偏振现象的观测与研究
偏振光的观察与研究实验报告

偏振光的观察与研究实验报告一、实验目的1。
观察光的偏振现象,加深偏振的基本概念.2. 了解偏振光的产生和检验方法。
3。
观测椭圆偏振光和圆偏振光。
二、实验仪器偏振光观察与研究的实验装置包括一下几个部分:光源(可发出多种类型激光),偏振片,波晶片(λ/2 和λ/4 波长),光屏。
1.光源:双击实验桌上光源小图标弹出光源的调节窗体.单击调节窗体的光源开关可以切换光源开关状态;可以选择光源发出光的类型,包括自然光、椭圆偏振光、圆偏振光、线偏振光、部分偏振光。
光源默认发出是自然光.2.偏振片:双击桌面上偏振片小图标,弹出偏振片的调节窗体。
初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。
最大旋转范围为360°,最小刻度为1°。
可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片。
3.波晶片:分为λ/2 和λ/4 波长波片,双击桌面上波晶片小图标,弹出波晶片的调节窗体。
初始化时波晶片的旋转角度是随机的,用户使用时需要手动去校准.最大旋转范围为360°,最小刻度为1°。
三、实验原理1。
偏振光的概念和产生:光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。
光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光.反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。
在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。
折射光为部分偏振光,而且此时的反射光线和折射光线垂直。
2. 改变偏振态的方法和器件:①光学棱镜:如尼科耳棱镜、格兰棱镜等,利用光学双折射的原理制成的;②偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。
用旋光仪测糖溶液浓度偏振现象的观测与研究

实验二十九 用旋光仪测糖溶液浓度【预习题】1.测量糖溶液旋光度的基本原理是什么?当偏振光通过某些透明物质(如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这一现象称为旋光现象。
偏振光所转过的角度叫旋光度,对某一旋光溶液,旋光度ϕ与偏振光通过溶液的L 长度和溶液浓度C 成正比,即 L c ⋅⋅=αϕ2.什么叫左旋物质和右旋物质?如何判断?当偏振光通过一些物质后,偏振光的振动方向发生旋转,人们称这种物质为旋光物质。
不同的旋光物质可使偏振光的振动面向不同的方向旋转,若面对光源,使振动面顺时针旋转的物质称为右旋物质,使振动面逆时针旋转的物质称为左旋物质。
【思考题】1.本实验为什么采用了三分视场的方法(半荫法)来测量旋光溶液的旋光度?由于人们的眼睛很难准确地判断视场是否全暗,因而会引起测量误差。
所以采用了三分视场的方法(半荫法)来测量旋光溶液的旋光度。
实验三十 偏振现象的观测与研究【预习题】1.强度为I 的自然光通过偏振片后,其强度I I 210<,为什么?应用偏振片时,马吕斯定律是否适用,为什么?答:由于偏振片的吸收,使强度为I 的自然光通过偏振片后,其强度I I 210<。
应用偏振片时,马吕斯定律仍适用,这是因为实验中测量的各光强都经过检偏器(偏振片2)后的光强,所以其相对光强比仍为余弦的平方。
2.本实验为什么要用单色光源照明?根据什么选择单色光源的波长?若光波波长范围较宽,会给实验带来什么影响?答:因为中要用1/2波片和1/4波片,所以要用单色光源照明。
又因为1/2波片和1/4波片都是对某一单色光而言,所以实验中必须使用与之相对应的单色光源的波长。
若光波波长范围较宽,1/2波片和1/4波片将不能发挥其作用,实验中将看不到应有的实验现象。
【思考题】1.试说明椭圆偏振光通过1/4波片后变成平面偏振光的条件。
答:椭圆偏振光通过1/4波片后变成平面偏振光的条件是:1/4波片的光轴与椭圆偏振光椭圆的长轴或短轴平行。
偏振现象的观测与研究

偏振现象的观测与研究偏振现象是光波传播过程中的一个重要特性,它是指光波中电场方向的定向性和振动方向的确定性。
偏振现象的观测与研究对于理解光的本质、光的相互作用以及光在各种介质中的传播规律具有重要意义。
下面将从近代光学的发展、偏振现象的观测方法、偏振现象的研究内容三个方面对偏振现象的观测与研究进行详细讨论。
近代光学的发展对偏振现象的观测与研究提供了重要的基础。
19世纪末20世纪初,人们对光波本质的研究取得了重大突破,提出了电磁理论和光的波动性相关的理论。
光的波动性理论解释了光的干涉、衍射等现象,也为偏振现象的观测与研究提供了物理基础。
马克斯韦尔提出的电磁理论揭示了光波的电磁性质,提供了解释偏振现象的理论依据。
偏振现象的观测方法主要包括偏振镜、偏光片、双折射现象的观测以及干涉现象的观测等。
偏振镜是最基本的偏振现象观测仪器,它通过在光波传播过程中选择性地吸收或透射电场振动方向来实现对光的偏振状态的观测。
偏振板也是一个常用的偏振现象观测工具,它具有选择性吸收或透射特定方向光波的功能。
双折射现象是指光在非各向同性晶体中传播时发生的折射率不同的现象,它是偏振现象的重要表现形式之一、通过观察双折射现象,可以直接观测到光波的偏振性质。
干涉现象是指两束或多束相干光波叠加后产生的干涉条纹。
通过观测干涉现象,可以推断出光的偏振状态。
偏振现象的研究内容主要包括偏振光的性质、光的偏振变化以及光的偏振传播等方面。
偏振光的性质研究主要包括偏振光的振动方向、偏振光的强度、偏振光的偏振态等。
偏振光的振动方向是指光的电场方向,通常使用偏振片或偏光镜等偏振现象观测工具来确定。
偏振光的强度是指光的能量或光强在偏振方向上的分布情况。
偏振光的偏振态是指光在空间中的偏振分布状态,可以根据偏振分布函数来描述。
光的偏振变化研究主要包括光的偏振转换、偏振的旋转等。
光的偏振转换是指光在传播过程中由一个偏振状态转变为另一个偏振状态。
例如,当光波从空气垂直射向水平方向的介质时会发生偏振转换。
一 偏振光的产生和检验

实验十一 偏振光的产生和检验光的干涉和衍射实验证明了光的波动性质。
本实验将进一步说明光是横波而不是纵波,即其E 和H 的振动方向是垂直于光的传播方向的。
光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。
目前偏振光的应用已遍及于工农业、医学、国防等部门。
利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。
一、实验目的1、观察光的偏振现象,加深对光波传播规律的认识。
2、掌握产生和检验偏振光的原理和方法。
二、实验原理1、偏振光的概念光的波动的形式在空间传播属于电磁波,它的电矢量E 与磁矢量H 相互垂直。
E 和H 均垂直于光的传播方向,故光波是横波。
实验证明光效应主要由电场引起,所以电矢量E 的方向定为光的振动方向。
自然光源(如日光,各种照明灯等)发射的光是由构成这个光源的大量分子或原子发出的光波的合成。
这些分子或原子的热运动和辐射是随机的,它们所发射的光振动,出现在各个方向的几率相等,这样的光叫做自然光。
自然光经过媒质的反射、折射或者吸收后,在某一方向上振动比另外方向上强,这种光称为部分偏振光。
如果光振动始终被限制在某一确定的平面内,则称为平面偏振光,也称为线偏振光或完全偏振光。
偏振光电矢量E 的端点在垂直于传播方向的平面内运动轨迹是一圆周的,称为圆偏振光,是一椭圆的则称为椭圆偏振光。
2、获得线偏振光的方法自然光变成偏振光称作起偏,可以起偏的器件分为透射和反射2种形式。
(1) 反透射式起偏器自然光在两种媒质的界面处反射和折射,当入射角b φ满足12tan /b n n φ=时,反射光成为振动 方向垂直于入射面的线偏振光,这个规律称布儒斯特定律,bφ称为布儒斯特角或起偏角,而折射光为部分偏振光。
如果自然光以入射角b φ投射在多层的玻璃堆上,经过多次反射后,透射出的光也接近于线偏振光,其振动面平行于入射面。
(2)透射式起偏器晶体起偏器:利用某些晶体的双折射现象可以获得较高质量的线偏振光,如尼科尔棱镜,这类偏光器件价格昂贵。
光的偏振观察光的偏振现象

光的偏振观察光的偏振现象光是由电磁波构成的,而电磁波是具有振动性质的。
振动的方向与光波传播的方向之间的关系被称为光的偏振现象。
光的偏振是一个很有趣的现象,它在自然界和科学研究中都有着广泛的应用。
在这篇文章中,我将会讨论光的偏振的观察和其所涉及的现象。
首先,我们需要了解光的偏振是如何观察的。
最常见的方法是使用偏振片。
偏振片是一种具有特殊结构的材料,它只允许特定方向的光通过。
偏振片可以通过使光的电场分量在特定方向上振动,从而使光的偏振方向发生改变。
通过旋转偏振片,我们可以观察到光的偏振现象。
当光通过偏振片时,偏振片会选择性地阻止某些方向的光通过,从而使得通过的光的偏振方向发生改变。
这种选择性透射现象被称为偏振透射。
偏振透射现象是光的偏振性质的重要表现之一。
在观察光的偏振现象时,我们可能会遇到的一个有趣的现象是双折射。
双折射是指光在某些材料中传播时会分离成两束波的现象。
这是由于材料的晶体结构导致了光的振动方向的差异。
双折射使得光的偏振现象更加明显和有趣。
除了双折射,还有一个重要的现象是光的偏振旋转。
一些材料,如石英晶体,在光传播过程中会使光的偏振方向发生旋转。
这种现象被称为光的旋光性质。
光的旋光可以通过旋光仪器来测量,它对于一些化学分析和生物分子结构研究中具有重要的应用价值。
光的偏振现象不仅在实验室中有着广泛的应用,而且在日常生活中也随处可见。
例如,太阳光在大气中散射时会发生偏振现象,这就是为什么我们可以通过偏振墨镜减少反射和眩光。
在电子显示屏和液晶显示器中,液晶分子的偏振性质使得屏幕能够显示出丰富的颜色和图像。
总结一下,光的偏振是光的振动方向与传播方向之间的关系。
通过使用偏振片和其他仪器,我们可以观察光的偏振现象,并探索其中的奥秘。
光的偏振现象在自然界和科学研究中都有着广泛的应用,从而对人类的生活和科学发展产生了重要的影响。
通过深入研究光的偏振现象,我们可以更好地理解光的本质和光与物质之间的相互作用。
偏振光的观测与研究实验注意事项

偏振光的观测与研究实验注意事项偏振光是一种波长为567 nm的光,具有波长长范围大的特点。
偏振光是一种很难观测到的光,一般情况下只有在强振动或者长时间震动的环境中才能观测到,但是我们可以通过偏振光所发出的光进行测量。
偏振是一种光波,它由偏振光的激发而产生,我们把它叫做偏振光。
我们通过偏振光对光子发出光的位置进行测量就可以获得光子的偏振方向。
如果在光线传播的过程中,光线方向始终和偏振光的偏振方向保持一致就可以观测到光子的偏振方向。
所以在实验上对偏振方向观测实验是十分必要的。
今天为大家介绍偏振光观测实验时必须注意事项。
1.由于偏振光具有强烈的激发性质,所以必须保持偏振光的光强与光激发强度一致,实验中必须保证偏振光具有良好的亮度,才能观测到偏振光。
一般情况下,如果偏振光的亮度非常高,而光强很小,就不能很好地被测量出来。
因此,为了提高偏振光强度以获得最佳的光强和偏振方向,我们必须对偏振光进行严格的控制,使其亮度尽量高和其光强尽可能大。
一般情况下,为了使偏振光的光强尽量大,最好同时也要保证偏振方向与光强的一致性。
在偏振光观测实验中常用的偏振光源有: LED光源、卤素光源、氮化镓光源等。
不同类型的光源具有不同的光强范围与激发强度:其中最好的光源适用于较强振动光线下观测,如用来拍摄偏振光时使用最好的光源。
光源通常采用卤素光源或氮化镓光源。
由于这种光源强度很高,光束中几乎不含有其他成分,所以我们可以通过调节光源亮度来达到最佳的光强和偏振光性能。
当光源中存在着各种成分时,我们需要特别注意光源亮度与激发强度之间有一个简单匹配关系。
2.要想获取偏振光的光强,在光线传播过程中一定要保持与偏振光偏振方向一致,而且必须保证偏振光不受环境因素的影响。
因为偏振光的传播速度会受到很多的影响。
一般情况下只要偏振光偏振方向与光线传播方向一致就可以获得一定程度上的光强。
但是如果偏振光传播速度与光线传播速度不同,则会导致偏振光发射出的光强和偏振光的偏振方向产生较大的差异。
研究光的干涉、衍射和偏振现象

现象
汇报人:XX
2024-01-22
contents
目录
• 光的干涉现象研究
• 光的衍射现象研究
• 光的偏振现象研究
• 干涉、衍射和偏振在科学技术中应用
01
光的干涉现象研究
干涉现象基本概念
干涉现象定义
干涉条纹
两列或多列频率相同、振动方向相同
、相位差恒定的光波在空间某点叠加
一系列明暗相间的圆环;亮斑大小与圆孔直径和
光波长有关。
圆孔衍射与单缝衍射的区别
3
圆孔衍射形成的是圆环状图案,而单缝衍射形成
的是直线状条纹;圆孔衍射的亮斑较大,而单缝
衍射的中央条纹较窄。
晶体衍射与X射线衍射
X射线衍射原理
晶体衍射现象
当光通过晶体时,由于晶体内部
原子排列的周期性,使得光波发
生衍射,形成特定的衍射图案。
在屏幕上观察到明暗相间
的衍射条纹,条纹间距与
缝宽、光波长及屏幕距离
有关。
中央条纹最亮,两侧条纹
依次递减;条纹间距与光
波长成正比,与缝宽和屏
幕距离成反比。
圆孔衍射及其特点
圆孔衍射现象
1
当单色光通过小圆孔时,光波在圆孔范围内发生
衍射,形成明暗相间的圆环状衍射图案。
圆孔衍射特点
2
中央为一个较大的亮斑(艾里斑),周围环绕着
是横波区别于其他纵波的一个最
明显的标志。
自然光、部分偏振光、线偏振光
、圆偏振光和椭圆偏振光。
摄影、显示技术、光学研究等。
马吕斯定律及其物理意义
马吕斯定律内容
强度为I0的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为:
用示波器研究光的偏振现象

图 2 装 置 实物 图
F g r . T e p y ia p o e ie i e2 u h h sc lma f v c d
激 光光束依 次射 向起偏 器 N 、 检偏器 N 和硅光 电池 , : 光经 过硅 光 电池转 化为 电流 , 由电机 带 N可 动旋转 , 假设 N 以角 速度 ∞转动 , ,=lcst , 则 oo o 由于硅 光 电池 的 电流 i t 与光强 I 正 比, 成 因此示 波器 显示 的为一成余 弦规律变化 的 曲线 , 其电流 的变化为
3 实 验 现 象 和 数 据 分 析
3 1 用示 波器验证 马 吕斯定 理 .
( ) 转 动 时 的 图像 aN 未
图 3 用 示 波器 验 证 马 吕斯 定 律
Fi. Te tM au a wih o ci o c p g3 s l s lw t s l s o e l
( ) 转 动 时 的 图像 bN
上 面两 图为检偏 器 N 未转 动 和转动 时示波 器观 察到 的 图像 , : 从两 图对 比来 看 , 偏振 片 N 未转 动时 为一 直线 , 偏振 片 以角速 度为 ∞转 动时 , 强变 化 为余 弦 曲线 , 定性 验 证 马 吕斯 定 理 。通 过该 实 验 , 光 可
=
r p
lT I从 而可计 算旋 光率 P2 一 , Ⅲ. J
2 实验 装 置
实验 装置 实物 图如 图 2所 示 。所 用仪 器 、 备 和器 材 : Z型光 学实 验平 台 、 B 35型示 波 器 、 设 WS Y 44 激
光 光源带 支架 一个 , 偏振 片带 支架一 个 , 有小 电机 的偏 振片带 支架一 个 , 装 硅光 电池带 支架一 个 , C A 5型 检 流计 ( 微 安表一 个 ) 装 有 已知浓 度 的葡萄糖 溶液 玻璃 管一个 、 光罩一 个 。 或 , 遮
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏振化方向
实验原理/起偏与检偏、马吕斯定律
偏振化方向
P1
P2
θ
θ
偏振化方向
起偏
检偏
I = I0 cos2 θ
——马吕斯定律
振动方向 E = E0 cosθ
当 θ = 0o 时 I = I0 当θ = 90o时 I = 0
实验内容/3.1 检验激光的偏振度
偏振片 半导体激光
P
光功率计
检验偏振度
实验内容/3.2马吕斯定律的验证
偏振片 偏振片
半导体激光 P
P
光功率计
验证马吕斯定律
数据记录表格
表:1:半导体激光器的偏振度测量
1
2
4
5
Imax(μw) Imin(μw)
平均
I -I max min P= ---------
I +I max min
α
0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60° 65° 70° 75° 80° 85° 90°
一 实验目的
光的偏振在生活、生产和科研实践中有许多重要应 用,如摄影、立体电影、液晶显示都用到了光的偏 振。
1、通过验证马吕斯定律,初步认识光的偏振现象及 偏振状态,掌握起偏检偏的方法, 2、好需要学习计算机作图和函数拟合的方法。 3、通过测量偏振度,了解激光的偏振状态
二 实验原理/2.1光的偏振性
(2)部分偏振光:振动在某一方向上较强。
自然光
完全偏振光
部分偏振光
实验原理/2.2 光的偏振状态
偏振度的定义: P = I max − I min
+ I max I min
线偏振光 P = 1
自然光 P = 0
。
部分偏振光 0 < P < 1
实验原理/2.3偏振片 起偏与检偏
1、偏振片:偏振片有一个特定的方向(偏振化方 向),只让平行与该方向的振动通过。 2、起偏 光通过偏振片后变成偏振光
光是电磁波,电磁波是横波,横波具有一个纵波 没有的特性—偏振
振动方向 传播方向
振动方向
振动方向
传播方向
传播方向
横波和纵波在偏振方面的区别
实验原理/2.2光的偏振状态
1、自然光:在与光传播方向垂直的平面内,光矢量 沿各个方向的平均值相等。普通光源发光的是自然光
2、偏振光:自然光经过反射、吸收、折射后,可能会 只保留某一方向的光振动或振动在某一方向较强,即 偏振光。 (1)完全偏振光(平面偏振光):振动只在某一方向上。
表2:马吕斯定理的验证
cosα
Hale Waihona Puke cos2αI0(μw) I(μw)
I/I0
作I/I0‐cos2α图,求斜率k,并与理论值作比较
数据采集与数据处理/方法1
I = I0 cos2 α
ln I = 2 ln cosα
I0
数据采集与数据处理/方法2
动画、脚本设计:赵改清 课 件 制 作:赵改清
2012.9 深圳大学大学物理教学实验中心