第四章 一维纳米材料
一维纳米材料制备

导热性能(声子传送特性) 当硅纳米线直径小于20 nm时,声子色散的关系可能会改
变(由声子局限效应造成),导致声波速度和热导率大大 低于标准值。分子动力学模拟还表明,在200K到500K的温 度范围内,硅纳米线的热导率比硅块低2个等级。
纳米线的特性及其应用
导电性能 尺寸下降导致导电性能的转变。如Bi纳米线在52nm时由金 属转变为半导体;Si纳米线在15nm时由半导体转变为绝缘 体
通过对一些氧化物纳米线(如SnO2) 电学输运性能(如 电导率)的检测,就可能对其所处的化学环境作出检测,可 用于医疗,环境,或安全检查。
纳米线的制备策略
问题:如何控制晶核(纳米颗粒)的尺寸和生长方向?
局限于特殊结 构的材料
VLS 机制
晶体结构的各项异性导致定向生 长。生长速率 Si {111}< Si{110}
• 液相自发组装
• 基于模板合成(模板法)
• 静电纺丝
纳米线的自发生长
• 气相法 - 气-固(VS)生长机理 - 气-液-固(VLS)生长机理
• 液相法 - 溶液-液相-固相机理 (SLS) - “毒化”晶面控制生长的机理(包覆法); - 溶剂热合成方法。
气相法
在合成纳米线时, 气相合成可能是用得最多的方法。
气-固生长机理又称为位错机理,是通过气-固反应形核并长成纳米线的过程。 是一种经常采用的晶须生长机理。 气固机理的发生过程: • 通过热蒸发或气相反应等方法产生气相; • 气相分子或原子被传输到低温区并沉积在基底上; • 在基底表面反应、形核与生长,通常是以气固界面上微观缺陷 (位错、
孪晶等) 为形核中心生长出一维材料。
碳纳米管制造人造卫星的拖绳
一维纳米材料

一维纳米材料一维纳米材料是指在一个维度上具有纳米尺度的尺寸特征的材料。
由于其尺寸非常小,一维纳米材料具有许多特殊的性能和应用潜力,因此受到了广泛的关注和研究。
一维纳米材料的制备方法有很多,比如纳米线的可控生长、纳米棒的光化学方法和碳纳米管的化学气相沉积等。
其中,碳纳米管是最具代表性的一维纳米材料之一。
碳纳米管是由碳原子以一种特定的方式排列而成,具有优异的力学性能、导电性能和热导性能。
由于这些优异的性能,碳纳米管在电子器件、储能材料和生物医学领域等方面具有广泛的应用前景。
另一个代表性的一维纳米材料是纳米线。
纳米线具有高比表面积和表面活性,使其具有优异的光学、电学和化学特性。
纳米线可以用来制备柔性电子器件、可拉伸电缆和高效的光电催化剂等。
同时,纳米线还可以用来制备纳米传感器,用于检测环境中的有害气体和微量分子。
除了碳纳米管和纳米线,金属纳米线、半导体纳米线和聚合物纳米线等一维纳米材料也具有重要的研究和应用价值。
金属纳米线由金属原子组成,具有窄的禁带宽度和高的载流子迁移率,可以用来制备高效的传感器和电子器件。
半导体纳米线由半导体材料构成,可以用于制备高效的太阳能电池和光电器件。
聚合物纳米线则可以用来制备高性能的有机场效应晶体管和柔性纳米电子器件。
一维纳米材料具有多种重要的应用潜力。
例如,它们可以用于制备高性能的传感器、储能材料和光电器件。
一维纳米材料还可以用于制备高效的催化剂,提高反应速率和选择性。
此外,一维纳米材料还可以用于生物医学领域,例如用于药物传输和疾病诊断。
总之,一维纳米材料具有许多独特的性能和应用潜力,对于科学研究和技术发展具有重要的意义。
随着纳米技术的不断发展,我们相信一维纳米材料将在各个领域得到更广泛的应用。
一维纳米材料的制备与性能调控

一维纳米材料的制备与性能调控纳米材料作为一种新兴的材料,在化学、物理、材料等领域得到了广泛的研究与应用。
而其中的一维纳米材料,如纳米线、纳米管等,由于其特殊的形态和独特的性能,在纳米科技领域中备受关注。
一维纳米材料的制备是研究的重点之一。
目前,有许多制备方法被提出,如气相沉积法、溶液法、模板法等。
其中,气相沉积法是一种非常常用的制备方法。
通过在适宜温度下将一定的原料气体从反应装置中通过材料的表面,使原料气体中的金属元素进行气相反应,从而得到所需的一维纳米材料。
而溶液法则是通过在相应的溶剂中溶解金属盐或有机物来制备一维纳米材料。
模板法则是利用一定孔洞结构的模板来造就纳米材料的特定形态。
除了制备方法外,一维纳米材料的性能调控也是非常重要的研究内容。
在纳米材料中,尺寸效应、表面效应和界面效应等对其性能具有重要影响。
一维纳米材料的尺寸通常非常小,因此具有较大的比表面积,这使得一维纳米材料在比传统材料更容易表现出与物质结构和性能相关的尺度效应。
此外,一维纳米材料的形态也会影响其电子结构、光学性质、热学和力学性质等。
因此,通过调控一维纳米材料的尺寸和形态,可以实现对其性能的精确控制和调节。
在电子和光学领域,一维纳米材料由于其优异的电学性能和光学性能,展示出了巨大的应用潜力。
一维纳米材料的带隙由于量子限制效应,往往会变得非常大,因此它们具有较高的载流子迁移率和较低的杂质敏感性。
这使得一维纳米材料在光电器件和集成电路等方面具有重要的应用价值。
此外,由于一维纳米材料具有准无限的长度,这种结构特点使得它们能够有效地捕获光能,并具有广泛的吸收能力。
因此,一维纳米材料在太阳能电池、光催化和传感器等领域也有着广阔的应用前景。
此外,一维纳米材料还在能量存储和传输领域具有重要的应用潜力。
由于其高比表面积和孔隙结构,一维纳米材料能够有效地嵌入或吸附更多的离子,从而提高电容器和电池的能量存储密度。
同时,由于其特殊的形态和结构,一维纳米材料具有较低的电阻和较高的导电性能,能够有效地降低电路中的能耗。
一维纳米材料

一维纳米材料
一维纳米材料是指至少有一个尺寸在纳米尺度(10^-9米)范围内的材料,但
其它两个维度的尺寸可以远远大于纳米尺度。
一维纳米材料包括纳米线、纳米棒、纳米管等,这些材料在纳米尺度下呈现出特殊的物理和化学性质,因此被广泛应用于各种领域。
一维纳米材料的制备方法多种多样,包括化学气相沉积、溶液法合成、电化学
沉积等。
其中,化学气相沉积是一种常用的方法,通过在高温下将气态前驱体转化为固态纳米材料,可以制备出高质量、高纯度的一维纳米材料。
溶液法合成则是通过在溶液中加入适当的前驱体,利用溶剂的挥发或化学反应来制备一维纳米材料,这种方法简单易行,适用于大规模生产。
一维纳米材料具有许多独特的性质,例如,纳米线的电学性质优异,可以用于
制备高性能的电子器件;纳米管具有优异的力学性能和热学性能,被广泛应用于纳米材料复合材料的制备;而纳米棒则具有优异的光学性能,可用于制备高效的光电器件。
这些特殊的性质使得一维纳米材料在电子、光电、传感、催化等领域有着广泛的应用前景。
除了应用领域的广泛性外,一维纳米材料还具有很强的研究价值。
通过对一维
纳米材料的研究,可以深入了解纳米尺度下的物理和化学性质,为纳米材料的设计与制备提供理论基础。
同时,一维纳米材料还可以作为纳米材料复合材料的增强相,提高复合材料的力学性能和热学性能。
总的来说,一维纳米材料具有独特的物理和化学性质,具有广泛的应用前景和
研究价值。
随着纳米技术的不断发展,一维纳米材料必将在各个领域发挥重要作用,推动科技的进步。
无机化学-一维纳米材料合成

GaN nanowire
C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 188
ZnO,SnO2,In2O3,CdO,Ga2O3和PdO2
Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 2003, 13, 9.
R. M Penner, Science 2001, 293, 2227
准直孔道的多孔化合物为模板
介孔分子筛类 聚合碳酸酯类 阳极氧化铝类
MCM-41 SBA-15
J. Soler-Illia Curr. Opin. Colloid-Interface Sci. 2003, 8, 109
nickel nanowires inside channels of SAB-15
1、气相生长 2、模板生长 3、液相生长 4、组装生长
利用气相生长来制备一维纳米材料,一般 需要将前驱体加热到一定温度。常见的处 理包括直接加热金属表面和化学气相沉积。
利用多种辅助手段,可以得到了包括纳米管、 带、线在内的按特定生长面单方向或多方向生 长的一维纳米材料。
Cu新鲜表面快速升 温到400 ~ 700℃ CuO纳米线
模板法使得纳米材料的生长可以按照人们的意愿来 进行,产物基本涵盖了目前可制备的一维纳米材料。 一些辅助手段保证了产物的结构完整性和形貌可控性, 并且很容易获得良好的纳米阵列。但它的缺点也比较 突出:首先是模板与产物的分离比较麻烦,很容易对 纳米管/线造成损伤;其次,模板的结构一般只是在 很小的范围内是有序的,很难在大范围内改变,这就 使纳米材料的尺寸不能随意地改变;第三,模板的使 用造成了对反应条件的限制,为了迁就模板的适用范 围,将不可避免地对产物的应用造成影响。
第四章-一维纳米材料

22
(二)软模板 由表面活性剂构成的胶团或反相胶团
8
2.2 模板合成法原理: 利用基质材料结构中的空隙或外表面作为模板进行 合成。 结构基质为多孔玻璃、分子筛、大孔离子交换树脂等 优点:调控尺寸、形状、分散性模板 (一)硬模板法
硬模板多是利用材料的内表面或外表面为模板,填充到模 板的单体进行化学或电化学反应,通过控制反应时间,除 去模板后可以得到纳米材料。
17
Au-Ag-Au-Ag nanowire
18
1.3 硬模板:碳纳米管(carbon nanotubes)
用于制备碳化物纳米棒的反应路线示意图
19
碳纳米管
以碳纳米管为模板合成的
GaN纳米线
20
1.4 硬模板:外延模板法
“外延模板法”制备单晶GaN 纳米管的过程示意图 21
A) TEM images of Ag/SiO2 coaxial nanocables that were prepared by directly coating silver nanowires with an amorphous silica sheath using the sol-gel method.
【例】软模板控制聚苯胺的形貌 一)阴离子表面活性剂 利用十二烷基苯磺酸钠为结构指导剂,通过过硫酸
铵引发苯胺聚合制备了十二烷基苯磺酸掺杂的聚 苯胺亚微米管
31
塌陷(A)和未塌陷(B)的聚苯胺亚微米管的SEM照片。
第四章 一维纳米材料

二次成核条件
Hirth和Pound提出,下面等式成立,二次成核便开始进 行
( p pe )crin exp( h 2 65k 2T 2 )
p—晶须晶体表面附近气相压力,Pa Pe—晶体表面附近气相处于平衡状态下的压力,Pa γ—晶体表面能,J/m2 Ω—分子体积,m3 k—Boltyman常数,1.38×10-23J/K T—热力学常数,K
激光烧蚀法
靶材为Si0.9Fe0.1,抽真空,通入Ar/H2混合载流气,通电加热 当温度>=1207℃后,开启激光器,在靶材上烧蚀,1~2h后, 可在靶材后的衬底或石英管壁上收集到Si纳米线
材料学院
第四章 一维纳米材料
激光烧蚀法合成的Si纳米线平均直径在10nm左右 Si纳米线外层包裹了一层均匀的非晶SiO2层 在Si纳米线的一端常存在着一个团球状颗粒,直径略大于Si纳米线,这是VLS 法生长的典型特征
材料学院
第四章 一维纳米材料
实例一 Chen等人通过低温热蒸发合成了SnO2纳米线,并 验证了自催化VLS生长机制 他们以SnO粉作为热蒸发的源材料,在680℃下, 发生如下反应: 2SnO(g) Sn(L)+SnO2 SnO2(s) SnO(g)+0.5O2 高温分解产生的纳米级Sn液滴发挥着金属催化剂 的作用,吸附其它气相分子,最终生成SnO2纳米 线
晶须的形成是晶核内螺旋位错延伸的结果,决定了晶 须快速生长的方向
②防止晶须侧面成核(横向条件)
晶须侧面是低能面,结合在其上的气相原子结合能低、 解析率高,将导致晶须纵向生长非常缓慢。为此,晶须侧 面的气相的过饱和度必须足够低,以防止侧面二次成核, 即引起径向(横向)生长
材料学院
一维纳米材料

当下列等式成立时,二维成核便开始进行
(P/Pe)crit=exp(πhΩγ2/65k2t2) 式中: P ——晶须晶体表面附近气相压力,Pa; Pe——晶体表面附近气相处于平衡状态时的压力, Pa; γ ——晶体表面能,J/m2; Ω ——分子体积,m3; K ——Boltyman 常数,1.38×10-23 J/K; T ——热力学温度,K。
“电介质差异模型”(Dielectric Contrast Model)来
4.3 碳纳米管
围成纳米管截面圆周的手性矢量AA’
纳米管的结构示意图
4.3.2 碳纳米管的制备
石墨棒直流电弧放电法制备碳纳米管的工艺装置示意图
掺硼(B)硅纳米线场效应晶体管电流I 和电压Vsd 的关系曲线
4.2.2 单根纳米线的光学性质
纳米线取向、尺度大小与电子态密切相关, 因而会在光谱上表现出它们之间的依赖关系。
不同直径的单根InP 纳米线的光致发光(PL)谱(a,b) 及其有效质量模型(EMM)模型拟合数据(c,d)
单根InP 纳米线的光致发光谱呈现的偏振 各向异性
2SnO(g) ⇔ Sn(l)+SnO2 SnO2(s) ⇔ SnO(g)+1/2O2
自催化VLS 生长方法合成掺锡氧化铟 (In2O3:Sn, ITO)纳米线
4.1.1.2 纳米线异质结(超晶格)的合成
GaAs/GaP 纳米线异质结
GaP/GaAs 纳米线超晶格
4.1.2 液相法制备
气相法适合于制备各种无机半导体纳米线 (管)。对于金属纳米线,利用气相法却难 以合成。液相法可以合成包括金属纳米线在 内的各种无机、有机纳米线材料,因而是另 一种重要的合成一维纳米材料的方法。
4.1.1 气相法制备
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 气相生长理论
(1) 气-液-固(VLS)生长
所谓VLS生长,是指气相反应系统中存 在纳米线产物的气相基元(B)(原子、离 子、分子及其团簇)和含量较少的金属 催化剂基元(A),产物气相基元(B)和催化 剂气相基元(A)通过碰撞、集聚形成合 金团簇,达到一定尺寸后形成液相生核 核心(简称液滴)合金液滴的存在使得气 相基元(B)不断溶入其中从图4-2(b)相图 上看,意味着合金液滴成分[不断向右 移动],当熔体达到过饱和状态时(即成 分移到超过c点时),合金液滴中即析出 晶体(B)。析出晶体后的液滴成分又回 到欠饱和状态,通过继续吸收气相基元 (B),可使晶体再析出生长。如此反复, 在液滴的约束下,可形成一维结构的晶 体(B)纳米线。
1. 阳极氧化铝模板法
AAO(anodic aluminum oxide)阳极氧化铝模板是由很多规则的六角形的单 元(cell)所组成的,结构单元间彼此呈六角密排分布,有序孔占据结构单元 的中间位置,是由六角密排高度有序的孔阵列构成的。 孔的轴向与其表 面垂直,孔的底部和铝片之间隔了一层阻挡层(barrier layer) 。阳极氧化铝 模板的孔径一般在5~420nm范围内可调控,孔密度为109~1012个孔/cm2, 膜的厚度可达100m以上。 热稳定性和化学稳定性都很好,且对可见光 透明,便于光学性质的研究以及光电器件的制作,是一种比较理想的模板, 也是目前应用最多的硬模板。
Shyne和Milewski在20世纪60年代提出了晶须生长的VLS机理, 并第一次被Wagner和Ellis成功地应用于β-SiC晶须的合成。 20世纪90年代,美国哈佛大学的M.C.Lieber和伯克利 大学P.D.Yang以及其他的研究者借鉴这种晶须生长的VLS法 来制备一维纳米材料。 现在VLS法已广泛用来制备各种无机材料的纳米线,包括元 素半导体(Si,Ge),III-V族半导体(GaN,GaAs,GaP,InP, InAs),II-VI族半导体(ZnS,ZnSe,CdS,CdSe),以及氧化 物(ZnO,Ga2O3,SiO2)等。下面我们结合图4-2来说明什么是 VLS生长。
4.1. 一维纳米材料的合成制备 4.2. 一维半导体纳米线的物性 4.3. 碳纳米管 4.1.1 气相法制备 4.1.2 液相法制备 4.1.3 模板法制备
4.1.1 气相法制备
1. 气相生长理论 (1) 气-液-固(VLS)生长 (2) 气-固生长(VS) (3) 自催化气-液-固生长(self-catalytic VLS) 2. 纳米线异质结(超晶格)的合成
P. D. Cozzili, A. Korowski, H. Weller, J. Am. Chem. Soc., 2003, 125, 14539-14548.
Bulk Anatase
TiO2 nanorods non-hydrolytic sol-gel ester elimination
J. Joo, et al., J. Phys. Chem. B 2005, 109, 15297-15302.
2. 溶液-液相-固相法 (solution-liquid-solid, SLS)
美国华盛顿大学Buhro等人采用溶液-液相-固相(SLS)法, 在低温下(111℃ ~203℃)合成了III -V族化合物半导体(InP, InAs,GaP,GaAs)纳米线。纳米线一般为多晶或单晶结构, 纳米线的尺寸分布范围较宽,其直径为20~200nm,长度约1 0m。这种低温SLS生长方法的机理非常类似于前面说过的高 温VLS生长机制。 碳氢溶剂+质子型助剂、三叔丁基铟或镓烷 AsH3和PH3等为砷、磷源。 铟、镓等为低熔点金属。
2. 纳米线异质结(超晶格)的合成
Heterostructure, Superlattice
气相合成纳米线异质结和超晶格的基本思路如图4-14所示,即 利用金属催化VLS生长方法,通过交替控制提供气相源材料A和 B来获得单个异质结或周期结构的超晶格。
EDS (Energy dispersive X-ray spectroscopy) 能谱
被PVP覆盖的某些晶面其生长速率将会大大减小,如此导致 Ag纳米晶的高度各向异性生长,使纳米Ag颗粒逐渐生长Ag纳 米线。如果PVP的浓度太高,Ag纳米粒子的所有晶面都可能被 PVP覆盖,这样就会丧失各向异性生长,得到的主要产物将是 Ag纳米颗粒,而不是一维Ag纳米线。
Organic-capped Anatase TiO2 nanorods
Metal Organic Chemical Vapor Deposition---MOCVD
1)激光烧蚀法
2)化学气相沉积法
与物理制备方法(激光烧蚀,热蒸发)不同,化学气相沉积法 的主要特点是源材料直接为气体原料,在高温或等离子条件的 辅助下,利用VLS生长制备一维纳米材料。 硅衬底; 聚-L-赖氨酸; 5\10\20\30nm的 Au纳米团簇; 等离子氧; Ar气流并加热至 440℃,然后通入 10~80sccm的SiH4 气体。
长径比? Aspect ratio Web of Science中 以“Onedimensional nanostructures ”为主题 词检索结果分析(2010.06.24)
Length-to-diameter
主要内容
4.1. 一维纳米材料的合成制备 4.2. 一维半导体纳米线的物性 4.3. 碳纳米管
4.1.2 液相法制备
气相法适合于制备各种无机半导体纳米线( 管) 。 对于金属纳米线,利用气相法却难以合成。液相法可 以合成包括金属纳米线在内的各种无机、有机纳米线 材料,因而是另一种重要的合成一维纳米材料的方法。 液相法包括“毒化”晶面控制生长和溶液-液相-固 相法 (solution-liquid-solid, SLS)。 高度各向异性的晶体:晶体学结构控制生长方法 如六方结构氧化锌等
InP米线SLS生长机制:在低温加热条件下,溶液中的前驱物,(tBu)3M(tri-tert-butylindane,三叔丁基茚) 会热分解产生金属In液滴 (flux droplet),这类In液滴将作为纳米线生长的液态核心。与此同时, 化学反应产物InP会不断溶入In液滴中。当溶至过饱和后,就会析出 固相InP,这样又会导致In液滴欠饱和,再继续溶入反应产物InP又导致 过饱和析出,如此反复,就可在In液滴的约束下,长成一维纳米线。
第四章 一维纳米材料
一维纳米结构单元主要包括纳米管、纳米线、 纳米带、纳米同轴电缆等。
纳米线 纳米管 纳米 带
纳米纤维
纳米电缆 纳米棒
从基础研究的角度 看,一维纳米材料 是研究电子传输行 为和光学、磁学等 物理性质和尺寸、 维度间关系的理想 体系;从应用前景 上看,一维纳米材 料特定的几何形态 将在构筑纳米电子、 光学器件方面充当 重要的角色。
(3) 自催化气-液-固生长(self-cat中一般没有金属催化剂。 然而,近年来的研究发现, 尽管有些源材料中并没有使 用金属催化剂,但在一些外 在条件( 如加热等) 作用下, 源材料自身内部可产生内在 反应( 如分解等) ,形成具 有催化作用的低熔点金属 ( 合金) 液核,并以此促进 纳米线以VLS方式生长,我 们将这种通过源材料内在反 Sn液滴 应形核,使纳米线以 VLS生 SnO2 长的现象称为“ 自催化 VLS SnO、O2 生长”(self-catalytic VLS SnO2纳米线 growth).
1. “毒化”晶面控制生长
夏幼南(Xia)研究组利用 多元醇还原法,选择乙 二醇作为溶剂和还原剂 来还原AgNO3,同时选 用聚乙烯吡咯烷酮PVP 作为包络剂(capping reagent),选择性地吸 附在Ag纳米晶的表面, 以控制各个晶面的生长 速度,使纳米Ag颗粒 以一维线型生长方式生 长。
硬模板:具有相对刚性结构的模板,如阳极氧化铝膜、高分子 模板、分子筛、胶态晶体、碳纳米管和限域沉积位的量子阱等。 软模板:无固定的组织结构而在一定空间范围内具有限域能力 的分子体系,如表面活性剂分子形成的胶束模板、聚合物模板、 单分子层模板、液晶模板、囊泡、LB膜以及生物大分子等。 软模板并不能严格控制产物的尺寸和形状,但具有方法简单、 操作方便、成本低等优点,成为制备组装纳米材料的重要手段。 两者都能提供一个有限大小的反应空间,区别在于一个提供的 是静态的孔道,物质只能从开口处进入孔道内部;而另一个提供 的则是处于动态平衡的空腔,物质可透过腔壁扩散进出。 软模板的形态具有多样性,一般都很容易构筑,不需要复杂的 设备。但软模板结构的稳定性较差,因此模板效率通常不够高。 硬模板具有较高的稳定性和良好的空间限域作用,能严格地控制 纳米材料的尺寸和形貌。但硬模板结构比较单一,因此用硬模板 制备的纳米材料其形貌变化通常也较少。
In粉和SnO粉,按 90:10的重量比配制,混 研后装入陶瓷舟,放入 管式炉中的石英管腔中。 热蒸发温度设定920℃, 保温20min,在瓷舟顶部 和外壁可以收集到蓬松 的黄绿色产物,经分析, 产物为掺锡氧化铟纳米 线。
In2O3:Sn, Sn: 4-9 atm.%, ITO: Indium Tin Oxide: TCO: Transparent Conductive Oxide.
(2) 气-固生长(Vapor Solid, VS)
Selected area electron diffraction, SAED, 不同于EDS/EDX
“气 -固” 生长机理是人们研究晶须(whisker) 生长提出的一种生长机理。该生长 机理认为晶须的生长需要满足两个条件:①轴向螺旋位错:晶须的形成是晶核内含 有的螺旋位错延伸的结果,它决定了晶须快速生长的方向;②防止晶须侧面成核: 首先晶须的侧面应该是低能面,这样,从其周围气相中吸附在低能面上的气相原子 其结合能低、解析率高,生长会非常缓慢。此外,晶须侧面附近气相的过饱和度必 须足够低,以防止造成侧面上形成二维晶核,引起径向(横向) 生长。