a.即将到来的,即将出现的Coherent a.一致的,粘附的Sustainable a.持续的,能忍受的Initiative n.倡议,首创精神Legislation n.立法,法规Implementation n.履行,实施Assessment n.评估,估价Underlying a.根本的,基础的Institutional a.制度上的,惯例的Undertaker n.承担者,承办人Water undertaker 自来水厂Privatization n.私有化Inspection n.检查,视察Entity n.实体,统一体。
给排水专业英语李康

给排水专业英语李康
给排水专业英语翻译为"Plumbing and Drainage Engineering"。
在给排水专业中,有一些常用的英语词汇和短语,如下所示:
1. Plumbing - 管道安装
2. Drainage - 排水系统
3. Piping - 管道
4. Sewer - 下水道
5. Water supply - 供水系统
6. Water distribution - 配水系统
7. Plumbing fixtures - 卫浴设备
8. Sanitary fittings - 卫生设备
9. Ventilation - 通风系统
10. Pumping station - 泵站
11. Sewage treatment - 污水处理
12. Stormwater management - 雨水管理
13. Plumbing code - 管道安装规范
14. Plumbing design - 管道设计
15. Plumbing installation - 管道安装
16. Plumbing maintenance - 管道维护
17. Plumbing repair - 管道维修
18. Plumbing inspection - 管道检查
19. Water conservation - 节水
20. Backflow prevention - 防止倒流
以上是一些常见的给排水专业英语词汇和短语,希望对你有帮助!。
给排水工程外文翻译

Short and Long Term Advantage roof drainage design performance Decade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems.Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect.1. IntroductionIn the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device is gradually reduced, but the urban environment relatively high demand areas still require 100% waterproof and rapid drainage, such as the roof. Typically roof drainage system in the design, construction and maintenance has not been given due attention. Although the drainage system investment costs account for only a small portion of the total construction investment, but not able to judge the loss caused by poor design.There are two different forms of roof drainage system design methods, namely the traditional and siphon method. Traditional systems rely on atmospheric pressure work, the drive ram affected sink flow depth. Therefore, the conventional roof drainage systems require a relatively large diameter vertical drop tube, prior to discharge, all devices must be connected to the groundwater collection pipe network. In contrast, siphonic roof drainage pipe systems are generally designed to full flow (turbulent flow means that require less exhaust pipe), which will form a negative pressure, the larger the higher flow rate and pressure head. Typically siphon system requires less down pipe work under negative pressure to the water distribution network can mean higher altitude work, thereby reducing the amount of underground pipe network.Both systems consists of three parts: the roof, rainwater collection pipes, pipe network.All of these elements are able to change the water pressure distribution system.This section focuses on the role and performance of each part. Due to the principle of siphon system has not been well understood, resulting argument is relatively small, this article will highlight siphon system.2. RoofThe roof is usually designed by the architect, designer and not by the drainage design. There are three main roof.2.1 Flat roofFlat roofs are used in industrial buildings less rainfall regions and countries. This roof is not completely flat, but lower than the minimum roof slope may require. For example, the United Kingdom require maximum slope of 10 °. Setting minimum slope in order to avoid any unnecessary water.Despite the flat roof if it is not properly maintained will have more problems, but it will reduce the dead zone within the building, and the ratio of sloping roofs in favor of indoor air.2.2 sloping roofsMost residential and commercial buildings are pitched roof, inclined roof is the biggest advantage can quickly drain, thereby reducing leakage. In temperate regions, we need to consider carrying roof snow load. Once it rains, rainfall through the sloping roofs can be determined by calculation. When rainfall data can be used, you can use the kinematic theory to solve such problems.2.3 green roof (flat or inclined)It can prove roof is the oldest green roofs, including rainfall can reduce or disperse roof planted with plants. It can be planted with trees and shrubs roof garden, it can also be a vegetated roof light carpet. Wherein the latter technique has been widely used. Some of these applications tend to focus on aesthetic requirements and are often used in green development. Since the aesthetic requirements and pressure requirements, as well as green roofs thermal insulation function, reduce the heat island effect, silencer effect, extend the life of the roof.Green roofs in Germany, the most widely used, followed in North America, but to consider the impact on the aesthetics. Germany is by far the most experienced countries in the 19th century have practical application, then as an alternative to reduce the risk of fire tar roof an option in urban areas. Germany is currently the main research question on the cultivation of other issues to consider smaller cities. A study from 1987 to 1989, was found packed with 70 mm thick green roof can be reduced by 60% -80% of heat loss. In a Canadian work computer model based on the roof indicates that as long as the sump, the area can reach 70% of the roof area can be reduced by 60 percent in one year, the same model was also used for artificial rainfall, which the results indicate that rainfall in the catchment season helps to drain away rainwater.However, none of these studies show that green roofs can play a useful role in the rainfall season, or how high collection efficiency of water supply. The United States did some tests, as long as the green roofs regular watering, can reduce 65 percent of the runoff in a rainfall. America's most authoritative green roof guidelines by the New Jersey state environmental agencies promulgated. The mainprinciple is to solve the structural problems of light, and how can the normal drainage after two years.Rainfall period is based on the probability of failure is determined. The system is typically based on rainfall during rainstorms two minutes, two minutes, have a choice. Although this model will get more traffic, but there is no other better alternative. Studies have shown that the traditional model is applied to study green roofs are premature.Loss factor than traditional roof records should be small, about 98.7%. Peak flow will be reduced, although not penetrate, the surface roughness but also have a significant impact.Concentrated rainfall than two minutes for a long time, especially for large roof areas, such as public buildings, commercial buildings, industrial buildings.Urban drainage design should also consider other factors, for a complex system, a green roof in a rain is not enough. Water flow duration curve shows a longer than traditional systems. And two independent and will affect between is possible, which requires a more precise time period.3. Rainwater CollectorBasic requirements rainwater collector is designed to be able to accommodate rainfall rainstorms. Although it is possible to make a slightly inclined roof drainage purposes, but the nature of the construction industry and building settlement will become flat roof Typically, the tank is placed in a horizontal, sectional view of the water is outwardly inclined, which the role of hydrostatic.3.1 drain outletAnalyzing rainwater collector has sufficient volume is the key to the sump outlet external setting conditions. Also affect the flow rate into the storm water drainage system piping, but also affect the depth of the water catchment. Although the depth of the sump will not bring any particular problems, but too deep can cause excessive sump.Numerous studies in the 1980s showed that the flow of conventional roof drainage system outlet can be divided into two cases. It depends on the size of the depth and size of the outlet. When the water depth is less than half the diameter of the outlet, the flow of the first type, and the outlet of the flow can be calculated by an appropriate equation; water depth increases, exports are slowly clogging the flow will become another form forms, at the same time, the flow of exports can be obtained through other equations. While conventional roof drainage systems are designed to be free-draining, but may cause limitations encountered in the design of the flow is not free. In this case, it will require additional depth.Siphon roof drainage systems, the outlet is designed to be submerged stream. In this case, the depth of the outlet of the decision is more complicated, because the design of the sump depends on the flow. Recent studies have shown that conventional roof drainage systems use a variety of non-standard catchment, their depth and height, bigger than the diameter of the outlet. This will eventually result in a siphon effect. For a given catchment, the flow depends on the starting end of the drop tube diameter. A similar phenomenon has also been used to study the standardcatchment, in these circumstances, only limited siphon action occurs within relatively close distance from the exit.3.2 tank flow classificationIn the complex flow sump outlet flow classification, can be seen from Table 2a, the flow will be uniform layering, regardless of whether the same inlet flow. Table 2b and 2c show, export distribution will greatly influence the flow.When the outlet is not a free jet, sump outlet complex flow classification is difficult to describe. Because each catchment tank pressures are likely to be merged. For example, the siphon tube system design point is at near full jet outlet flow classification depends on the energy loss of each branch.3.3 hydrostatic sectionalSump shape of the water surface in the canal can be classified according to the flow equation. In most cases, a low flow rate means that there is less friction loss, if exports are free jet, the friction loss is negligible cross-section through the hydrostatic equation 1 to determine the horizontal distance.Where Q-- flow (m3 / s)T- surface width (m)g- acceleration of gravity (m / s2)F- flow area (m2)Equation 1 can not be ignored when the friction required to correct (or very long pipe velocity is large), or not a free jet.3.4 The current design methodsThe previous discussion has highlighted the main factors that should be considered with sink design. However, without the help of a certain number of models, computing hydrostatic sectional roof drainage system, the volume of the sump is possible. This large commercial and manufacturing industry, is a development opportunity, you can merge several kilometers of water routes. Thus, the conventional drainage system sump design methods are mainly based on experience, and assume that exports are free jet.Sump location in the building, it may cause the example to fail.Different interface sumpExcept in the case cited above, but also allows designers to use empirical data.3.5 Digital ModelLarge number of digital models can be used to accurately describe the flow of any form of catchment tank, regardless of whether the roof flows stable. An example of this model is a combination of roof space model. This model enables users to classify different aspects of the data indicated, includes: details of the rains, the roof surface drainage and other details. Kinematics have also been used to study rainwater tank to flow from the research collection. A typical method is based on open system to solve a basic problem of spatial mobility. This model automatically resolve the sump outlet flow situation, but also to deal with the case of free jet can also be simulated space limited mobility and submerged discharge. Output values include depth and flow rate.Currently, the model is essentially just a variety of research tools, but alsothrough practical engineering test. However, we should face up to the various role models.4 pipe systems groupComposition in the form and scope of the tube group determines the roof drainage system relies mainly on the traditional system or siphon action.4.1 Traditional stormwater systemsConventional roof drainage systems, the ground plane is generally vertical pipe-line network, connected to the sump outlet and underground drainage systems, critical systems as well as compensating tube. It should be emphasized that the angle bet ween the ground and the compensating tube is less than 10 °. Capacity of the entire system relies mainly on the outlet tube instead of down.Flow vertical tube is usually free-flowing, full of only 33%, the efficiency depends on the excess length of the tube. If the drop tube long enough (typically greater than 5m), there may be an annular flow. Similarly, under normal circumstances flow compensation pipe is free-flowing, full of up to 70%. Such designed process both for the design, various equations can also be used.4.2 Siphon roof drainage systemIn contrast with the traditional drainage systems, Siphon roof drainage system relies on air flow outside the system, and the tube is full pipe flow stream.The designs are usually made on the assumption that the design of heavy rain, the system can quickly siphon discharge rainwater. This assumption allows the application of hydrostatic siphon system theory. Often used steady flow energy equation. While this approach ignores the small amount of energy loss at the entrance, but after the experiment showed that there are still conducive to practical use.However, steady-state design methods in the siphon system is exposed to rain when the system does not meet the standard requirements or changes in rainfall intensity is large is not applied. In the first case, there will be some mixing of air quality, annular flow occurs. These problems are not integrated in the system when more serious. Because usually designed rains are common, it is clear now design methodology over time may not apply to siphon system. This is a major disadvantage, because the design of the main problem is the noise and vibration problems.Despite the disadvantages of the prior design approach, but a lot of the world's very few engineering failure reports. When a failure occurs, most likely for the following reasons:An incorrect understanding of the operation pointsSubstandard materials listInstallation defectsMaintenance mismanagementTo overcome these disadvantages, we have recently launched a series of research projects, to discuss the siphon system, and the development of digital models. From this work we learn a lot.In contrast with conventional design methods of some assumptions, siphon system mainly has the following aspects:1) non-flow system of full flow2) levels of certain pipe-flowing full pipe flow3) full pipe flow downstream propagation through a vertical pipe, riser, etc.4) the inner tube flow occurs over the vertical section, the system to reduce the pressure5) downward tube is full pipe flow, there will be air lock6) appears completely siphon action until well into the air system is lower thana certain levelTable 4a column data indicate that below the design point, the system will siphon unstable flow, depth of the water collecting tank is insufficient to maintain the siphon action. Table 4b show that the unsteady flow in siphon system when it will appear.Table 5 lists the data output of a digital model. It can be seen that the model can accurately describe the siphon action, siphon and steady state, the data also show that the model can accurately describe the complex siphon action.5 ConclusionThis article has illustrated the critical roof drainage systems, but these are often overlooked in the urban drainage system design. This article also shows that the design process is a complex process, rely mainly on the performance of exports. The following conclusions are based on the design summed up:1) Run depend on three interacting parts: the roof, sump, water pipes2) Green roofs can reduce traffic and beautify the city3) the export performance of the system is essential4) siphon drainage system have a greater advantage in large-scale projects, but must be considered high maintenance costs5) Design siphon drainage system should consider additional capacity and operational issuesAlthough the green roof is a more attractive option, but the traditional roof of a building in the country will continue to dominate. Green roofs will be gradually developed, and gradually been widely accepted. Similarly, the roof drainage system shown effective that it will continue to play a huge role in the commercial building drainage systems.Roof drainage system of the greatest threats from climate change, existing systems tend to be not simply aging; rainfall patterns of change will result in inefficient operation, self-cleaning rate will be reduced. Changes in wind speed and the roof will also accelerate the aging of the roof, it is necessary to carry out maintenance. Taking into account the climate change, the increase in materials, roof collected rainwater will be more extensive. Currently, the amount of rain around the globe per person per day 7-300 liters in the UK, with an average consumption of 145L / h / d, of which only about one liter is used by people, about 30 per cent of the toilet, study shows If water shortage, rainwater collected on the roof of developed and developing countries are recommended approach.屋顶排水设计性能的近期与远期优势最近十年见证了屋顶排水系统设计方面的巨大变化,特别的是,虹吸雨水排水系统已经得到逐步改善,并且有可能得到重点应用。
给排水专业英语词汇汇总

unit oneDistribution system分配系统Grid system 环状管网ring system环状管网loop feeder 环状管网branching system 枝状管网combination system 联合管网(combined system)Topography地形学,地形,地貌,地势dead end死水点feeder 给水管,进料器Elevation地面标高valve 阀门,真空管water supply 给水,自来水,供水系统service reservoir 配水池(调节水池)pump 泵storage element (储水)构筑物70m head 70米水柱leakage rate 泄漏量(泄漏率)hydraulic 水力的,水压的hydraulic analysis 水力分析field measurement 现场测量(实测)field date 实测数据key point管网节点pipe junctions 管网节点node (key point, junction)节点sign convention符号规约positive clockwise 取顺时针方向为正head loss 水头损失iterative solution 迭代解loop method 环路法flow, runoff, discharge 流量Sanitary 环境卫生的(尤指清除废物)Sewer 下水道,污水管Sanitary sewer 生活污水管道Connection连接管,排出管Cast-iron pipe 铸铁管(补充内容)PVC 聚氯乙烯Grade line 坡度线slope 倾斜度,坡度collecting sewer 污水支管Interceptor 截流污水管(intercepting sewer)Domestic民用的,生活的Manhole 人孔,检查井drainage 排污系统,排水装置,下水道sewerage system 污水工程系统invert 管道内底Pump station 泵站unit twoContaminant 污染物ground water 地下水surface water 地表水wastewater 污废水Floating materials漂浮物suspended materials悬浮物Colloidal materials 胶体物质colloidal particles 胶体微粒Dissolved materials 溶解物质Dissolved gases 溶解气体Microorganisms微生物(microbe)organic and inorganic constituents 有机和无机成分hardness-ion 硬度离子hardness 硬度carbon dioxide二氧化碳hydrogen sulfide 硫化氢Alga(algae) 水藻,藻类Clay 粘土silt泥沙,淤泥pathogenic病原体,致病菌,病原菌Bacteria 细菌Ammonia 氨,氨水Methane gas甲烷,沼气turbidity 浊度taste 味odor 臭drinking water 饮用水water sample 水样suspension 悬浮液turbidity unit (TU) 浊度单位turbidimeter 浊度表,浊度仪Solubility 溶度,溶解性Metabolism 新陈代谢standard color solution 标准比色液threshold odor number 臭阈值boiler feed water 锅炉给水boiler water supply锅炉给水demineralize 去除矿物质scale deposit 水垢,积垢Outfall 出水口,排水口chemical clarification 化学(法)澄清coagulation 混凝coagulant 混凝剂sedimentation 沉淀filtration 过滤disinfection 消毒synthetic polymer 合成聚合物Activated carbon 活性炭Chlorine 氯sedimentation basin 沉淀池oxidize 使氧化,使生锈soften 软化settle-able 会沉淀的Aeration曝气通风unit threeplain settling 自由沉淀detention time 滞留时间Flocculation 絮凝Flocs 絮凝体coagulant aid 助凝剂(flocculation aid) natural alkalinity 自然碱度high-molecular compound 高分子化合物jar test 烧杯实验Centrifugal 离心的low-lift pump 低扬程水泵suction line 吸入管线索impeller 叶轮pump casing 泵壳Paddle-type flocculator 桨板式絮凝器(池)Clarifier 澄清池up flow clarifier 升流式澄清池contact tank 接触反应池Sedimentation basins 沉淀池inlet baffle 进水挡板effluent weir 出水堰tube settler 管式沉淀池influent flow 入流reaction jet structure 喷流结构finger launder 指形槽结构effluent launder 出流槽cross baffle 横向挡板settling tank 沉淀池(settler)aqueous suspension 水悬浮液shallower basin 浅池parallel-plate settler 斜板沉淀池tube settler 斜管沉淀池feed rate 这里指水流速度laminar flow 层流filter medium 过滤介质(滤料)anthracite 无烟煤mixed-media 复合滤料back-wash 反冲洗hydraulic grading水力分级High-Rate Sedimentation Basins 高效澄清池Slow and Rapid Sand Filter慢砂滤池和快砂滤池Mixed-media Filter 复合滤料滤池specific gravity 比重filter cycle 过滤周期oxidation potential 氧化电势,氧化性reduction potential 还原电势,还原性ozone 臭氧Oxidant 氧化剂Reducer 还原剂germicidal property杀菌能力(germicide杀菌剂)molecular weight 分子量Halogen 卤素pilot 试验性的Chlorination 氯化,用氯处理water-borne disease 水传播病THM S三卤甲烷breakpoint chlorination 折点加氯breakpoint dosage折点剂量free (available) chlorine 自由性氯chlorine demand 需氯量combined chlorine 化合性氯unit fourWater Pollution水污染Organic wastes有机废物municipal waste 市政污水Dissolved oxygen 溶解氧(DO)slightly soluble 微溶于水的Saturation 饱和状态saturation concentration 饱和浓度biochemical oxygen demand (BOD)生化需氧量pollutant 污染物Biodegradable 可生物降解的chemical oxygen demand (COD) 化学需氧量oxidizing agent 氧化剂wastewater treatment plant 污水处理厂total suspended solids (TSS)总悬浮固体mixed liquor suspended-solids(MLSS) 混合液悬浮固体浓度volatile suspended solids (VSS) 挥发性固体wastewater analysis 污水水质分析water pollution control水污染控制Anaerobic 厌氧菌的,厌氧引起的Aerobic 需氧的,好氧的unit fivePrimary treatment 一级处理screen 格栅grit chamber 沉砂池settler 沉淀池V-notch weir三角堰primary clarifier 初沉池turbulence 紊流primary effluent 一级出水secondary treatment 二级处理biological treatment system 生物处理系统activated-sludge system 活性污泥系统aeration basin 曝气池return activated sludge (RAS)回流污泥air diffuser 空气扩散器step aeration activated-sludge process 阶段曝气活性污泥法BOD-SS loading BOD污泥负荷mixed liquor suspended-solids(MLSS) 混合液悬浮固体浓度sequential batch reactor (SBR) 序批式(间歇式)活性污泥法primary clarifier 初沉池secondary clarifier 二沉池Sludge treatment 污泥处理volume reduction 减量化Sludge thickening 污泥浓缩gravity thickener重力浓缩池sludge scraper 刮泥器Sludge digestion 污泥消化methane-forming bacteria产甲烷菌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给排水外文翻译 High quality manuscripts are welcome to download浅谈建筑给排水节水技术翻译者:邹金秋(南昌大学给排水071)原文资料:The Discussion of Water-saving Technology about Water Supply and Drainage in Building(Qi Junfeng,, Yang Yanyan, Hu Linpeng)摘要:根据建筑给排水的当前形势,分析建筑给排水的节水技术,达到水资源的高效利用。
节水技术主要包括合理限定配水点的水压,防止超压溢流;完善热水供应系统,减少热水系统的无效冷水量;推广应用节水型配水器具和卫生器具;增加质量好的管道和阀门的应用;以及提高当前热水水池的结构同时提高回水和雨水利用技术。
关键词:建筑给排水,节水,技术引言:水是关系到人类生存和发展的至关重要的资源。
我们国家水资源总量位居世界第六,但是人均水资源占有量只有世界平均水平的四分之一。
水资源在我国的分布及其不均匀,并且全国范围内三分之二的城市已经呈现不同程度的水资源短缺。
最近几年,城市生活惨遭水资源的匮乏和污染问题,这不仅给人们的生活构成了威胁,也成为了社会可持续发展的限制性因素。
所以,我们要更加关注节约用水。
建筑给水是一个系统工程。
除了与节水相关的法律法规外,我们还要加强管理和教育,利用提升水价来促进节约用水,另外需要采用有效地科学技术来保证整个建筑节水的贯彻实施。
一、合理限定配水点的水压,防止超压出流。
节水龙头试验结果显示全开时最大流量为s。
相对应的动压值为,静压值和。
按水龙头的额定流量q=s为标准比较,节水龙头在全开时其流量为额定流量的3倍。
在另一个对67个水龙头的实测中,有47个测点流量超标,超标率达61%。
因此,在给水系统设计中超压出流是个严重的问题,采用以下措施是非常必要的。
A 合理限定配水点的水压《建筑给水排水设计规范》限定了给水分区的水压,而卫生器具最佳使用的静水压力宜为和之间,大部分处于超压出流。
近年来,工程中常用支管减压,这也是节水中的重要措施。
在给水分区的地步,减压后的给水静水压力在满足卫生器具的给水配件的流量时尽量取小值。
建议高层分区给水系统最低卫生器具配水电处静水压大于时,采取加压措施。
B 采取减压措施在给水系统中合理配置减压装置是将水压控制在限制要求内、减少超压出流的技术保障。
减压阀可以减动压,静压;具有良好的运行参数的减压阀可以起到很好的控制和降噪效果。
减压阀已广泛应用于新的建筑中。
然而,减压阀价格较昂贵,所以要经过经济比较后才适合使用减压阀,建议使用比例阀,它具有简单的结构和合理的价格。
减压孔板相对于减压阀来说,系统比较简单,投资较少,管理方便。
但减压孔板只能减动压,不能减静压,且下游的压力随上游压力和流量而变,不够稳定。
所以减压孔板只适合对给水压力要求较低的情况下采用。
二、完善热水供应系统,减少无效冷水量随着人民生活水平的提高和建筑功能的完善,建筑热水系统已逐渐成为建筑给水不可缺少的组成部分。
据调查,给中热水系统,大多存在着严重的水量浪费现象,主要表现在开启热水配水装置后,往往要放掉不少冷水后才能正常使用。
目前我国现行的《建筑给水排水设计规范》中提出了三种热水循环方式:于管循环、立管循环、支管循环。
同时,允许热水系统较小、使用要求不高的定时供应系统,如公共浴室等可不设循环管。
我们以北京市某12层公寓为例,分别计算了该建筑采用支管循环、立管循环、干管循环或无循环方式时,每年的理论无效冷水量、节水量和各种循环方式的回水系统的概算工程成本。
从节水角度和满意程度来看,从好到差的顺序为:支管循环、立管循环、干管循环和无循环。
从投资回收期来看,支管循环方式约为30年,立管循环方式约为年,而干管循环方式约为年。
因此,新建建筑的集中热水供应系统在选择循环方式时需综合考虑节水效果与工程成本,根据建筑性质、建筑标准、地区经济条件等具体情况选用支管循环方式或立管循环方式,尽可能减少乃至消除无效冷水的浪费。
三、采用节水型配水器具和卫生器具A 节水型配水器具在水压相同时,陶瓷阀芯节水龙头和充气水龙头等的节水量可达20%-30%,陶瓷阀芯节水龙头不仅具有良好的出水性能:在关停好几万次后仍然不滴水,而且具有很好的节水效果。
尤其是在静水压比较大,普通水龙头的出水量大时,节水龙头的节水量更大。
与普通淋浴器相比,节水淋浴器每分钟只用9L水,减少了一半的用水量。
在公共建筑中,使用延时自闭冲洗阀或者光电式控制水龙头和冲洗阀可以避免水的浪费。
因为这些卫生器具出水控制在一定的范围内。
另一方面,这些卫生器具在出水一定时间后自动关闭,避免细菌传播。
B 节水卫生器具住宅的冲厕水水量占了一整天用水量的30%-40%。
当前住宅的厕所常采用大便和小便共用同一个冲洗水,冲洗水水量更大,约为11L。
耗水量很大,这显然是种浪费。
采用两档水箱比采用6L水箱更节水。
两档水箱在冲洗小便时,冲水量为3L,而冲洗大便时,冲水量为6L。
四、推广使用优质管材和阀门国内建筑已广泛采用镀锌钢管作为给水系统中的给水干管。
但是,镀锌钢管易腐蚀和滋生细菌,这不仅会造成水的二次污染,而且腐蚀物质的泄露会影响构筑物的环境和水资源。
我国建设部等四部委也联合发布文件,要求自2000年6月1日期,在全国城镇新建住宅给水管道中,禁止使用冷镀锌钢管,并根据当地实际情况逐步限时禁止使用热镀锌钢管,推广应用新型管材。
在建筑给水系统中,塑料管主要包括应聚氯乙烯管,聚氯乙烯管,高密度聚乙烯管,复合聚丁烯管,聚丙烯管,聚丁烯管和丙烯腈-苯乙烯-丁二烯共聚物等。
复合管包括铝塑复合管,镀塑钢管,钢塑复合管等。
塑料管与镀锌钢管相比,在经济上具有一定优势。
铜管和不锈钢管虽然造价较高,但使用年限厂,还可用于热水系统。
应根据建筑和给水性质,选择合适的优质给水管材。
阀门是建筑给排水中最常用的配件之一,它的类型和质量的好坏能影响用水的质量。
一般的,截止阀比闸阀关得严,闸阀比蝶阀关得严。
液压阀能克服浮球阀的大型尺寸,克服溢流和其他由堵塞引起的缺点;液压阀是浮球阀的浓缩产品。
在同等条件时,我们就应当选用更能够节水的阀门。
五、提高消防水池根据我国目前规范,当市政给水或者天然水源不能满足消防要求时,或者市政给水管为枝状或者只有一条进水管时(除了二类住宅)时,需要设置消防水池。
消防水池的容量要满足在火灾持续时间内室内和室外的消防用水量。
这样,经过计算每栋高层建筑的消防水量非常大,从几百立方米到几千立方米不等。
一般消防水池有两种形式,即把消防水池和生活水池合建,另一种是消防水池单独设置。
当消防水池与生活水池合建时,由于大部分建筑的消防水量比其生活水量大得多,所以生活用水在水池中的停留时间长,导致余氯耗尽影响水质。
因此,在新建建筑的生活水池和消防水池应分开设置。
单独设置消防水池不仅投资大,而且容易由于消防水使用频率低使其产生异味。
为了确保消防水质量,我们必须定期更新消防用水,这就带来水资源的浪费。
因此,我大力推荐几种消防水池的建法。
A 采用消防水池区域合作方式随着城市建筑的发展,高层建筑越来越多。
政府部门应该协调有关单位和部门,大力推广同一小区的邻近建筑共用一个消防水池,并根据实际情况建立共用控制中心。
消防水池的设计应与最大建筑消防用水量相一致。
如此,我们可以节省投资,减少水的浪费,而且还能保证消防用水。
B 开发中水作为消防用水如今,我国有些严重缺水的城市已经要求对中水系统进行探索。
它要求公共建筑应建立中水系统,尤其是大型酒店、宾馆等。
如果我们开发中水作为消防用水,那么可以节约大量生活用水。
如果合理循环使用中水并且和消防用水结合起来形成有效循环,可以解决由消防用水停留时间过长导致的二次污染。
C 充分利用市政水资源随着城市给水管网不断的发展和提升,市政的水量和水质有了很大的提高。
当市政管网能满足发生火灾时的消防用水量,建议取消室内消防水池而直接用市政给水管网供水。
六、开发中水和雨水利用技术建筑节水不仅是要减少用水,而且还是要提高有效水量。
在严重缺水的地区,加大中水和雨水的有效利用是节水的重要组成部分。
中水是污水经适当处理后,达到一定的水质指标的非饮用水。
它可以用于冲洗厕所、城市绿化、冲洗汽车、消防等。
据有关数据显示,使用中水系统,住宅用水量可以节省30%-40%;与此同时排放物也能减少35%-50%;商业区可以减少70%;科研机构可以节约30%。
随着城市的发展和生活水平的提高,城市用水量将继续增加。
在缺少可用水资源的区域,可以提高水的价格,这样中水的建设是经济可行的。
这是污水回用和节水的有力措施,也是节水发展中的必然方向。
与中水相似,雨水回用是把雨水收集、储存、处理,再作为不同类型的水资源。
自1980年以来,欧洲、日本和其他国家,一个接一个地投资对雨水的收集和使用。
研究显示,如果建立雨水收集和利用系统,收集、加工和循环雨水,然后用于冲洗厕所、冲洗汽车、造林、浇洒道路,或者作为景观和河流用水,这将节约相当大的水量。
但并不是每个地方都设和设立这种系统。
如果降雨不大或者用水量不大,系统恢复慢。
因此,根据当地降雨特点、水价、建筑投资、经营投资和用水量,在谨慎考虑是否采用此系统。
结语节水是当代人为下一代获益的义务。
节水是一项系统工程。
我们应该坚持把人的节水意识和节水技术相结合,坚持开发与节约并举,把节约放在首位。
在水资源、水环境承载能力范围内,在社会法规的不断完善和给水条件下,宣传节水意识,完善法律法规,广泛采用各种保护措施,并开发新技术。
这不仅能缓解城市给水和区域用水的矛盾,也能减少废水,并取得较好的社会效益和环境效益。