立体几何及空间想象能力真题赏析

合集下载

专题 立体几何及空间想象能力2014新题赏析-讲义

专题 立体几何及空间想象能力2014新题赏析-讲义

第 -1- 页
题四:如图,已知四棱锥 P − ABCD 的底面 ABCD 为等腰梯形,AB∥DC,AC⊥BD,AC 与 BD 相交 于点 O,且顶点 P 在底面上的射影恰为 O 点,又 BO=2,PO= 2 ,PB⊥PD. (1)求异面直线 PD 与 BC 所成角的余弦值; (2)设点 M 在棱 PC 上, 且
立体几何及空间一:已知正三棱锥 P ABC, 点 P, A, B, C 都在半径为 3 的球面上, 若 PA, PB, PC 两两互相垂直, 则球心到截面 ABC 的距离为________.
题二: 某几何体的一条棱长为 7 , 在该几何体的正视图中, 这条棱的投影是长为 6 的线段, 在 该几何体的侧视图与俯视图中, 这条棱的投影分别是长为 a 和 b 的线段, 则 a b 的最大值 为 .
PM ,问 为何值时, PC⊥平面 BMD. MC
第 -2- 页
立体几何及空间想象能力 2014 新题赏析 讲义参考答案
金题精讲
题一:
3 . 3
题二:4.
题三:(1)略;(2)略;(3)点 M 为棱 BB1 的中点. 2 5 题四:(1) ;(2) λ = 2. 15
第 -3- 页
2、立体几何解答题 题三:如图所示,在直四棱柱 ABCD A1 B1C1 D1 中, DB BC , DB ⊥ AC ,点 M 是棱 BB1 上一点. (1)求证: B1 D1 ∥平面 A1 BD ; (2)求证: MD ⊥ AC ; (3)试确定点 M 的位置,使得平面 DMC1 ⊥平面 CC1D1D .

高中数学能力基础之空间想象能力例题解析

高中数学能力基础之空间想象能力例题解析

数学能力基础之空间想象一、空间想象能力关于空间想象能力.它是一种特殊的思维形式,也是发展创造的必备条件.空间想象就是用题设中的数学语言搭起"空中楼阁",让它的结构完整适用.根据已建的立体(或平面)图形,找出概念的东西寻求规律和数量关系,从而解答出所求的问题.空间想象还含有动的因素:包括割补、展平、折迭、平移、旋转等.空间想象能力的检测是高考的主要内容之一,不容轻视.二、例题分析[例1]什么叫直线的倾斜角?并指出直线倾斜角α的范围。

参考答案:一条直线向上的方向与x轴的正方向所成的最小正角叫做这条直线的倾斜角;特别地,当直线和x轴平行或重合时,规定其倾斜角为0。

直线倾斜角α的范围是:0≤α<π。

说明:倾斜角的概念应理解的十分准确,这里要特别注意:倾斜角的定义是分类给出的,任意一条直线与x轴的位置关系有三种:相交、平行和重合。

其中"相交"是一般情形,常见的错误是把一般情形当作倾斜角定义的全部,忽视了"平行"和"重合"这两种特殊情形,而这两种特殊情形的倾斜角定义是规定为0,而不是π。

因此,有人说倾斜角α的范围是0≤α≤π,这就是错误的。

[例2]设两条直线:则参考答案:说明:问3的结论概括了任何两条直线垂直的条件,即不管斜率是否存在,结论”都是正确的,这个结论的证明,应按斜率是否存在划分为“问2”“的两种情况来证明,请同学们自己去完成。

[例3]求直线l的方程:⑴过点P(-1,3)且与直线2x+3y+3=0平行;⑵过点P(-1,3)且与直线2x+3y+3=0垂直。

[提示]利用平行,垂直的条件求斜率K,然后用点斜式求直线l的方程。

这是思路一。

这个思路一,同学们都会;我们给出比思路一更好的思路二——待定系数法:根据平行,垂直的条件设出直线系方程,然后用过点P(-1,3)求出待定系数。

[参考答案]⑴设l的方程为2x+3y+c=0, ①由过点P(-1,3),得解得c=-7.②把c=-7代入①,得所求l:2x+3y-7=0, ②设l的方程为3x-2y+d=0由l过点P(-1,3),得解得d=9.把d=9代入②,得所求l:3x-2y+9=0[说明]上面解法中直线方程①和②叫做直线系方程,分别含有一个待定系数c,d。

新高考《立体几何》真题赏析

新高考《立体几何》真题赏析

新高考《立体几何》真题归类赏析一、空间各元素间的位置关系的判定和性质主要考查空间中直线间、平面间以及直线与平面的平行、垂直的判定与性质,并考查同学们的空间想象能力和逻辑推理能力。

1、(10浙江理数)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m // 答案:B2、(2010山东文理数)(4)在空间,下列命题正确的是A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 答案:D3、(2010湖北文数)4.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b . A. ①②B. ②③C. ①④D.③④4. (2010福建理数)A 1B 1C 1D 1 二、求空间几何体的体积和表面积 5、(2010上海文数)6.已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 96 。

6、(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC⊥平面,AB BC ⊥,1SA AB ==,BC =O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ= 7、(2010北京理数)(8)如图,正方体ABCD-1111A B C D 的棱长为2,动点E 、F 在棱11A B 上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,1A E=x ,DQ=y ,D P=z(x,y,z大于零),则四面体PE FQ的体积 (A)与x,y,z都有关 (B)与x有关,与y,z无关 (C)与y有关,与x,z无关(D)与z有关,与x,y无关 答案:D三、求空间角问题8、(2010江西理数)10.过正方体1111ABCD A BC D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作 A.1条 B.2条 C.3条 D.4条 【答案】D9、(2010全国卷1文数)(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=10、(2010全国卷1文数)(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B )3 (C )23 (D )39.D四、空间立体几何中的创新问题11、(2010北京理数)(14)如图放置的边长为1的正方形PABC沿x 轴滚动。

第17讲 立体几何及空间想象能力高考真题赏析

第17讲 立体几何及空间想象能力高考真题赏析

第17讲 立体几何及空间想象能力2018高考真题赏析
金题精讲 题一:某圆柱的高为2,底面周长为16,其三视图如下图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为_________.
题二:已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为_______.
题三:在正方体1111ABCD A B C D -中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为__________.
题四:在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为o 30,则该长方体的体积为_________.
题五:在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.
求证:(1)11AB A B C 平面∥;
(2)111ABB A A BC 平面平面.
题六:如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,
M 是CD 上异于C ,D 的点.
(1)证明:平面AMD ⊥平面BMC ;
(2)当三棱锥M -ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.。

历年高考立体几何经典题型以及解析

历年高考立体几何经典题型以及解析

1.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体ABCD ﹣A 1B 1C 1D 1被平面α截得的截面面积为( )A. 36B. 26C. 5D. 5342.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,90B F ∠=∠=︒,60A ∠=︒,45D ∠=︒,BC DE =.现将两块三角板拼接在一起,取BC 中点O 与AC 中点M ,则下列直线与平面OFM 所成的角不为定值的是( )A. ACB. AFC. BFD. CF3. (多选题)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA AB =,截面BDE 与直线PC 平行,与PA 交于点E ,则下列判断正确的是( )A. E 为PA 的中点B. BD ⊥平面PACC. PB 与CD 所成的角为3πD. 三棱锥C BDE -与四棱锥P ﹣ABCD 的体积之比等于1:4.4.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是棱11A D 的中点,过C 1,B ,M 作正方体的截面,则这个截面的面积为( )35 35 C. 92 D. 985. 已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M 为棱DD 1的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A.3π B. 23π C. π D. 43π 6.(多选题)在三棱锥P -ABC 中,(0,1,0)A ,(3,1,0)B ,(0,3,0)C ,(0,1,2)P ,则( )A. (3,0,2)PB =-B. (3,0,0)AB =-C. PB AC ⊥D. 13PB =7.在四面体ABCD 中,E 是棱BC 的中点,且AE xAD yDB zDC =++,则( )A. 1x y z ++=B. 12xyz =C. x y z =+D. 222x y z =+8.三棱锥P -ABC 中,P A ⊥平面ABC ,2,3,23,3BAC AP AB π∠===Q 是BC 边上的一个动点,且直线PQ 与面ABC 所成角的最大值为,3π则该三棱锥外接球的表面积为( ) A. 45πB. 63πC. 57πD. 84π 9.已知三棱锥P ﹣ABC 的四个顶点均在同一个球面上,底面△ABC 满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.10. 如图,五边形ABSCD 中,四边形ABCD 为长方形,SBC ∆为边长为2的正三角形,将SBC ∆沿BC 折起,使得点S 在平面ABCD 上的射影恰好在AD 上.(Ⅰ)当2AB =,证明:平面SAB ⊥平面SCD ;(Ⅱ)若1AB =,求平面SCD 与平面SBC 所成二面角的余弦值的绝对值.11.如图PAD △中,90PDA ︒∠=,2DP DA ==,B 、C 分别是PA 、PD 的中点,将PBC 沿BC 折起连结PA 、PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当6PA =时,求二面角B PA D --的余弦值.12.直四棱柱ABCD ﹣A 1B 1C 1D 1被平面1A ECD 所截得到如图所示的五面体,CD CE ⊥,CD AD ⊥.(1)求证:BC ∥平面1A AD ;(2)若113BC CD BE AD ====,求二面角1B A E C --的余弦值. 13.如图,在四棱锥S ﹣ABCD 中,SD ⊥平面ABCD ,底面ABCD 是边长为2的正方形,DE SC ⊥,E 为垂足,M 为AB 的中点.(1)当点F 在线段BC 上移动时,判断DEF 是否为直角三角形,并说明理由 (2)若4SD =,求二面角D EM C --的正弦值如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 15.在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,PB PD =.(1)证明:BD ⊥平面PAC ;(2)若PA 与底面ABCD 所成的角为30°,PA PC ⊥,求二面角B PC D --的余弦值. 16.如图,在四棱锥M ﹣ABCD 中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.如图,在四棱锥E -ABCD 中,AE ⊥DE ,CD ⊥平面ADE ,AB ⊥平面ADE ,CD =DA =6,AB =2,DE =3.(I )求棱锥C -ADE 的体积;(II )求证:平面ACE ⊥平面CDE ;(III )在线段DE 上是否存在一点F ,使AF ∥平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.18.如图,在四边形ABCD 中,//AB CD ,且::3:2:2AB BC CD =,60ABC ∠=︒,点E 是线段AB 上靠近点A 的一个三等分点,以DE 为折痕将ADE 折起,使点A 到达点A 1的位置,且12A C BC ==.(1)证明:平面1A DE ⊥平面BCD ;(2)求平面1A BE 与平面1A CD 所成锐二面角的余弦值.19.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,平面11A ADD ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=︒,11A A A D AC ==,E 为DD 1的中点.(1)证明:1//BD 平面ACE ;(2)求直线1A D 与平面ACE 所成角的正弦值.20.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,4PA =,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)求二面角A PC D --的余弦值;(3)设Q 为棱CP 上的点(不与C ,P 重合),且直线QE 与平面PAC 所成角的正弦值5CQ CP 的值. 21.如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,//AD BC ,AB BC ⊥,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(1)证明:PO ⊥平面ABCD .(2)求直线BC 与平面PBD 所成角的正弦值.22.如图,在四棱锥P —ABCD 中, 90ABC BCD ︒∠=∠=,60,BAD ADP ︒∠=是等腰等直角三形,且2,22,7AP DP AB CD BP =====.(1)求证: AD ⊥BP ;(2)求直线BC 与平面ADP 所成角的正弦值.试卷答案1.B【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ EC ,同理1//AE QC ,所以四边形1AEC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B CE =,即1EC EB == 所以115,23AE EC AC ===由余弦定理得:22211111cos 25AE EC AC AEC AE EC +-∠==⨯ 所以126sin AEC ∠= 所以S 四边形1AEQC 1112sin 262AE EC AEC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.2.B【分析】通过证明BC ⊥平面OMF ,可以找到,,BF CF AC 与平面OFM 所成的角,计算可知都为定值,由此可得答案.【详解】因为,O M 为中点,所以//OM AB ,所以OM BC ⊥,又OF BC ⊥,且OM OF O ⋂=,所以BC ⊥平面OMF ,所以,BF CF 与平面OFM 所成的角分别为BFO ∠和CFO ∠,它们相等,等于45°, 根据直线与平面所成角的定义知,AC 与平面OFM 所成的角为60CMO A ∠=∠= 故只有AF 与平面OFM 所成的角不为定值.故选:B【点睛】本题考查了直线与平面垂直的判定定理,考查了直线与平面所成角,属于基础题. 3.ABD【分析】采用排除法,根据线面平行的性质定理以及线面垂直的判定定理,结合线线角的求法,锥体体积公式的计算,可得结果.【详解】对于A ,连接AC 交BD 于点M ,连接EM ,如图所示,PC //面BDE ,PC ⊂面APC ,且面APC 面=BDE EM ,PC ∴//EM , 又四边形ABCD 是正方形,∴M 为AC 的中点,∴E 为PA 的中点,故A 正确.对于B ,PA ⊥面ABCD ,BD ⊂面ABCD ,∴PA BD ⊥,又AC BD ⊥,AC PA A ⋂=,,AC PA ⊂面PAC∴BD ⊥面PAC ,故B 正确.对于C ,//AB CD ,∴PBA ∠为PB 与CD 所成的角,PA ⊥面ABCD ,AB 面ABCD ,∴PA AB ⊥,在Rt PAB 中,PA AB =,4PBA=π∴∠,故C 错误.对于D ,由等体积法可得1.3C BDE E BCD BCD V V S EA --==⋅,13-=⋅⋅P ABCD ABCD V S PA 又1,22BCDABCD S S PA EA ==,∴14--=P ABC C BD DE V V ,故D 正确. 故选:ABD.【点睛】本题考查立体几何的综合应用,熟练线线、线面、面面之间的位置关系,审清题意,考验分析能力,属中档题. 4.C 【详解】 【分析】设1AA 的中点为N ,则1MNBC ,连接11,,MN NB BC MC , ,则梯形1MNBC 就是过1C ,B ,M 正方体的截面,其面积为()13292+22=222⨯⨯,故选C.5.A 【分析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面ACM 的距离,由此求解出截面圆的半径,从而截面面积可求. 【详解】如图所示:设内切球球心为O ,O 到平面ACM 的距离为d ,截面圆的半径为r , 因为内切球的半径等于正方体棱长的一半,所以球的半径为1, 又因为O AMC M AOC V V --=,所以1233AMCAOCd S S ⨯⨯=⨯,又因为()()221122526,221222AMCAOCSS=⨯⨯-==⨯⨯=, 所以12633d ⨯=,所以63d =, 所以截面圆的半径22313r d =-=,所以截面圆的面积为233S ππ=⋅=⎝⎭. 故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算. 6. ACD 【分析】根据空间向量的坐标运算可判断A 、B ,计算PB AC ⋅的值可判断C ,利用向量的模长公式可判断选项D ,即可得正确答案.【详解】对于选项A :()()3,1,00,1,2(3,0,2)PB =-=-,故选项A 正确; 对于选项B :()()3,1,00,1,0(3,0,0)AB =-=,故选项B 不正确;对于选项C :()()0,3,00,1,0(0,2,0)AC =-=,则3002200PB AC ⋅=⨯+⨯-⨯=,所以PB AC ⊥,故选项C 正确; 对于选项D :因为()223213PB =+-=D 正确,故选:ACD7.C 【分析】根据向量的加法法则和数乘的定义判断. 【详解】因为1()2AE AD DE AD DB DC =+=++, 所以1x =,12y z ==,则x y z =+. 故选:C . 8.C 【分析】根据题意画出图形,结合图形找出△ABC 的外接圆圆心与三棱锥P ﹣ABC 外接球的球心, 求出外接球的半径,再计算它的表面积.【详解】三棱锥P ﹣ABC 中,PA ⊥平面ABC ,直线PQ 与平面ABC 所成角为θ,如图所示;则sinθ=PA PQ =3PQ ,且sinθ的最大值是2,∴(PQ )min AQ A 到BC∴AQ ⊥BC ,∵Rt △ABQ 中可得6ABC π∠=,即可得BC=6;取△ABC 的外接圆圆心为O′,作OO′∥PA ,∴6120sin =2r ,解得∴取H 为PA 的中点,∴,PH=32,由勾股定理得, ∴三棱锥P ﹣ABC 的外接球的表面积是S=4πR 2=4×2π⨯=57π. 故答案为C9.323π 【分析】画出示意图,利用体积最大时P 所处的位置,计算出球的半径从而算出球的体积. 【详解】如图所示:设球心为O ,ABC 所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC 是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABCV PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-,所以(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=. 【点睛】本题考查三棱锥的外接球的相关计算,难度较难.处理球的有关问题时要充分考虑到球本身的性质,例如:球心与小圆面圆心的连线垂直于小圆面. 10.(Ⅰ)证明见解析;(Ⅱ)13.【详解】 【分析】 试题分析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,则,SO AB AB AD ⊥⊥,AB ⊥平面SAD ,AB SD ⊥,结合勾股定理可得SA SD ⊥,则SD ⊥平面SAB ,平面SAB ⊥平面SCD .(Ⅱ)由几何关系,以,,OA OE OS 为,,x y z 轴建立空间直角坐标系,由题意可得平面SCD 的法向量()2,0,1m =-,平面SBC 的法向量()0,2,1n =.计算可得平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 试题解析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,,SO AB SO CD ∴⊥⊥, 又AB AD ⊥,AB ∴⊥平面SAD ,,AB SA AB SD ⊥⊥利用勾股定理得22422SA SB AB =-=-2SD =在SAD ∆中,2,2,AD SA SD SA SD ===∴⊥SD ∴⊥平面SAB ,又SD ⊂平面SCD ,所以平面SAB ⊥平面SCD (Ⅱ)连结,BO CO ,SB SC =,Rt SOB Rt SOC ∴∆≅∆,BO CO =,又四边形ABCD 为长方形,,Rt AOB Rt DOC OA OD ∴∆≅∆∴=.取BC 中点为E ,得OE ∥AB ,连结,3SE SE ∴= 其中1OE =,1OA OD ==,2312OS -由以上证明可知,,OS OE AD 互相垂直,不妨以,,OA OE OS 为,,x y z 轴建立空间直角坐标系.1,2OE OS =∴=,()()()0,1,0,1,1,2,2,0,0DC SC BC ∴==--=-,设()111,,m x y z =是平面SCD 的法向量,则有00m DC m SC ⎧⋅=⎨⋅=⎩即1111020y x y z =⎧⎪⎨-+-=⎪⎩,令11z =得()2,0,1m =-设()222,,n x y z =是平面SBC 的法向量,则有00n BC n SC ⎧⋅=⎨⋅=⎩即22222020x x y z -=⎧⎪⎨-+-=⎪⎩ 令11z =得()0,2,1n =. 则11,333m n cosm n m n⋅===⋅ 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 11.(1)见解析;(2)0.【分析】(1)根据线面垂直的判定定理,先得到BC ⊥平面PCD ,进而可得 BC PD ⊥; (2)根据题意,先得到,,CB CD CP 两两垂直,以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴建立空间直角坐标系,求出两平面,PAB PAD 的法向量,根据向量夹角计算公式,即可求出结果.【详解】(1)证明:PAD △中,因为,B C 分别是,PA PD 的中点,90,PDA ∠=所以//BC AD ,90BCP BCD ∠=∠=,所以多面体PABCD 中, BC PC ⊥,BC CD ⊥, 又PCCD C =,BC ∴⊥平面PCD ;因为PD ⊂平面PCD ,.BC PD ∴⊥(2)依题意可得, 1PC CD ==,直角ADC 中,得5AC =,又6,PA =所以222PA PC AC =+,PC CA ∴⊥, 由(1)知, BC PC ⊥,PC ∴⊥平面.ABCD以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴,建立如图的坐标系.则(1,0,0),(2,1,0),(0,1,0),(0,0,1)B A D P , 得(2,1,1),(1,0,1),(0,1,1).PA PB PD =-=-=-设平面,PAB PAD 的一个法向量分别是(,,),(,,)m x y z n p q r ==,则20,0.m PA x y z m PB x z ⎧⋅=+-=⎨⋅=-=⎩可取(1,1,1)m =-.20,0.n PA p q r n PD q r ⎧⋅=+-=⎨⋅=-=⎩可取(0,1,1)n =. 01cos ,03m n m n m n⋅-<>===⋅⋅. 所以二面角B PA D --的余弦值为0.【点睛】本题主要考查证明线线垂直,以及求二面角的余弦值问题,熟记线面垂直的判定定理及性质,灵活运用向量的方法求解二面角即可,属于常考题型. 12.(1)见解析(2 【分析】(1)利用面面平行的性质定理,可证得线面平行;(2)以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,求出平面1A EC 的一个法向量(1,0,1)u =-,平面1A EB 的一个法向量(1,2,0)v =,求出向量夹角的余弦值,即可得到答案;【详解】(1)在直四棱柱1111ABCD A B C D -中,BE ⊥平面ABCD , ∵CD ⊂平面ABCD ,∴BE CD ⊥∵CD CE ⊥,BE CE E ⋂=,∴CD ⊥平面BCE 同理可证CD ⊥平面1A AD , ∴平面//BCE 平面1A AD ,∵BC ⊂平面BCE ,∴//BC 平面1A AD(2)∵平面//BCE 平面1A AD ,平面1A ECD ⋂平面BCE CE =,平面1A ECD ⋂平面11A AD A D =,∴1A D ∥EC ,∴1A D 和CE 与平面ABCD 所成角相等,即1A B DA EC ∠=∠; ∵BC BE =,∴45ECB ︒∠=,∴13AA AD ==,以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,(0,1,0)C ,(1,1,0)B ,(1,1,1)E ,1(3,0,3)A ,∴(1,0,1)CE =,1(2,1,2)EA =-,(0,0,1)BE =, 设()111,,u x y z =为平面1A EC 的一个法向量,则10u CE u EA ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x z x y z +=⎧⎨-+=⎩, 令11x =,则(1,0,1)u =-设()222,,v x y z =为平面1A EB 的一个法向量,则10v BE v EA ⎧⋅=⎪⎨⋅=⎪⎩,即22220220z x y z =⎧⎨-+=⎩, 令21x =,则(1,2,0)v =, 则110cos ,||||1025u v u v u v ⋅<>===⨯, 由图知,二面角1B A E C --为锐角,则二面角1B A E C --10. 【点睛】本题考查利用面面平行证明线面平行、向量法求二面角的余弦值,考查转化与化归思想,考查空间想象能力、运算求解能力. 13.(1)证明见解析;(2)57042. 【分析】(1)先证明BC ⊥平面SCD ,可得BC DE ⊥,结合DE SC ⊥,即可证得DE ⊥平面SBC ,进而可得DE EF ⊥,即可得出DEF 是直角三角形;(2)以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,根据//SE SC ,设()0,2,4SE tSC t t ==-,利用0DE SC ⋅=求出t 的值,再计算平面DEM 的法向量,平面EMC 的法向量,利用向量夹角公式求夹角余弦值,再计算正弦值即可. 【详解】(1)因为SD ⊥平面ABCD ,BC ⊂平面ABCD ,所以SD BC ⊥, 因为四边形ABCD 是边长为2的正方形,所以CD BC ⊥, 因为SDCD D =,所以BC ⊥平面SCD ,因为DE ⊂平面SCD ,所以BC DE ⊥, 又因为DE SC ⊥,BCSC C =,所以DE ⊥平面SBC ,因为EF ⊂平面SBC ,所以DE EF ⊥,可得90DEF ∠=, 所以DEF 是直角三角形.(2)如图以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,0,4S ,()0,2,0C ,()2,1,0M ,()0,2,4SC =-,因为//SE SC ,设()0,2,4SE tSC t t ==-,所以()()()0,0,40,2,40,2,44DE DS SE t t t t =+=+-=- 因为DE SC ⊥,所以()224440DE SC t t ⋅=⨯--=,解得:45t =, 所以840,,55DE ⎛⎫= ⎪⎝⎭,()84342,1,00,,2,,5555EM DM DE ⎛⎫⎛⎫=-=-=-- ⎪⎪⎝⎭⎝⎭, ()2,1,0MC =-,设平面DEM 的一个法向量为()1111,,x n y z =,由1111118405520n DE y z n DM x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 令12y =可得14z =-,11x =-, 所以()11,2,4n =--,设平面EMC 的一个法向量为()2222,,n x y z =, 由222212234205520n EM x y z n MC x y ⎧⋅=--=⎪⎨⎪⋅=-+=⎩令21x =,可得22y =,21z =, 所以()21,2,1n =设二面角D EM C --的平面角为θ,则1212cos 1n n n n θ⋅===+, 因为0θπ≤≤,所以sin θ===, 故二面角D EM C --【点睛】方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 14.(Ⅰ)见证明;(Ⅱ)49(Ⅲ)87【分析】首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF 的方向向量和平面ADE 的法向量的关系即可证明线面平行; (Ⅱ)分别求得直线CE 的方向向量和平面BDE 的法向量,然后求解线面角的正弦值即可; (Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF 长度的方程,解方程可得CF 的长度.【详解】依题意,可以建立以A 为原点,分别以,,AB AD AE 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得()()()()()0,0,0,1,0,0,1,2,0,0,1,0,0,0,2A B C D E .设()0CF h h =>,则()1,2,F h .(Ⅰ)依题意,()1,0,0AB =是平面ADE 的法向量,又()0,2,BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--,设(),,n x y z =为平面BDE 的法向量,则00n BD n BE ⎧⋅=⎨⋅=⎩,即020x y x z -+=⎧⎨-+=⎩,不妨令z =1,可得()2,2,1n =, 因此有4cos ,9||||CE n CE n CE n ⋅〈〉==-. 所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)设(),,m x y z =为平面BDF 的法向量,则00m BD m BF ⎧⋅=⎨⋅=⎩,即020x y y hz -+=⎧⎨+=⎩. 不妨令y =1,可得21,1,m h ⎛⎫=- ⎪⎝⎭.由题意,有2241cos ,3432m nhm n m n h -⋅===⨯+,解得87h =. 经检验,符合题意。所以,线段CF 的长为87. 【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力. 15.(1)见解析,(2)17-【分析】(1)连接BD 交AC 于O ,连接PO ,则有AC BD ⊥,O 为BD 的中点,再由PB PD =可得BD PO ⊥,由线面垂直的判定定理可证得结论;(2)由(1)可知,平面PAC ⊥平面ABCD ,两平面的交线为AC ,所以过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,从而可知平面30PAC ∠=︒,若设PC =2,由可把其它边求出来,然后以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用空间向量求解二面角B PC D --的余弦值.【详解】(1)证明:连接BD 交AC 于O ,连接PO ,因为四边形ABCD 为正方形,所以AC BD ⊥,O 为BD 的中点,因为PB PD =,所以BD PO ⊥,因为AC PO O =,所以BD ⊥平面PAC ;(2)解:因为BD ⊥平面PAC ,BD 在平面ABCD 内,所以平面PAC ⊥平面ABCD ,过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,所以PAC ∠为PA 与底面ABCD 所成的角,即30PAC ∠=︒,设PC =2,因为PA PC ⊥,所以23,3,3,4,22PA PE AE AC AD =====, 如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系, 则3232(0,0,0),(22,0,0),(22,22,0),(0,22,0),(,,3)22A B C D P , 22(0,22,0),(,,3)(22,0,0)22BC CP DC ==--=,, 设平面PBC 法向量为(,,)n x y z =,则220223022n BC y n CP x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1z =,则(6,0,1)n =, 设平面PDC 的法向量为(,,)m a b c =,则220223022n DC a n CP a b c ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1c =,则(0,6,1)m =, 所以11cos ,777m nm n m n ⋅===⨯, 由图可知二面角B PC D --的平面角为钝角,所以二面角B PC D --的余弦值为17-【点睛】此题考查线面垂直的证明,考查二面欠余弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,属于中档题.16.(1)证明见解析(2159【分析】(1)利用线段长度得到AM 与,AB AD 间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵2AB AM AD ===,22MB MD ==,∴222AM AD MD +=,222AM AB MB +=∴AM AD ⊥,AM AB ⊥ ∵AB AD A ⋂=,AD ⊂平面ABCD ,∴AM ⊥平面ABCD (2)由(1)知AB AD ⊥,AM AD ⊥,AM AB ⊥又A 为坐标原点,分别以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,0,0A ,()0,2,0M ,()2,0,0D ,()0,0,2B ,()2,0,1C ,()2,0,2BD =-,()2,2,0DM =-,∵2BE EB =,∴420,,33E ⎛⎫ ⎪⎝⎭,412,,33CE ⎛⎫=-- ⎪⎝⎭ 设(),,n x y z =是平面BDM 的一个法向量则00n BD n DM ⎧⋅=⎨⋅=⎩,即220220x z x y -=⎡⎢-+=⎣,取1x =得()1,1,1n = ∴41215933cos ,53||||5333CE CE CE n n n -+-⋅〈〉===⋅⨯∴直线EC 与平面BDM 所成的正弦值为15953 【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值. 17. (Ⅰ)93;(Ⅱ)证明见解析;(Ⅲ)存在,13.【分析】(I )在Rt ADE △中,22AE AD DE =-,可得12ADE S AE DE =⋅,由于CD ⊥平面ADE ,可得13C ADE ADE V CD S -=⋅;(II )由CD ⊥平面ADE ,可得CD AE ⊥,进而得到AE ⊥平面CDE ,即可证明平面ACE ⊥平面CDE ;(III )在线段DE 上存在一点F ,使AF 平面BCE ,13EF ED =.设F 为线段DE 上的一点,且13EF ED =,过F 作FM CD 交CE 于点M ,由线面垂直的性质可得:CDAB .可得四边形ABMF 是平行四边形,于是AF BM ,即可证明AF 平面BCE【详解】(I )在Rt △ADE 中,2233AE AD DE =-=,因为CD ⊥平面ADE , 所以棱锥C-ADE 的体积为1193332C ADE ADE AE DE V S CD CD -∆⋅=⋅=⋅⋅=. (II )因为CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥.又因为AE DE ⊥,CD DE D ⋂=,所以AE ⊥平面CDE ,又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE.(III )在线段DE 上存在一点F ,且13EF ED =,使AF 平面BCE .解:设F 为线段DE 上一点,且13EF ED =,过点F 作//FM CD 交CE 于M ,则13FM CD =. 因为CD ⊥平面ADE ,AB ⊥平面ADE ,所以//CD AB ,又因为3CD AB = 所以MF AB =,//FM AB ,所以四边形ABMF 是平行四边形,则//AF BM . 又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以//AF 平面BCE .18.(1)证明见解析;(2)65.【分析】(1)连接1OA ,OC ,结合勾股定理和等边三角形的性质,证得1OA OC ⊥和OC DE ⊥,利用线面垂直的判定定理,得到OC ⊥平面1A DE ,再由面面垂直的判定定理,即可证得平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,分别求得平面1A BE 和平面1A CD 的一个法向量,结合向量的夹角公式,即可求解.【详解】(1)由题意,四边形BCDE 为菱形,连接CE ,取DE 的中点O ,连接1OA ,OC ,如图所示,在ADE 中,60AED ABC ∠=∠=︒,且2DE =,1AE =,可得,AD =则222DE AE AD =+,则90EAD ∠=︒,即AD AE ⊥,即11A D A E ⊥.因为O 是DE 的中点,所以1112OA DE ==, 因为60CDE ABC ∠=∠=︒,所以CDE ∆为等边三角形,所以OC DE ⊥,且OC =所以22211A C OA OC =+,所以190A OC ∠=︒,即1OA OC ⊥.又因为OC DE ⊥,且1OA DE O ⋂=,所以OC ⊥平面1A DE ,又因为OC ⊂平面BCD ,所以平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,则(0,1,0)D ,(0,1,0)E -,(3,0,0)C ,(3,2,0)B -,1130,,22A ⎛⎫- ⎪ ⎪⎝⎭, 设平面1A BE 的法向量为(,,)m x y z =,则13013022m BE x y m EA y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1z =,可得(1,3,1)m =--, 设平面1A CD 的法向量为(),,n x y z '''=,则13033022n CD x y n DA y z ⎧⋅=-+=⎪⎨⋅'''=-+=⎪⎩',令1x '=,得(1,3,3)n =. 因为13365cos ,65||||513m n m n m n ⋅--+〈〉===-⨯. 所以平面1A BE 与平面1A CD 所成锐二面角的余弦值为6565.19.(1)证明见解析;(2387.【分析】(1)连接BD 交AC 于O ,连接OE ,可证1//OE BD ,从而得线面平行;(2)取AD 中点M ,连接1MA ,MC ,由已知证明1A M ⊥平面ABCD ,MC AD ⊥,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =,得出各点坐标,求出平面AEC 的法向量n ,由法向量n 与1A D 的夹角的余弦值的绝对值等于直线1A D 与平面AEC 所成有的正弦可得.【详解】(1)连接BD 交AC 于O ,连接OE ,∵ABCD 是菱形,∴O 是BD 中点,又E 是1DD 中点,∴1//OE BD ,1BD ⊄平面AEC ,OE ⊂平面AEC ,∴1//BD 平面ACE ;(2)取AD 中点M ,连接1MA ,MC ,∵11AA A D =,∴1A M AD ⊥,又平面11A ADD ⊥平面ABCD ,平面11A ADD 平面ABCD AD =,∴1A M ⊥平面ABCD ,又菱形ABCD 中,60ABC ∠=︒,所以ABC 和ACD △都是等边三角形,所以MC AD ⊥,如图,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =, 则3MC =,222211213A M A A AM =-=-=∴(0,1,0)A -,(0,1,0)D ,3,0,0)C ,13)A ,13)D ,33(0,,22E , ∴1(0,1,3)A D =-,(3,1,0)AC =,53(0,,22AE =, 设(,,)n x y z =是平面ACE 的一个法向量,则 305302n AC x y n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则3y =5z =,(1,3,5)n =-, 设直线1A D 与平面ACE 所成角为θ, 则111353387sin cos ,29292n A Dn A D n A D θ⋅--=<>===⨯.【点睛】本题考查证明线面平行,考查用空间向量法求线面角.求空间角的常用方法是空间向量法,在题中有垂直的情况下,常常取过同一点且两两垂直的三条直线为坐标轴建立空间直角坐标系,用空间向量法求空间角,考查了学生的运算求解能力.20.(1)证明见解析;(225;(3)23CQ CP =.【分析】(1)建立适当的空间直角坐标系,确定各点坐标,得到0DE AC ⋅=,0DE AP ⋅=,根据线面垂直的判定定理,即可证明.(2)由(1)可知,平面PAC 的法向量(2,1,0)m =-,确定平面PCD 的法向量(2,2,1)n =-,根据cos ,||||m n m n m n ⋅〈〉=⋅,求解即可. (3)设(01)CQ CPλλ=<<,确定(22,44,4)Q λλλ=--,(2,43,4)QE λλλ=--,根据直线QE 与平面PAC 5,求解λ,即可. 【详解】(1)因为PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD所以PA AB ⊥,PA AD ⊥因为AB AD ⊥ 则以A 为坐标原点,建立如图所示的空间直角坐标系.由已知可得(0,0,0)A ,()2,0,0B ,(2,4,0)C ,(0,2,0)D ,(0,0,4)P ,(2,1,0)E . 所以(2,1,0)DE =-,(2,4,0)AC =,(0,0,4)AP =.因为221400DE AC ⋅=⨯-⨯+=,0DE AP ⋅=.所以DE AC ⊥,DE AP ⊥又AP AC A ⋂=,AP ⊂平面PAC ,AC ⊂平面PAC .所以DE ⊥平面PAC .(2)设平面PAC 的法向量m ,由(1)可知,(2,1,0)m DE ==-设平面PCD 的法向量(,,)n x y z =因为(0,2,4)PD =-,(2,4,4)PC =-.所以00n PD n PC ⎧⋅=⎨⋅=⎩,即2402440y z x y z -=⎧⎨+-=⎩ 不妨设1z =,得(2,2,1)n =-. 2222225cos ,||||2(1)(2)21m n m n m n ⋅⨯〈〉===⋅+-⨯-++ 所以二面角A PC D --25. (3)设(01)CQ CPλλ=<<,即(2,4,4)CQ CP λλλλ==--. 所以(22,44,4)Q λλλ=--,即(2,43,4)QE λλλ=--.因为直线QE 与平面PAC 5所以2||cos ,5||||2QE m QE m QE m ⋅〈〉===⋅+∣3=解得23λ=即23CQ CP =. 【点睛】本题考查空间向量在立体几何中的应用,考查综合分析求解与论证能力,属于较难题. 21.(1)证明见解析(2)11【分析】(1)通过证明BE ⊥平面APC ,得到BE PO ⊥,再证PO AC ⊥即可证得PO ⊥平面ABCD . (2)建立空间直角坐标系,求出平面的法向量、直线的方向向量,利用空间向量法求出线面角的正弦值.【详解】(1)证明:AP ⊥平面PCD ,CD ⊂平面PCD ,AP CD ∴⊥, //,AD BC 12BC AD =,E 为AD 的中点,则//BC DE 且BC DE =. ∴四边形BCDE 为平行四边形,//BE CD ∴,AP BE ∴⊥.又,AB BC ⊥12AB BC AD ==,且E 为AD 的中点,∴四边形ABCE 为正方形,BE AC ∴⊥,又,AP AC A =BE ∴⊥平面APC ,PO ⊂平面APC ,则BE PO ⊥.AP ⊥平面,PCD PC ⊂平面PCD ,AP PC ∴⊥,又AC ==,PAC ∴∆为等腰直角三角形,O 为斜边AC 上的中点,PO AC ∴⊥且,ACBE O =PO ∴⊥平面ABCD . (2)解:以O 为坐标原点,建立空间直角坐标系O -xyz ,如图所示不妨设1OB =,则(1,0,0),B (0,1,0),C (0,0,1),P (2,1,0)D -,则(1,1,0),BC =-(1,0,1),PB =-(2,1,1)PD =--.设平面PBD 的法向量为(,,)n x y z =,则00n PB n PD ⎧⋅=⎨⋅=⎩,,即0,20,x z x y z -=⎧⎨-+-=⎩即,3,x z y z =⎧⎨=⎩ 令1z =,得(1,3,1)n =.设BC 与平面PBD 所成角为θ, 则()2222211310122sin cos ,13111BC n θ-⨯+⨯+⨯=<>==++-+【点睛】本题考查线面垂直,线面角的计算,属于中档题. 22.(1)证明见解析;(2)14.【分析】(1)取AD 中点E ,连接PE 、BE 、BD ,由平面几何的知识可得AD PE ⊥、AD BE ⊥,由线面垂直的判定可得AD ⊥平面PBE ,再由线面垂直的性质即可得证; (2)由题意建立空间直角坐标系,求出所需点的坐标后,再求出33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭、平面ADP 的一个法向量为n ,由sin cos ,n BC α=即可得解.【详解】(1)证明:取AD 中点E ,连接PE 、BE 、BD ,如图:ADP △是等腰直角三角形,且2AP DP ==,∴AD PE ⊥且2AD =,2AB =且60BAD ∠=,∴ABD △是等边三角形,∴AD BE ⊥,又BE PE E ⋂=,∴AD ⊥平面PBE , BP ⊂平面PBE ,∴AD BP ⊥;(2)AE ⊥平面PBE ,以E 为坐标原点,分别以AE ,BE 为x 轴、y 轴,过点E 与平面ABCD 垂直的方向为z 轴建立空间直角坐标系E-xyz 如图所示:则()()()()0,0,0,1,0,0,3,0,1,0,0E A B D -,()213,0AB DC =-=,∴33(,22C -, 1PE =,3EB =7BP =∴2223cos 22PE EB BP PEB PE EB +-∠==-⋅,∴150PEB ∠=,∴310,,22P ⎛⎫- ⎪ ⎪⎝⎭, 则33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭,()2,0,0AD =-,311,22AP ⎛⎫=-- ⎪⎝⎭, 设平面ADP 的一个法向量为(,,)n x y z =,则20102n AD x n AP x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,取y =(0,3,3)n =, 设直线BC 与平面ADP 所成角为α, 则1sin cos ,43n BCn BC n BC α⋅====⋅. 【点睛】本题考查了线面垂直的判定与性质、利用空间向量求线面角的应用,考查了空间思维能力与运算求解能力,属于中档题.。

2025年高考数学立体几何全方位剖析

2025年高考数学立体几何全方位剖析

2025年高考数学立体几何全方位剖析在高考数学中,立体几何一直是一个重要且具有挑战性的板块。

对于即将参加 2025 年高考的同学们来说,深入理解和掌握立体几何的知识与解题技巧至关重要。

接下来,让我们对其进行全方位的剖析。

一、立体几何在高考中的地位和考查趋势立体几何在高考数学中占据着相当重要的地位。

它不仅能够考查同学们的空间想象能力、逻辑推理能力,还能检验对数学基本概念和定理的掌握程度。

近年来,高考中对立体几何的考查呈现出一些明显的趋势。

首先,题目更加注重与实际生活的联系,通过构建真实的场景,如建筑设计、包装问题等,来考查同学们运用立体几何知识解决实际问题的能力。

其次,对空间向量的运用要求逐渐提高,利用空间向量解决角度和距离问题成为常见考点。

再者,综合性更强,常常将立体几何与函数、不等式等知识相结合,增加了题目的难度和复杂性。

二、立体几何的基本概念和定理1、点、线、面的位置关系点是构成空间几何体的基本元素,线是由无数个点组成,面则是由线所围成。

其中,线线、线面、面面的平行与垂直关系是重点。

2、棱柱、棱锥、棱台棱柱具有两个平行且全等的底面,侧面是平行四边形。

棱锥的底面是多边形,侧面是三角形,且顶点与底面中心的连线垂直于底面。

棱台则是由棱锥截去一部分得到,上下底面平行且相似。

3、圆柱、圆锥、圆台圆柱以矩形的一边所在直线为轴旋转而成,圆锥以直角三角形的一条直角边为轴旋转而成,圆台是由圆锥截去一部分得到。

4、球球是空间中到定点的距离等于定长的点的集合,其表面积和体积公式需要牢记。

三、立体几何中的空间向量空间向量为解决立体几何中的角度和距离问题提供了一种有力的工具。

1、向量的坐标表示建立合适的空间直角坐标系,确定点的坐标,从而表示出向量的坐标。

2、线线角通过向量的点积公式计算两直线方向向量的夹角余弦值,进而得到线线角。

3、线面角找出直线的方向向量和平面的法向量,利用向量的夹角公式求出线面角。

4、面面角计算两个平面的法向量夹角,再根据二面角的大小与法向量夹角的关系求出面面角。

高中几何体试题及答案解析

高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。

解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。

答案:V = abc。

试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。

解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。

设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。

该向量的模即为三角形ABC的面积的两倍。

答案:三角形ABC的面积为√3。

试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。

解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。

答案:V = (1/3)πr²h。

试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。

解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。

答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。

试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。

解析:圆柱的体积可以通过公式V = πr²h来计算。

答案:V = πr²h。

结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。

掌握这些基础知识对于解决更复杂的几何问题至关重要。

希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。

2015届高考理科数学 立体几何及空间想象能力新题赏析

2015届高考理科数学 立体几何及空间想象能力新题赏析

立体几何及空间想象能力新题赏析主讲教师:程敏 北京市重点中学教研组长题一:在正方体ABCD -A 1B 1C 1D 1中,点P 在线段AD 1上运动,则异面直线CP 与BA 1所成的角θ的取值范围是( )A .0<θ<π2B .0<θ≤π2C .0≤θ≤π3D .0<θ≤π3题二:四面体的六条棱中,有五条棱长都等于a .求该四面体的体积的最大值.题三:已知某球半径为R ,则该球内接长方体的表面积的最大值是( )A .8R 2B .6R 2C .4R 2D .2R 2题四:如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 为棱DD 1上的一点.(1)求三棱锥A -MCC 1的体积;(2)当A 1M +MC 取得最小值时,求证:B 1M ⊥平面MAC .专题 立体几何及空间想象能力新题赏析课后练习参考答案题一: D.详解:当P 在D 1处时,CP 与BA 1所成角为0,二者平行,不是异面,不符合题意;当P 在A 处时,CP 与BA 1所成角为π3,∴0<θ≤π3. 题二: 18a 3.详解: 如图,在四面体ABCD 中,设AB =BC =CD =AC =BD =a ,AD =x , 取AD 的中点为P ,BC 的中点为E ,连接BP ,EP ,CP .得到AD ⊥平面BPC ,∴V A -BCD =V A -BPC +V D -BPC=13·S △APC ·AP +13S △BPC ·PD =13·S △BPC·AD =13·12·a a 2-x 24-a 24·x =a 12 (3a 2-x 2 )x 2≤a 12·3a 22=18a 3 ⎝⎛⎭⎫当且仅当x =62a 时取等号. ∴该四面体的体积的最大值为18a 3. 题三: A.详解: 设球内接长方体的长、宽、高分别为a 、b 、c ,则a 2+b 2+c 2=(2R )2, 所以S 表=2(ab +bc +ac )≤2(a 2+b 2+c 2)=8R 2,当且仅当a =b =c =233R 时,等号成立. 题四: (1) 13. (2) 见详解. 详解:(1)由长方体ABCD -A 1B 1C 1D 1知,AD ⊥平面CDD 1C 1,∴点A 到平面CDD 1C 1的距离等于AD =1.又S △MCC 1=12CC 1×CD =12×2×1=1, ∴V A -MCC 1=13AD ·S △MCC 1=13.(2)证明:将侧面CDD1C1绕DD1逆时针转90°展开,与侧面ADD1A1共面(如图),当A1,M,C′共线时,A1M+MC取得最小值.由AD=CD=1,AA1=2,得M为DD1中点.连接A1M,B1M,在△C1MC中,MC1=2,MC=2,CC1=2,∴CC21=MC21+MC2,得∠CMC1=90°,即CM⊥MC1.又由长方体ABCD-A1B1C1D1知,B1C1⊥平面CDD1C1,∴B1C1⊥CM.又B1C1∩C1M=C1,∴CM⊥平面B1C1M,得CM⊥B1M.同理可证,B1M⊥AM.又AM∩MC=M,∴B1M⊥平面MAC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16讲 立体几何及空间想象能力真题赏析
题一:将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3
π,其中B 1与C 在平面AA 1O 1O 的同侧. (1)求三棱锥C-O 1A 1B 1的体积;
(2)求异面直线B 1C 与AA 1所成角的大小.
题二:如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.
(Ⅰ)求证:EG ∥平面ADF ;
(Ⅱ)求二面角O -EF -C 的正弦值;
(Ⅲ)设H 为线段AF 上的点,且AH =23
HF ,求直线BH 和平面CEF 所成角的正弦值.
题三:如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,=90ACB ∠︒,BE =EF =FC =1,BC =2,AC =3.
(I)求证:BF ⊥平面ACFD ;
(II)求二面角B -AD -F 的平面角的余弦值.
题四:如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,
CD 上,54
AE CF ==,EF 交BD 于点H . 将△DEF 沿EF 折到△D EF '的位置,OD '(I)证明:D H '⊥平面ABCD ;
(II)求二面角B D A C '--的正弦值.
第1讲立体几何及空间想象能力真题赏析
题一:(12)45°.
题二:(Ⅰ)证明:法一:找AD中点M,
连接GM,FM,如图
因为点G为AB的中点,
所以GM//BO,GM=BO,
又因为四边形OBEF为矩形,
所以BO//EF,BO=EF,
所以GM//EF,GM= EF,即四边
形MGEF为平行四边形,
所以FM//EG,
因为EG⊄面ADF,
FM⊂面ADF,
所以EG∥平面ADF;
法二:连EO,OG,OD,如图
因为O为正方形ABCD的中心,
所以OD=OB且二者在一条直线
上,
因为四边形OBEF为矩形,
所以BO//EF,BO= EF,
所以DO//EF,DO= EF,
即四边形DOEF为平行四边形,
所以FD//OE,
又因为点G为AB的中点,
所以GO//AD,
所以面EGO//面F AD,
所以EG∥平面ADF;
法三:因为四边形OBEF为矩形,所以BO⊥OF,
又因为平面OBEF⊥平面ABCD,
平面OBEF ∩平面ABCD=OB ,
所以OF ⊥平面ABCD ,
又因为四边形ABCD 为正方形,所以可建立如图所示坐标系, 依题意可得(1,1,0),(1,1,0),A D -
(0,0,2),(1,1,2),(1,0,0),F E G ---(0,1,2),(2,0,0),EG AD =-= (1,1,2),AF =- 设平面ADF 的法向量为
(,,)n x y z =,则
2020
x x y z =⎧⎨-+=⎩,不妨设1z =,解得(0,2,1)n =, 可得0EG n ⋅=,
又因为EG ⊄面ADF ,
所以EG ∥平面ADF ;
(Ⅱ)3;(Ⅲ)21
题三:(I)证明:因为=90ACB ∠︒,所以AC ⊥BC , 因为平面BCFE ⊥平面ABC ,所以
AC ⊥面BCFE ,所以AC ⊥BF ,
在平面BCFE 内作高FM ,如图
因为BE =EF =FC =1,BC =2,所以12
MC =,
所以FM =,FB = 在△FBC 中,
222BC FC FB =+,
所以BF ⊥FC ,
所以BF ⊥平面ACFD .
(II) 题四:(I)证明:∵54AE CF ==
, ∴AE CF AD CD
=, ∴EF AC ∥.
∵四边形ABCD 为菱形, ∴AC BD ⊥,
∴EF BD ⊥,
∴EF DH ⊥,
∴EF D H '⊥.
∵6AC =,
∴3AO =;
又5AD =,AO OD ⊥, ∴4OD =, ∴1AE OH OD AD
=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+,
∴'D H OH ⊥.
又∵OH EF H =I , ∴'D H ⊥面ABCD .
(II)。

相关文档
最新文档