富士变频器配套专用制动单元(1)

富士变频器配套专用制动单元(1)
富士变频器配套专用制动单元(1)

制动单元制动电阻箱

波纹电阻器铝壳电阻器

上海民恩电气有限公司主营变频器配套系列产品:制动单元,制动电阻,输入电抗器,输出电抗器,直流电抗器,滤波器,变压器等产品;产品质量保证,价格实惠,欢迎来电咨询!

富士变频器配套专用制动单元技术参数:

1)配置制动单元型号:CDBR-430C

2)适配变频器功率:30KW

3)制动单元品牌:上海民恩

4)额定电流:15A

5)峰值电流:50A

6)最小阻值:20Ω

7)斩波电压:DC630V DC660V DC690V DC730V DC760V

8)外形及安装尺寸:见表格

9)制动方式:能耗式

10)包装:纸箱包装

1)设计加工周期:3个工作日(常规型号现货)

12)售后服务:国家三包1年,免费提供技术咨询,技术指导,安装指导

13)产品咨询:请联系上海民恩客服

富士变频器配套专用制动单元产品概述

当传动应用中需要电机快速或精确的减速时,为了获得所需的制动转矩,并避免在减速过程中产生过高的泵升电压影响设备的安全运行,应当使用CDBR

系列制动单元。CDBR系列制动单元是采用德国技术生产制造的低成本能耗式制动单元,配合适当的制动电阻后可以将调速电机在减速过程中所产生的再生电能加以吸收消耗在电阻上,同时获得良好的制动效果。CDBR是将电机在调速过程中所产生的再生电能直接消耗在制动电阻上,所需的设备简单,成本较低。所有的CDBR产品,均来自高度可靠的设计和精良的制造技术,CDBR的每一件产品都能发挥最大的效能。

(产品接线图)

(产品性能测试)

富士变频器配套专用制动单元产品规格及技术参数

产品型号额定

电流峰值

电流

最小

阻值

斩波电压

尺寸/(mm)

配线

L W H L1W1

CDBR-2022C15A50A 6.8DC380V P1240100153228704-6 CDBR-2030C25A75A10240100153228704-6

CDBR-4030C15A50A20DC630V

DC660V

DC690V

DC730V

DC760V 240100153228704-6

CDBR-4045C25A75A13.6240100153228704-6 CDBR-4055C27A85A12.5240100153228704-6 CDBR-4075C30A100A10P232018716330412016-36 CDBR-4110C50A 6.832018716330412016-36

150A

CDBR-4160C 70A 200A 532018716330412016-36CDBR-4220C 85A 300A 3.232018716330412016-36CDBR-4300C

110A

450A

2.5

370

250

190

355

210

25-50

CDBR-6045C

25A 75A

40DC1000V DC1050V DC1100V DC1150V DC1200V

P1240100153228704-6

CDBR-6300C

110A 450A

5P237025019035521016-36

一.富士变频器配套专用制动单元产品特点:1.重载型CDBR 系列

2.电压、功率范围:220V-690V;15KW-400KW;(内置散热风扇)

3.应用性:适用于各种进口、国产低压变频器(三相异步、永磁同步电机)。

4.安全性:采用先进的电力电子技术和高性能的IGBT作为开关器件,电压自动跟踪,品质可靠安全,特殊设计,可以使用普通电阻,不必选择无感电阻。

5.经济性:性价比高,品质可与同类进口产品相媲美,功率齐全,每个功率范围都有单台制动单元可选用。也可并联使用.

二.富士变频器配套专用制动单元产品详细说明

制动方式电压跟踪方式

反应时间1ms以下,有多重噪声过滤算法

电网电压如380Vac,45-66HZ

动作电压690Vdc,误差±2V

滞环电压10V

保护/散热过热,过电流,短路/内置散热风扇

噪声滤波有

防护等级IP00

三.富士变频器配套专用制动单元电气安装

3.1变频器配套用制动单元制动电阻-安装方式

制动单元要竖直安装在非易燃的坚固固定表面上,即要保证制动单元内部散热片方向是竖直的,以利空气的自然对流散热。

制动单元在工作过程中会发热,因此安装的制动单元与周围其它部件要空出一定的距离,视所选配制动单元功率的大小,所空出的距离可以在150mm-500mm之间选择。

3.2变频器配套用制动单元制动电阻-制动单元与变频器间的接线如下图所示四

四.富士变频器配套专用制动单元产品选型

制动单元的选型是以其额定电流和峰值电流为依据的,要保证制动单元正常工作,必须保证流过制动单元的最大电流小于其峰值电流,且最大电流与制动频率Kc的乘积小于其额定电流。一般情况下,为了选型方便,可以直接根据负载情况按照4.1节的说明通过查表来选择合适的制动单元型号。在要求更准确的情况下,可以参照4.2节的内容进行选择。

4.1变频器配套用制动单元制动电阻-一般性负载选型表:

在不清楚实际的平均制动功率的情况下,可以简单的将负载分成轻载和重载两类并对照下表来选择制动单元的型号:表中轻载是指实际负载较小,小于电机额定功率的60%的场合或实际制动率较低,在200秒的工作周期内制动时间小于10%的情况,重载是指实际负载大于电机额定功率的60%或在200秒工作周期内实际制动时间大于10%的场合。

4.2变频器配套用制动单元制动电阻-周期性制动负载的选型

对于周期性制动的负载类型,可以按照以下的方法来近似选择合适的制动单元类型:首先要确定制动频率Kc,即再生过程占整个的制动周期的时间比例。当制动频率无法准确的确定时,可以按不同的负载类型近似选取如下:

电梯/油田磕头机Kc=10-15%/Kc=10-20%

开卷和卷取/离心机Kc=50-60%/Kc=5-20%

下放高度超过100米的吊车Kc=20-40%

偶然制动的负载/其他Kc=5%/Kc=10%

然后确定系统最大制动电流Imax和平均制动电流Iav。

最大电流应为在保证系统能正常工作、负载获得足够制动转矩时流过制动单元的制动电流。当制动电阻已经正确的选定后,该电流可以下列公式计算得出:Imax=制动单元动作电压(V)/制动电阻(Ω)

平均制动电流Iav则可由下式近似计算得出:

Iav=Kc×Imax

得出Iav和Imax后,只要保证所选取制动单元的额定电流和峰值电流均不小于所计算出的Iav和Imax即可。

规格型号制动方式额定电流峰值电流(20S)

CDBR-4022C能耗式12A45A

CDBR-4030C能耗式15A50A

CDBR-4045C能耗式25A75A

CDBR-4075C能耗式30A100A

CDBR-4110C能耗式50A150A

CDBR-4160C能耗式70A200A

CDBR-4220C能耗式85A300A

五.富士变频器配套专用制动电阻的选择:

CDBR能耗制动单元380伏电网匹配电阻推荐表(电阻值决定制动力矩,电阻功率取决于制动频率Kc;下表制动力矩约100%,Kc=10%时的电阻功率)

电机Kw电阻(大约)制动力矩(大约)

7.5Kw75欧姆780W130%

11kW50欧姆1040W135%

15kW40欧姆1560W125%

18.5kW30欧姆4800W125%

22kW27.2欧姆4800W125%

30kW20欧姆6000W125%

37kW16欧姆9600W125%

45kW13.6欧姆9600W125%

55kW10欧姆12kW135%

75kW 6.8欧姆20kW145%

90kW 6.6欧姆30kW100%

110kW 6.6欧姆30kW100%

132kW 3.7欧姆40kW140%

160kW 3.7欧姆40kW140%

185kW 3.5欧姆50kW120%

220kW 3.3欧姆60kW110%

*表中额定电流是指制动单元工作时最大电流与制动频率Kc乘积的最大允许值,该值并不表示制动单元一定可以在该电流下持续工作,而是与其工作环境的散热条件有关。

拖动系统的惯性较大,此时电动机处于发电状态,机械能快速回馈到直流母线上,使直流母线电压迅速上升,从而危及变频器的安全,因此必须将该回馈能量迅速消耗掉,保持直流母线电压在某一安全范围以下,否则变频器将会过压

10

保护或故障。一般惯性较大,或需急剧减速,刹车的场合可使用本制动单元。列如:离心机,电梯,起重机,拉丝机,港口机械等均可使用。

富士变频器配套专用制动单元安全守则:

高压危险,请注意人身安全注意,请注意人身以及设备安全

!!!

其他帮助信息

制动单元内部和制动单元所连接的设备都处于危险的高电压,错误的操作和不当的安装使用都可能危害生命安全或导致财产损失。安装和接线时,必须把与其相连接的变频器和主电源断开,并等待5-10分钟,变频器内部电容放电完备时才可操作。

散热:制动单元本身会产生热量,配用的制动电阻会产生高热,因此用户安装时一定要考虑通风,散热和人身安全。请务必通过机箱外部的没有上漆的接地孔位可靠接地安装和接线时,请务必参考相关的接线图进行接线,特别是母线电压严禁接反,否则将导致制动单元损坏并有起火危险,注意装配时不要将金属片掉入机箱内,装配好后将端子盖板固定好

制动单元的安装最小通风空间:上下100mm,左右30mm,制动电阻不可以放在易爆易燃物的附近;制动电阻会产生高热,可能会影响其他设备工作。安装时必须预先考虑;

!!

要求使用绝缘等级和截面都满足标准的电缆。软电缆有更好的灵活性。因为电缆可能和高温设备有接触,建议使用高温阻燃电缆线进行连接,直流连接线应该绞合以降低干扰配线:制动单元和变频器的距离要尽可能靠近,最远距离不得超过1米,直流侧电缆应该绞合,减少辐射和电感。

*表中峰值电流是指正常情况下制动单元工作时允许通过的最大电流。该电流所持续的时间最长应不超过20秒。2.3电流温度曲线

随着制动单元内部散热器温度的不同,其允许通过

的最大电流也会随之改变。最大电流与温度的关系如下

图所示:

由图中可以看出,当制动单元散热器的温度高于75℃时,

其允许通过的最大电流会随之下降,因此必须对制动单

元工作时的温度加以限制。

2.4环境要求

◇室内使用,不可有异物进入

◇-10~+40℃;

◇相对湿度不大于90%RH(不结露);

◇振动1G/10~20Hz,0.2G/20~50Hz;

◇不可有腐蚀性气体和金属粉尘。

富士变频器配套专用制动单元产品安装

3.1安装方式

制动单元要竖直安装在非易燃的坚固固定表面上,即要保证制动单元内部散热片方向是竖直的,以利空气的自然对流散热。

制动单元在工作过程中会发热,因此安装的制动单元与周围其它部件要空出一定的距离,视所选配制动单元功率的大小,所空出的距离可以在150mm-500mm 之间选择。

3.2制动单元与变频器间的接线如下图所示

R 变频器IN V E R T E R

S T U

V

W D C +D C -P E

制动单元

D C +D C -R L 1R L 2P E

R E S IS T O R

放电电阻M

K M 1

L 1

L 2

L 3

N

T B T A T C

常见故障的排除

1.有制动的响声(吱吱声),但变频器仍然有过电压发生:1.1变频器减速时间太短,延长变频器的减速时间;1.2制动电阻值过大,电阻值减小10-15%再试;

2.没有制动的声音:

2.1电阻断路或电缆线未接好,制动无效;2.2电阻短路,制动器自动停止输出;2.3制动单元故障。

3.制动电阻太热:

3.1所选制动电阻功率太小,加大制动电阻的功率;

4.变频器不工作时,电阻仍然发热:

4.1制动单元电压的等级错误,比如220伏的制动单元用在380伏电网中。

5.制动时变频器发生过电流保护:

5.1制动电阻值太小,制动力矩过大,需要加大电阻阻值或需要延长变频器减速时间;

5.2系统设计不正确。

6.变频器无法投电:

6.1制动单元输入接线正负极方向错误。

7.制动单元过热:通风不好,重新安装;

7.1系统的制动频度太高,可选择大一档的制动单元。

制动单元正负端子与变频器直流母线正负端子相连

接。变频器需外接直流电抗器时,制动单元直流母线的

正极接入点应在直流电抗器后面。

为了防止因为过热而出现意外,制动单元内的过热

保护触点输出最好与变频器的输入接触器线圈串联到一

起,以保证制动单元过热时变频器停止工作,防止因过

热而造成制动单元故障。

富士通用变频器FRN15F1S-4C

FRENIC-VP系列风机/水泵(二次方递减转矩负载)专用变频器 以往变频器的节能功能,是根据负载状态将电动机单体的损耗降低到最小。 新开发的FRENIC-VP系列更新了着眼点,将变频器自身也作为电器产品之一考虑。

不仅将电动机的损耗降低到最小,同时 也将变频器的耗电量控制到最低程度 (最适合最小耗电量控制)。 由此,节能效果再次提高数个百分比。 2005年2月16日《京都协定》正式生效,这也是中国政府和中国企业不可回避的责任,达到行业最高水准的高效节能FRENIC-VP系列则是您最好的选择。 使用变频器的操作面板,可以随时确认有关电力的数据。 可监控项目 功率消耗(kW) 累计功率消耗(kWh) 累计消耗电费(元/kWh) ※累计数值可以复原。选择累计消耗电费表示时,需要事先设定1kWh的电费单价,可以选择外国的货币单位。

●右表中列出了风机/泵类设备在依靠节气闸(阀门)/变频器控制进行运转时,风量/流量和用电量之间的对应关系计 式。另列举了在变频器控制时,电源频率fs(Hz)和变频器频率fINV(Hz)之间的计算关系式。 ●可见,风量/流量越小节能效果越显著。

使用变频器的节能效果计算方式(公式)

3相200V系列 项目规格 型号(FRN□□□F1S-2C) 0.751.5 2.2 3.7 5.57.5111518.522303745557590110标准适用电动机[kW](*1) 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90 110 额定输出额定容量[kVA](*2) 1.6 2.6 4.0 6.3 9.0 12 17 22 27 32 43 53 64 80 105 122 148 电压[V](*3) 3相200~240V(带有AVR功能) 额定电流[A](*4)(*10) 4.2 7.0 10.6 16.7 23.8 (22.5) 31.8 (29) 45 (42) 58 (55) 73 (68) 85 (80) 114 (107) 140 (130) 170 (156) 211 (198) 276 (270) 322 (320) 390 (384)额定过载电流额定输出电流的120% - 1分钟 额定频率[Hz] 50, 60Hz 输入电源相数、电压、频率 主电 源 3相,200~240V,50/60Hz 3相,200~220V/50Hz 3相,200~230V/60Hz 控制 电源 辅助 输入 单相,200~240V,50/60Hz 单相,200~220V/50Hz 单相,200~230V/60Hz 风扇 电源 辅助 输入 (*9) 单相,200~220V/50Hz 单相,200~230V/60Hz 电压、频率允许波动围电压: +10~-15%(相间不平衡率: 2%以(*8))频率: +5~-5% 额定输入电流 [A](*5) (有 DCR) 3.2 6.1 8.9 15.0 21.1 28.8 42.2 57.6 71.0 8 4.4 114 138 167 203 282 334 410 (无 DCR) 5.3 9.5 13.2 22.2 31.5 42.7 60.7 80.1 97.0 112 151 185 225 270 - - - 所需电源容量 [kVA](*6) 1.2 2.2 3.1 5.3 7.4 10 15 20 25 30 40 48 58 71 98 116 142

富士变频器参数设置培训资料

富士变频器参数设置

变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。 因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。 一加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二转矩提升

又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三电子热过载保护 本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。 电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流 (A)]×100%。 四频率限制 即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。 五偏置频率

富士变频器参数设置(精)

一些重要参数说明: F01=1 频率设定模拟量 (电压型 F02=1 运行操作外部信号 (FWD/REV正反向运行 F07 加速时间 1 O13 S曲线 1 F08 减速时间 1 O14 S曲线 2 E10 加减速时间 3 O15 S曲线 3 bE11 加减速时间 4 O16 S曲线 4 E12 加减速时间 5 O17 S曲线 5 数字量可调节参数值E13 加减速时间 6 O18 S曲线 6 模拟量不用,都为 0 E14 加减速时间 7 O19 S曲线 7 E15 加减速时间 8 O20 S曲线 8 O21 S曲线 9 O22 S曲线 10 F03 最高输出频率 F04 基本频率此四个参数值须根据电机铭牌设 F05 额定电压 F06 最高输出电压 F17 频率设定增益 (模拟量 F18 频率偏置 (模拟量

F26 载波频率 15KHz 一般不调,仅当电机动作正常,但声音尖锐异常时可调整(≤15KHz E33=1 过负载预报按输出电流预报 E34: OL预报值额定电流 150%** E37 过负载预报额定电流 150%** C07 爬行速度 C08 检修速度数字量可调节参数值 C09 单层速度模拟量不用,都为 0 C10 双层速度 C11 多层速度 C33 模拟量输入滤波时间 0.04 P01 电机极数 P =120f/N (f -电机额定频率; N -电机额定转速一般情况, N >1000rpm, P =4极 N≤1000rpm , P =6极 P02 电机功率此两个参数值须根据电机铭牌设 P03 电机额定电流 P04 电机空载电流初始值设为 p04的 40%,自整定后自动生成 O01=1 (闭环 ; 0(开环 O03 编码器脉冲数 (分频在 PG 卡上实现

富士变频器常见故障及判断

富士变频器全称为“富士交流变频调速器”,是由富士电机株式会社研发、生产、销售的世界知名变频器品牌之一,在世界各地占有率比较高。主要用于三相异步交流电机,用于控制和调节电机速度。富士变频器主要由整流、滤波、逆变、制动单元、驱动单元、检测单元等微处理单元组成。通过改变电源的频率来达到改变电源电压的目的,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的。 一、富士变频器常见故障及判断 (1) OC报警 键盘面板LCD显示:加、减、恒速时过电流。 对于短时间大电流的OC报警,一般情况下是驱动板 的电流检测回路出了问题,模块也可能已受到冲击(损 坏),有可能复位后继续出现故障。小容量( 7.5G 11 以下)变频器的24V风扇电源短路时也会造成OC3报 警,此时主板上的24V风扇电源会损坏,主板其它功 能正常。若出现“1、OC 2” 报警且不能复位或一上电 就显示“ OC 3” 报警,则可能是主板出了问题若一按 RUN键就显示“OC 3” 报警,则是驱动板坏了。 (2) OLU报警 键盘面板LCD显示:变频器过负载。用电流表测量变 频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。 (3) OU1报警 键盘面板LCD显示:加速时过电压。应考虑电缆是否太长、绝缘是否老化,直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定。另外在启动时用万用表测量一下直流电压,若测量仪表显示电压与操作面板LCD显示电压不同,则主板的检测电路有故障,需更换主板。当直流母线电压高于780VDC时,变频器做OU报警;当低于350VDC时,变频器做欠压LU报警。 (4) LU报警 键盘面板LCD显示:欠电压。将变频器的参数初始化(H03设成1后确认),然后提高变频器的载波频率(参数F26)。若E9设备LU欠电压报警且不能复位,则是(电源)驱动板出了问题。 (5) EF报警 键盘面板LCD显示:对地短路故障。 G/P9系列变频器出现此报警时可能是主板或霍尔元件出现了故障。 (6) Er1报警 键盘面板LCD显示:存贮器异常。 关于G/P9系列变频器“ER1不复位”故障的处理:去掉FWD—CD短路片,上电、一直按住RESET键下电,知道LED电源指示灯熄灭再松手;然后再重新上电,看看“ER1不复位”故

日本富士变频器功能表

日本富士变频器功能表 时间:2008年10月01日 来源:溧阳电梯网 作者:佚名 浏览次数:丄1735 LU 【字体:大中小] 、基本功能 功能码名称LCD 画面显示可设定范围 单位最小单位 出厂设定运行时变更 备注 F00 密码功能 F00 DATA PRTC 0--FFFF - - 0 F01频 1:电压输入(端子12)(0--+10VDC ) 2:电流输入(端子C1)(4--20mADC ) 3:电压输入+电流输入 (端子12+端子C1) 4:用极性信号可作反向运行 (端子 12)(0--10VDC ) - - 0 F02运行操作 F02 OPR METHOD 0:键盘操作 FWD REV STOP 键 1:外部信号(数字输入) (用FWD REV 端子信号运行)--0选择运行操作的输入方式 F03最高输出频率 1 F03 MAX Hz - 1 50 - 120 Hz 1 60可设定输出的最高频率 F04基本频率1 F04 BASE Hz - 1 25 - 120 Hz 1 50设定基本频率 F27 率设定 1 F01 FREQ CMD 1 0:键盘操作( AV 键

F05额定电压1 (基本频率1时)F05 RADET V - 1 0:输出与电源电压成比例的电压 80 - 240: AVR 动作(200V 级) 320 - 480: AVR 动作(400V 级)V 1 200V 级:200 400V 级:400设定基本频率 1(F04)时的电压 F06最高输出电压1 (最高输出频率时) F06 MAX V - 1 80 - 240V: AVR 动作(200V 级) 320 - 480V: AVR 动作(400V 级)V 1 200V 级:200 400V 级:400设定最高输出频率 1(F03)时的电压 F08加减速时间 2 F08 DEC TIME 1 F09 转矩提升 1 F09 TRQ BOOST 1 (恒转矩特性负载用) 0.1-0.9:平方转矩特性负载用 1.0-1.9:比例转矩特性负载用 2.0-20.0:恒转矩特性负载用 -0.1 0.0 V F10电子继电器动作选择 F10 ELCTRN OL 1 0:不动作 1:动作(通用电机) 2:动作(变频专用电机)--2 V F11电子继电器动作值 F11 OL LEVEL 1 变频器额定电流的20-135% 电流值为A 的设定值A 0.01 *1) V F07加减速时间1 F07 ACC TIME 1 0.01-3600 S0.01 6.00 V 0.01-3600 S0.01 6.00 V 0.0:自动转矩提升

富士变频器故障代码说明

富士变频器故障代码说明 旭兴达自动化提供各类型号富士变频器维修服务!服务咨询: OH1 散热片过热如冷却风扇发生故障,则变频器内部温度上升,保护动作. OH2 外部报警当控制电路端子连接制动单元制动电阻、外部热继电器等外部设备的常闭接点时,将按照这些接点的信号动作。 OH3 变频器内过热 如变频器内通风散热不良,则变频器内部温度上升保护动作 DBH 制动电阻过热如制动电阻刹车频率高,导致温度上升,为防止电阻烧毁,保护动作。 富士变频器故障代码OLU报警变频器过热载 这是变频器主电路半导体元件的温度保护,当变频器输出电流超过过载额定值时作。 OC1 加速时过电流: 电动机过电流,输出电路相间或对地短路,变频器输出电流瞬时值大于过电流检出值时,过电流保护功能动作。 富士变频器故障代码OC2报警减速时过电流 OC3 恒速时过电流 EF 对地短路故障检测变频器输出电路对地短路时动作 OU1 加速时过电压由于电动机再生电流增加,使主电路直流电压达到过电压检出值时,保护动作。但是,变频器输入侧错误地输入过高的电压时,保护不动作。富士变频器维修免费在线咨询: OU2 减速时过电压 OU3 恒速时过电压 LU 欠电压电源电压降低,使主电路直流电压低到欠电压检出值以下时,保护功能动作. Lin 电源缺相如电源缺相,变频器将在电压不平衡的状态下运行,可能造成主电路整流二极管和滤波电容损坏.在这种情况下,变频器报警并停止运行. 富士变频器故障代码FUS报警 DC熔断器断路当内部熔断器由于内部电路短路等原因造成损坏时,保护动作。 Er1 存储器异常存储器发生数据写入错误时,保护动作。 Er2 面板通信异常键盘面板和控制部份传送出现错误时,保护动作。 Er3 CPU异常由于干扰等原因或CPU出错时,保护动作。 Er4 选件通信异常选件卡使用出错时,保护动作。 Er5 选件异常 Er6 操作错误强制停止由强停止命令使变频器停止运行。 Er7 输出电路自整定不良自整定时,如变频器与电动机之间接线开路或接线错误,则保护动作。 Er8 RS485通信异常使用RS485通信时出现错误,保护动作。

富士变频器参数设置

F01=1 频率设定模拟量(电压型) F02=1 运行操作外部信号(FWD/REV正反向运行) F07 加速时间1 O13 S曲线1 F08 减速时间1 O14 S曲线2 E10 加减速时间3 O15 S曲线3 bE11 加减速时间4 O16 S曲线4 E12 加减速时间5 O17 S曲线5 数字量可调节参数值 E13 加减速时间6 O18 S曲线6 模拟量不用,都为0 E14 加减速时间7 O19 S曲线7 E15 加减速时间8 O20 S曲线8 O21 S曲线9 O22 S曲线10 F03 最高输出频率 F04 基本频率此四个参数值须根据电机铭牌设 F05 额定电压 F06 最高输出电压 F17 频率设定增益(模拟量) F18 频率偏置(模拟量) F26 载波频率 15KHz 一般不调,仅当电机动作正常,但声音尖锐异常时可调整(≤15KHz) E33=1 过负载预报按输出电流预报 E34: OL预报值额定电流150%** E37 过负载预报额定电流150%** C07 爬行速度 C08 检修速度数字量可调节参数值 C09 单层速度模拟量不用,都为0 C10 双层速度 C11 多层速度 C33 模拟量输入滤波时间 P01 电机极数 P=120f/N (f-电机额定频率;N-电机额定转速)一般情况,N >1000rpm, P=4极 N≤1000rpm, P=6极

P02 电机功率此两个参数值须根据电机铭牌设 P03 电机额定电流 P04 电机空载电流初始值设为p04的40%,自整定后自动生成 O01=1 (闭环); 0(开环) O03 编码器脉冲数(分频在PG卡上实现) O04 速度环P常数(高速时) O05 速度环I常数 O06 速度检测滤波常数 O07 速度环P常数切换频率1 5 O08 速度环P常数切换频率2 10 O09 速度环P常数(低速时) H03 数据初始化(一般不用

变频器电路中的制动电路

变频器电路中的制动控制电路 一、为嘛要采用制动电路 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。 此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。 一例维修实例: 一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。将模块和驱动电路修复后,带电机试机,运行正常。即交付用户安装使用了。 运行约一个月时间,用户又因模块炸裂。检查又为两相模块损坏。这下不敢大意了,询问用户又说不大清楚。到用户生产现场,算是弄明白了损坏的原因。原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。用户往往实施故障复位后,又强制开机。正是这种回馈电能,使直流回路电压异常升高,超出了IGBT的安全工作范围,而炸裂了。 此次修复后,给用户说明情况,增上了制动单元和制动电阻器后,变频器投入运行,几年来再未发生模块炸裂故障。 此种制动方式,加快机械惯性能量的消耗,利于缩短停车进程,将电机的再生发电能

富士变频器基本技术参数设置

富士变频器基本技术参数设置 116人阅读| 0条评论发布于:2011-10-31 16:44:08 变频器功能参数很多,实际应用中,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。本文讲讲富士变频器基本技术参数设置:一、加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二、转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三、电子热过载保护 本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。 电子热保护设定值(%)=【电动机额定电流(A)/变频器额定输出电流(A)>×100%。 四、频率限制 即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。 五、偏置频率 有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。 六、频率设定信号增益 此功能仅在用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频器内电压 (+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;如外部设定信号为0~5v 时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。 七、转矩限制 可分为驱动转矩限制和制动转矩限制两种。它是根据变频器输出电压和电流值,经CPU进行转矩计算,

富士变频器报警代码详解

报警名称 键盘面板显示 LEDLCD 动作内容 OC1加速时过流电动机过电流,输出电路相间或对地短路;变 频器输出电流瞬时值大于过电流检出值;过电OC2减速时过流 过电流OC3恒速时过流 流保护功能动作。 OU2减速时过压 OU3恒速时过压 欠电压LU欠电压电源电压降低等使主电路直流电压低至欠电压 检出值以下时,保护功能动作。(欠电压检出 值:400VDC)如选择F14瞬停再启动功能, 则不报警显示。另外当电压低至不能维持变频 器控制电路电压值时,将不能显示。 电源缺相Lin电源缺相连接的三相输入电源L1,L2,L3中缺任何1 相时,变频器将在三相电源电压不平衡状态下 工作,可能造成主电路整流二极管和主滤波电 容器损坏。在这种情况,变频器报警和停止运 行。 散热片过热OH1散热片过热如冷却风扇发生故障等,则散热片温度上升, 保护动作。端子13和端子11之间短路的话, 端子13以过电流(20mA以上)状态运行。 外部报警OH2外部报警当控制电路端子(THR)连接制动单元、制动 电阻、外部热继电器等外部设备的报警常闭接 点时,按这些接点的信号动作。 使用电动机保护用PTC热敏电阻时(即H26: 1),电动机温度上升时启动。 变频器内过热OH3变频器内过热如变频其内部通风散热不良等,则其内部温度 上升,保护动作。 端子13和端子1之间短路的话,端子13以过 电流(20mA)状态运行。 制动电阻过热dbHDB电阻过热选择功能F13电子热继电器(制动电阻用)时, 可防止制动电阻的烧毁。 电动机1过载OL1电动机1过载选择功能码F10电子热继电器1时,超过电机 的动作电流值,就会作用。 电动机2过载OL2电动机2过载切换到电动机2驱动,选择A06电子热继电器 2,设定电动机2的动作电流值,就会动作。变频器过载OLH变频器过负载此为变频器主电路半导体元件的温度保护,按 变频器输出电流超过过载额定值时保就会动 作。 报警名称键盘面板显示 LEDLCD 动作内容 FUSDC熔断器断路变频器内部的熔断器由于内部电路短路等造成 损害而断路时,保护动作。(仅≧30KW由此 DC熔断器断路 保护功能)

富士LIFT变频器 自整定顺序

、使用OPC-LM1-PR选件(海得汉ERN1387)磁极位置偏移整定顺序 1. 条件电动机处于单体可以自由旋转状态(卸下缆绳),如果变频器上设定有转矩偏置, 请取消。 编码器异常检测有效。(出厂设定L90=1, L91=10%, L92=0.5) 2.功能码设定 3.整定顺序 3-1 第一步 1.松开制动闸,转子处于可驱动状态。 2.确认电动机和变频器之间已经连接。 3.用多功能操作键盘(以下表示为TP),按住TP的[REM / LOC]键,直到运转操作 指令场所变更到就地操作(显示屏显示LOC)。 4.在TP的程序模式中选择[1.数据设定],将功能码L03的设定变更为“3”,按[FUNC/ DATA] 键设定。 5. 按[FWD]键,开始磁极位置偏移整定。整定期间监视窗口显示“执行中”。当该显示 内容消失,说明整定结束,L03自动恢复为0。

6.磁极位置偏移整定结果,被放到L04内,确认并记录该数值。 7.按照顺序5.?6.进行5次左右的操作,确认磁极位置偏移整定结果L04的偏差。 如果偏差超过20?,或者出现”Er7”,有可能是电动机或者编码器接线有误,调换输出电压V相和W相连线之后,再次实施磁极位置偏移整定。 如果再次出现类似现象,可能是断线或者编码器配线有误,请确认并更正后再次实施整定。 8.如果偏差在20?之下,不要切断电源,继续进行下一项的操作。)3-2 第二步 1.将频率指令设定为1Hz程度,按[FWD]键,让电动机以大于1转的速度旋转。 (如果不能正常运转,是PG配线有问题。切断电源,调换A相和B相连线,重新 从3.1步骤开始操作。) 2.按[STOP]键,当电动机停止后,将频率指令恢复到0。 特别强调:LIFT 变频器版本(versions) 0804 0808 1100或更高2008-7-21日 注:在确认编码器接线正确的情况下也可以进行,电机不摘正钢丝绳,(L03=1)不打开抱闸的情况下进行静态自整定.参数和步骤都是一样. 安玉利

变频器的电气制动

变频器的电气制动 电气制动概况 众所周知变频器的电气制动方法有三种:能耗制动,直流制动,回馈(再生)制动,其性能及特点如下所列: 制动方式制动力矩能量去路效果经济性适用功率适用场合及特点 能耗制动≤80%加强式达130-350% 消耗电阻上发热浪费差 50KW 一般要求的制动设备上制动力矩不平衡有冲击,有低速爬行可能 直流制动 80-100% 动能变电能产生制动力矩浪费差 50-100KW 要求平稳无冲击,停车精确,例针织、缝纫、起重、提升机、启动前先停车,例大型风机 回馈(再生)制动 80-150% 动能变电能回馈电网回收好 >100KW 适用离心机、清洗机等尤其高低速交叉,正反转交替高速与低速差值很大,并可四象限运转 I、能耗制动 1、制动概况 从高速到低速(零速)----这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势E>U(端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来,但由于通常变频器是交—直---交主电力,AC/DC

整流电路是不可逆的,因此无法回馈到电网上去,结果造成主电路电容器二端电压升高,称泵升电压,当超过设定上限值电压700V时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗,电压随之下降,待到设定下限值(680V)时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的. 2、技术性能 制动方式自动电压跟踪方式 反映时间 1ms以下有多种噪声 电网电压 300-460V,45-66Hz 动作电压 700V直流,误差2V 滞环电压 20V 制动力巨通常130% ,最大150% 保护过热,过电流,短路 滤波器有噪声滤波器 防护等级 IPOO 3、制动电阻计算方法: 制动力矩制动电阻 92% R=780/电动机KW 100% R=700/电动机KW 110% R=650/电动机KW 120% R=600/电动机KW 注:①电阻值越小,制动力矩越大,流过制动单元的电流越大;②不

富士变频器参数设置【干货技巧】

富士变频器参数设置 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 因各类型变频器功能有差异,而相同功能参数名称一致,为叙述方便,本文以富士变频器基本参数名称为例。基本参数是各类型变频器几乎都有,完全可以做到触类旁通。 一加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。电动机加速时须限制频率设定上升率止过电流,减速时则限制下降率止过电压。 加速时间设定要求:将加速电流限制变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可负载计算出来,但调试中常采取按负载和经验先设定较长加减速时间,起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起低速时转矩降低,而把低频率范围f/V增大方法。设定为自动时,可使加速时电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,负载特性,尤其是负载起动特性,试验可选出较佳曲线。变转矩负载,如选择不当会出现低速时输出电压过高,而浪费电能现象,还会出现电动机带负载起动时电流大,而转速上不去现象。 三电子热过载保护

富士变频器配套专用制动单元(1)

制动单元制动电阻箱 波纹电阻器铝壳电阻器 上海民恩电气有限公司主营变频器配套系列产品:制动单元,制动电阻,输入电抗器,输出电抗器,直流电抗器,滤波器,变压器等产品;产品质量保证,价格实惠,欢迎来电咨询! 富士变频器配套专用制动单元技术参数: 1)配置制动单元型号:CDBR-430C 2)适配变频器功率:30KW 3)制动单元品牌:上海民恩 4)额定电流:15A 5)峰值电流:50A 6)最小阻值:20Ω

7)斩波电压:DC630V DC660V DC690V DC730V DC760V 8)外形及安装尺寸:见表格 9)制动方式:能耗式 10)包装:纸箱包装 1)设计加工周期:3个工作日(常规型号现货) 12)售后服务:国家三包1年,免费提供技术咨询,技术指导,安装指导 13)产品咨询:请联系上海民恩客服 富士变频器配套专用制动单元产品概述 当传动应用中需要电机快速或精确的减速时,为了获得所需的制动转矩,并避免在减速过程中产生过高的泵升电压影响设备的安全运行,应当使用CDBR

系列制动单元。CDBR系列制动单元是采用德国技术生产制造的低成本能耗式制动单元,配合适当的制动电阻后可以将调速电机在减速过程中所产生的再生电能加以吸收消耗在电阻上,同时获得良好的制动效果。CDBR是将电机在调速过程中所产生的再生电能直接消耗在制动电阻上,所需的设备简单,成本较低。所有的CDBR产品,均来自高度可靠的设计和精良的制造技术,CDBR的每一件产品都能发挥最大的效能。 (产品接线图) (产品性能测试)

富士变频器配套专用制动单元产品规格及技术参数 产品型号额定 电流峰值 电流 最小 阻值 斩波电压 图 号 尺寸/(mm) 配线 L W H L1W1 CDBR-2022C15A50A 6.8DC380V P1240100153228704-6 CDBR-2030C25A75A10240100153228704-6 CDBR-4030C15A50A20DC630V DC660V DC690V DC730V DC760V 240100153228704-6 CDBR-4045C25A75A13.6240100153228704-6 CDBR-4055C27A85A12.5240100153228704-6 CDBR-4075C30A100A10P232018716330412016-36 CDBR-4110C50A 6.832018716330412016-36

富士变频器系列富士变频器型号

富士变频器说明书的详细描述: 本公司供应电工电器成套设备的富士变频器说明书,品质保证,欢迎洽谈。富士变频器说明书的详细描述: 富士变频器是由取得环境管理系统ISO14001认证的工厂制造 高性能和多功能的理想结合 动态转矩矢量控制 能在各种运行条件下实现对电动机的最佳控制。 动态转矩矢量控制 动态转矩矢量控制是一种先进的驱动控制技术。控制系统高速计算电动机驱动负载所需功率,最佳控制电压和电流矢量,最大限度地发挥电动机的输出转矩。 ● 按照动态转矩矢量控制方式,能配合负载实现在最短时间内平稳地加减速。 ● 使用高速CPU能快速响应急变负载和及时检知再生功率,设有控制减速时间的再生回避功能,实现无跳闸自动减速过程。

● 采用富士独自开发的控制方式,在0.5Hz能输出200%高起动转矩(£ 22kW)。 * 30kW以上时为180% 。 带PG反馈更高性能的控制系统 ● 使用PG反馈卡(选件)构成带PG反馈的矢量控制系统,实现更高性能、更高精度的运行。 - 速度控制范围:1:1200 - 速度控制精度:±0.02% - 速度响应:40Hz 电动机低转速时脉动大大减小 ● 采用动态转矩矢量控制,结合富士专有的数字AVR,实现电动机低转速(1Hz)运行时的转速脉动比以前机种减小1/2以上。 新方式在线自整定系统 ● 在电动机运行过程中常时进行自整定,常时核对电动机特性变化,实现高精度速度控制。 ● 第2电动机亦有自整定功能。1台变频器切换运行2台电动机时,保证2台电动机都能高精度运行。 优良的环境兼容性 ● 采用低噪声控制电源系统,大大减小对周围传感器等设备的噪声干扰影响。 ● 标准装有连接抑制高次谐波电流的DC电抗器端子。 ● 连接选件EMC滤波器后,能符合欧洲EMC指令。

富士变频器报警代码详解

报警名称 过电流 欠电压电源缺相散热片过热外部报警 键盘面板显示 LED LCD 动作内容 OC1加速时过流电动机过电流,输出电路相间或对地短路;变OC2减速时过流频器输出电流瞬时值大于过电流检出值;过电OC3恒速时过流流保护功能动作。 OU2减速时过压 OU3恒速时过压 LU欠电压电源电压降低等使主电路直流电压低至欠电压 检出值以下时,保护功能动作。(欠电压检出 值: 400VDC )如选择 F14 瞬停再启动功能, 则不报警显示。另外当电压低至不能维持变频 器控制电路电压值时,将不能显示。 Lin电源缺相连接的三相输入电源 L1, L2, L3 中缺任何 1 相时,变频器将在三相电源电压不平衡状态下 工作,可能造成主电路整流二极管和主滤波电 容器损坏。在这种情况,变频器报警和停止运 行。 OH1散热片过热如冷却风扇发生故障等,则散热片温度上升, 保护动作。端子 13 和端子 11 之间短路的话, 端子 13 以过电流( 20mA 以上)状态运行。OH2外部报警当控制电路端子( THR )连接制动单元、制动 电阻、外部热继电器等外部设备的报警常闭接 点时,按这些接点的信号动作。 使用电动机保护用 PTC 热敏电阻时(即 H26: 1),电动机温度上升时启动。 变频器内过热OH3变频器内过热如变频其内部通风散热不良等,则其内部温度 上升,保护动作。 端子 13 和端子 1 之间短路的话,端子 13 以过 电流( 20mA) 状态运行。 制动电阻过热dbH DB 电阻过热选择功能 F13 电子热继电器(制动电阻用)时, 可防止制动电阻的烧毁。 电动机 1 过载OL1电动机 1 过载选择功能码 F10 电子热继电器 1 时,超过电机 的动作电流值,就会作用。 电动机 2 过载OL2电动机 2 过载切换到电动机 2 驱动,选择 A06电子热继电器 2,设定电动机 2 的动作电流值,就会动作。 变频器过载OLH变频器过负载此为变频器主电路半导体元件的温度保护,按 变频器输出电流超过过载额定值时保就会动 作。 报警名称键盘面板显示 动作内容 LED LCD FUS DC 熔断器断路变频器内部的熔断器由于内部电路短路等造成 DC 熔断器断路损害而断路时,保护动作。(仅≧30KW 由此 保护功能)

富士LIFT变频器参数表

富士变频器参数表 代码名称可设定范围 F00 数据保护(密码输入) 0: 无数据保护 1: 有数据保护 ※将H99设定为“0”时有效0000~FFFF ※将H99设定为“0”以外时有效 H99的数据将成为密码。F01 速度设定0: 带S形加减速的多级速度指令(SS1, SS2, SS4) 1: 模拟输入 (不可进行可逆运转) 2: 模拟运转(可进行可逆运转) F03 最高速度300.00~3600r/min F04 额定速度300.00~3600r/min F05 额定电压160~500V,A VR动作F07 加减速时间1低速加速时间 0.00~99.99s ※0.00为加速时间取消 (在外部进行软件启动停止的情况下) F08 加减速时间2低速减速时间 0.00~99.99s ※0.00加速时间取消 (在外部进行软件启动停止的情况下)F09 转矩提升0.0~20.0% (F05:相对于额定电源的%值)※将F42设定为“2”时有效 F10 电子热继电器(特性选择) 1: 自我冷却风扇?通用电动机用 (电动机保护用) 2: 其他风扇用 F11 (动作值)0.00(不动作) 变频器额定电流的1~135%的电流值 F12 (热时间常数)0.5~75.0min F20 直流制动(开始频率) 0.0~60.0Hz ※将F42设定为“2”时有效 F21 (动作值)0~100%(变频器额定电流基准) ※将F42设定为“2”时有效F22 (时间)0.00s(不动作), 0.01~30.00s ※将F42设定为“2”时有效F23 启动速度0.00~150.0r/min

F24 (持续时间)0.00~10.00s F25 停止速度0.00~150.0r/min F26 电动机运转音8 5~15kHz (载频)F30 用于厂家调试0~99 F42 控制选择1 0: 带PG矢量控制(异步机) 1: 带PG矢量控制(同步机) 2:电动转矩矢量控制 F44 电流限制(动作值) 20~200%(变频器额定电流基准) 999:在每个容量到达最大电流时自动进行限制。 代码名称可设定范围E01 端子X1 0: (1000) 多级速度选择1『SS1』 E02 端子X2 1: (1001) 多级速度选择2『SS2』 E03 端子X3 2: (1002) 多级速度选择4『SS4』 E04 端子X4 7: (1007) 自由旋转指令『BX』 E05 端子X5 8: (1008) 报警(异常)复位『RST』 E06 端子X6 9: (1009) 外部报警『THR』 E07 端子X7 8: (1008) 报警(异常)复位『RST』 E08 端子X8 8: (1008) 报警(异常)复位『RST』9:(1009) 外部报警『THR』 10 :(1010) 电动运转『JOG』 24:(1024) 链路运转选择『LE』 (RS485通信, CAN通信) 25:(1025) 通用DI 『U-DI』 27:(1027) 速度反馈控制选择『PG/Hz』 60:(1060) 转矩偏置选择1『TB1』 61:(1061) 转矩偏置选择2『TB2』 62:(1062) 转矩偏置保持『H-TB』 63:(1063) 电池运转『BATRY』 64:(1064) 无蠕变运行『CRPLS』 65:(1065) 制动确认『BRKE』 66:(1066) 强制减速『DRS』 67:(1067) 不平衡负载补偿开始指令『UNBL』 ※()的1000号站是逻辑取反的信号。 (激活-OFF)但是,以下情况例外。

富士变频器LIFT调试方法(模拟量)(20210309221904)

富士变频器LIFT调试方法(模拟量)1、变频器调整参数表

注:带*号的设定值为推荐值,可视具体情况进行调整 2、主机自学习方法 1) .将KAS KAD KMC KMY KMB接触器通电吸合,可采用短接的方 法。 2) .将使能端子EN与CM短接。 3) .修改变频器控制方式参数 P06=0 P07=5% P08=10%

F42=1 (带PG矢量控制) L01=5 (PR卡) L02=2048 (海德汉编码器) L36=2 L38=2 4) . 输入电机参数 F03=最高速度 F04=额定速度 F05=额定电压 P01=电机极数 P02=电机额定功率 P03=电机额定电流 5) . 主机自学习 首先将参数L03设置为3,然后切换至自学习界面后,按RUN键进行主机自学习(整个过程大约持续10 秒钟)。自学习完后需将界面切换为修改参数界面。 6) . 试运转电机 将电机以10%,20%,50%,100% 的速度运行,观察运行是否有异 常振动或都响声。 7) . 监视磁极位置检出值 断电(操作器显示消失),上电运行,观察是否能顺利启动。观察L04 是 否有值,若无值则须重复以上自学习步骤。 8) . 观察运行方向 观察电机的运转方向,是否与实际的运转方向一致,如相反,则将电机和变频器间的接线V 、W 进行互换;互换后重新进行主机自学习。 9). 拆线:将所有短接线拆除,恢复原来的状态。 3、起动力矩补偿调整方法 转矩补偿的调整框图如下所示:

2).模拟量控制中又由三条线路可控制,我公司采用V2 口控制转矩补偿。变频器X5点用于转矩保持。故需将变频器的E05参数设置为62。 3).平衡调整 把功能代码E43(LED监视器)设定为19,便能由LED对转矩偏置平衡调整(BTBB)进行监视。为了使显示数据为0[%],在功能代码C41(V2输入偏移)中进行平衡调整(以相对于电动机额定转矩的比例用[%]来显示数据)。 4).增益调整 ①在平衡调整后,把要调整的模拟输入端子的增益C42(V2输入增益)作为100[%],来进行增益的调整。 ②根据下表,来决定要设定的驱动侧?制动侧增益(L60,L61)的初始值

相关文档
最新文档