高电压工程答案(清华大学版)
《高电压工程》习题答案完整版

《高电压工程》习题答案第一章1. 解释绝缘电阻、吸收比、泄漏电流、tan δ的基本概念。
为什么可以用这些参数表征绝缘介质的特性?绝缘电阻:电介质的电阻率很大,只有很小的泄漏电流(一般以μA 计)流过电介质,对应的电阻很大,称为绝缘电阻。
绝缘电阻是电气设备和电气线路最基本的绝缘指标。
绝缘电阻值的大小常能灵敏的反映绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
吸收比:吸收比K 定义为加上直流电压后60s 与15s 时的绝缘电阻值之比。
即ss R R K 1560=。
若绝缘良好,比值相差较大;若绝缘裂化、受潮或有缺陷,比值接近于1,因此绝缘实验中可以根据吸收比K 的大小来判断绝缘性能的好坏。
泄漏电流:流过电介质绝缘电阻的纯阻性电流,不随时间变化,称为泄漏电流。
泄漏电流实际上就是电气线路或设备在没有故障和施加电压的作用下,流经绝缘部分的电流,因此,它是衡量电器绝缘性好坏的重要标志之一。
tan δ :介质损耗因数是在交流电压作用下,电介质中电流的有功分量与无功分量的比值。
即CR I I =δtan 。
tan δ是反映绝缘介质损耗大小的特征参数。
2. 为什么一些电容量较大的设备如电容器、电力电缆等经过直流高压实验后,要用接地棒将其两极间短路放电长达5-10min?因为容型设备的储存电荷较多,放电实质是一个RC电路,等效的公式为U(1-e T),其中时间常数T=R*C ,电容越大,放电的时间越长。
为了操作安全以及不影响下一次试验结果,因此要求电容要充分放电至安全程度,时间长达5-10min。
3. 试比较气体、液体、固体电介质的击穿场强大小及绝缘恢复特性。
固体电介质击穿场强最大,液体电介质次之,气体电介质最小;气体电介质和液体电介质属于自恢复绝缘,固体电介质属于非自恢复绝缘。
4. 何谓电介质的吸收现象?用电介质极化、电导过程的等值电路说明出现此现象的原因。
为什么可以说绝缘电阻是电介质上所加直流电压与流过电介质的稳定体积泄漏电流之比?(1)一固体电介质加上直流电压U,如图1-1a所示观察开关S1合上之后流过介质电流i的变化情况。
(完整版)《高电压技术》习题解答

1《高电压技术》习题解答第一章1—1 气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量((称游离能称游离能))后成为正、负带电粒子的过程。
根据游离能形式的不同,气体中带电质点的产生有四种不同方式:1.1.碰撞游离方式碰撞游离方式碰撞游离方式 在这种方式下,游离能为与中性原子在这种方式下,游离能为与中性原子在这种方式下,游离能为与中性原子((分子分子))碰撞瞬时带电粒子所具有的动能。
虽然正、负带电粒子都有可能与中性原子正、负带电粒子都有可能与中性原子((分子分子))发生碰撞,但引起气体发生碰撞游离而产生正、负带电质点的主要是自由电子而不是正、负离子。
2.光游离方式光游离方式 在这种方式下,游离能为光能。
由于游离能需达到一定的数值,因此引起光游离的光在这种方式下,游离能为光能。
由于游离能需达到一定的数值,因此引起光游离的光主要是各种高能射线而非可见光。
3.热游离方式热游离方式 在这种方式下,游离能为气体分子的内能。
由于内能与绝对温度成正比,因此只有温在这种方式下,游离能为气体分子的内能。
由于内能与绝对温度成正比,因此只有温度足够高时才能引起热游离。
4.金属表面游离方式金属表面游离方式 严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到带负电的自由电子。
使电子从金属电极表面逸出的能量可以是各种形式的能。
气体中带电质点消失的方式有三种:1.扩散 带电质点从浓度大的区域向浓度小的区域运动而造成原区域中带电质点的消失,扩散是一种自然规律。
2.复合 复合是正、负带电质点相互结合后成为中性原子复合是正、负带电质点相互结合后成为中性原子((分子分子))的过程。
复合是游离的逆过程,因此在复合过程中要释放能量,一般为光能。
高电压技术课后习题答案详解

高电压技术课后习题答案详-标准化文件发布号:(9456・EUATWK・MWUB・WUNN・INNUL・DDQTY・KII 1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答:碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自曲行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.山于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而儿乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。
1-2简要论述汤逊放电理论。
答:设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于&过程,电子总数增至£炉个。
假设每次电离撞出一个正离子,故电极空间共有(疋"一1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数卩的定义,此(出^一“个正离子在到达阴极表面时可撞出了(^-1)个新电子,则(^-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(^-l)=l或了严=1。
「3为什么棒一板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。
随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。
当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。
于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。
这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。
(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。
高电压技术课后题答案(部分)

1 气体的绝缘特性与介质的电气强度1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?1-2简要论述汤逊放电理论。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?1-4雷电冲击电压的标准波形的波前和波长时间是如何确定的?1-5操作冲击放电电压的特点是什么?1-6影响套管沿面闪络电压的主要因素有哪些?1-7具有强垂直分量时的沿面放电和具有弱垂直分量时的沿面放电,哪个对于绝缘的危害比较大,为什么?1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d e α个。
假设每次电离撞出一个正离子,故电极空间共有(d e α-1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(d e α-1)个正离子在到达阴极表面时可撞出γ(d e α-1)个新电子,则(d e α-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(d eα-1)=1或γde α=1。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。
随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。
高电压工程基础习题答案

20 片,多 7 片,292cm; 14 片,182cm
5.1 5.2 5.3
94.25w 分别提高 0.53kV/cm; 1.76kV/cm 交流下:液体场强为 1.82Kv/mm,固体场强为 0.91kv/mm 直流下:液体场强为 7.69kv/mm,固体场强为 1.54kv/mm
Z 22 443.13
Z 20 Z 02 84.94 2) kc 02 0.155 8.8 因 入 口 电 容 为 变 压 器 通 过 归 算 至 首 端 的 对 地 电 容 来 代 替 , 利 用 公 式
CT CK 得出,因而两者会有区别;入口电容的测量方法是通过测量变压器绕
绝缘电阻 吸收比
பைடு நூலகம்
泄漏电流
介损角正切 tg 局部放电 气相色谱分析
受潮、穿透性导电通道、绝缘内含气泡 无法测得非穿透性的局部 的游离,绝缘分层、脱壳,老化劣化, 损坏,很小部分绝缘的老化 绕组上附积油泥,绝缘油脏污、劣化 劣化,个别的绝缘弱点 绝缘是否存在局部缺陷 局部过热或局部放电缺陷,对慢性局部 潜在缺陷较灵敏 不易发现突发性故障
以极性液体(如蓖麻油)为例,在额定电压范围内,绝缘良好的极性液 体 tg 基本和试验电压的幅值无关; 极性液体 tg 与温度关系如下: 在低温时, 极化损耗和电导损耗都较小, 随着温度的升高, 液体的粘度减小, 偶极子转向极化增加,电导损耗也在增大,所以总的 tg 亦上升,并在 t=t1 时 达到极大值;在 t1<t<t2 的范围内,由于分子热运动的增强妨碍了偶极子沿电场 方向的有序排列, 极化强度反而随温度的上升而减弱,由于极化损耗的减小超过 了电导损耗的增加,所以总的 tg 曲线随 t 的升高而下降,并在 t=t2 时达到极小 值;在 t>t2 以后,由于电导损耗随温度急剧上升、极化损耗不断减小而退居次 要地位,因而 tg 就随时间 t 的上升而持续增大。 极性液体 tg 与频率关系如下:
高电压技术课后习题及答案.docx

第一章作业■ 解释下列术语(1)气体屮的自持放电;(2)电负性气体;(3)放电时延;(4) 50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除左•外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电了崩并最终导致间隙击穿的电了称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿而最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV°J■1-2汤逊理论与流注理论对气体放电过程和口持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电了碰撞电离是气体放电的主要原因,二次电子来源于正离了撞击阴极使阴极表面逸出电子,逸岀电了是维持气休放电的必雯条件。
所逸出的电子能否接替起始电子的作川是自持放电的判据。
流汴理论认为形成流注的必要条件是电了崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适川范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
在一极间距离为1cm的均匀电场电场气隙屮,电子碰撞电离系数a =11cm-1o 今有一初始电子从阴极表而出发,求到达阳极的电子崩中的电子数冃。
解:到达阳极的电子崩屮的电子数忖为n(l— e(xd =e}M =59874答:到达阳极的电子崩屮的电子数冃为59874个。
1・5近似估算标准大气条件卜•半径分别为1cm和1mm的光滑导线的电晕起始场强。
解:对半径为1cm的导线(03、£ =30/7^ l + -y= =30xlxlx I 后丿对半径为1mm的导线( 03 'E =30xlxlx 1+• ‘ •=5&5(kV/cm)答:半径1cm导线起晕场强为39kV/cm,半径1mm Y线起晕场强为58.5kV/cm1-10简述绝缘污闪的发展机理和防止对策。
高电压技术课后习题及答案.docx

第一章作业■ 解释下列术语(1)气体屮的自持放电;(2)电负性气体;(3)放电时延;(4) 50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除左•外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电了崩并最终导致间隙击穿的电了称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿而最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV°J■1-2汤逊理论与流注理论对气体放电过程和口持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电了碰撞电离是气体放电的主要原因,二次电子来源于正离了撞击阴极使阴极表面逸出电子,逸岀电了是维持气休放电的必雯条件。
所逸出的电子能否接替起始电子的作川是自持放电的判据。
流汴理论认为形成流注的必要条件是电了崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适川范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
在一极间距离为1cm的均匀电场电场气隙屮,电子碰撞电离系数a =11cm-1o 今有一初始电子从阴极表而出发,求到达阳极的电子崩中的电子数冃。
解:到达阳极的电子崩屮的电子数忖为n(l— e(xd =e}M =59874答:到达阳极的电子崩屮的电子数冃为59874个。
1・5近似估算标准大气条件卜•半径分别为1cm和1mm的光滑导线的电晕起始场强。
解:对半径为1cm的导线(03、£ =30/7^ l + -y= =30xlxlx I 后丿对半径为1mm的导线( 03 'E =30xlxlx 1+• ‘ •=5&5(kV/cm)答:半径1cm导线起晕场强为39kV/cm,半径1mm Y线起晕场强为58.5kV/cm1-10简述绝缘污闪的发展机理和防止对策。
高电压工程考试答案

1、简述汤逊放电理论。
答:设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d e α个。
假设每次电离撞出一个正离子,故电极空间共有(d e α-1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(d e α-1)个正离子在到达阴极表面时可撞出γ(d e α-1)个新电子,则(d e α-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(d e α-1)=1或γde α=1。
2、简述操作冲击放电电压的特点。
答:操作冲击放电电压的特点:(1)U 形曲线,其击穿电压与波前时间有关而与波尾时间无关;(2)极性效应,正极性操作冲击的50%击穿电压都比负极性的低;(3)饱和现象;(4)分散性大;(5)邻近效应,接地物体靠近放电间隙会显著降低正极性击穿电压。
3、试比较气体和固体介质击穿过程的异同。
答:(1)气体介质的击穿过程:气体放电都有从电子碰撞电离开始发展到电子崩的阶段。
由于外电离因素的作用,在阴极附近出现一个初始电子,这一电子在向阳极运动时,如电场强度足够大,则会发生碰撞电离,产生1个新电子。
新电子与初始电子在向阳极的行进过程中还会发生碰撞电离,产生两个新电子,电子总数增加到4个。
第三次电离后电子数将增至8个,即按几何级数不断增加。
电子数如雪崩式的增长,即出现电子崩。
(2)固体介质的击穿过程:固体电介质的击穿中,常见的有热击穿、电击穿和不均匀介质局部放电引起击穿等形式。
热击穿:当固体电介质加上电场时,电介质中发生的损耗将引起发热,使介质温度升高,最终导致热击穿。
电击穿:在较低温度下,采用了消除边缘效应的电极装置等严格控制的条件下,进行击穿试验时出现的一种击穿现象。
不均匀介质局部放电引起击穿:从耐电强度低的气体开始,表现为局部放电,然后或快或慢地随时间发展至固体介质劣化损伤逐步扩大,致使介质击穿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高电压工程课后答案1.1 空气作为绝缘的优缺点如何?答:优点:空气从大气中取得,制取方便,廉价,简易,具有较强的自恢复能力。
缺点:空气比重较大,摩擦损失大,导热散热能力差。
空气污染大,易使绝缘物脏污,且空气是助 燃物当仿生电流时,易烧毁绝缘,电晕放电时有臭氧生成,对绝缘有破坏作用。
1.2 为什么碰撞电离主要是由电子而不是离子引起?答:由于电子质量极小,在和气体分子发生弹性碰撞时,几乎不损失动能,从而在电场中 继续积累动能,此外,一旦和分子碰撞,无论电离与否均将损失动能,和电子相比,离子积 累足够造成碰撞电离能量的可能性很小。
1.5 负离子怎样形成,对气体放电有何作用?答: 在气体放电过程中,有时电子和气体分子碰撞,非但没有电离出新电子,碰撞电子反而别分子吸附形成了负离子, 离子的电离能力不如电子, 电子为分子俘获而形成负离子后电 离能力大减,因此在气体放电过程中,负离子的形成起着阻碍放电的作用。
1.7 非自持放电和自持放电主要差别是什么?答: 非自持放电必须要有光照, 且外施电压要小于击穿电压, 自持放电是一种不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。
1.13 电晕会产生哪些效应,工程上常用哪些防晕措施?答: 电晕放电时能够听到嘶嘶声, 还可以看到导线周围有紫色晕光, 会产生热效应, 放出 电流,也会产生化学反应,造成臭氧。
工程上常用消除电晕的方法是改进电极的形状,增大电极的曲率半径。
1.14 比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要特点?答:长时间放电分为先导放电和主放电两个阶段, 在先导放电阶段中包括电子崩和流注的 形成和发展过程,短间隙的放电没有先导放电阶段,只分为电子崩流注和主放电阶段。
2.1 雷电放电可分为那几个主要阶段?答:主要分为先导放电过程,主放电过程,余光放电过程。
2.4 气隙常见伏秒特性是怎样制定的?如何应用伏秒特性?答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值。
当电压较低时击穿发 生在波尾,取击穿时刻 t1 作垂线与此时峰值电压横轴的交点为1,当电压升高时,击穿也 发生在峰值,取击穿时刻的值 t2 作垂线与此时峰值电压横轴的交点为2,当电压进一步升 高时,击穿发生在波前,取此时击穿时刻 t3 作垂线与击穿电压交点为3,连接 123 应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义, 如果一个电压同时作用于两个并联气隙 s1 和 s2 上,若某一个气隙先击穿了, 则电压被短接截断, 会击穿。
2.7 为什么高真空和高压力都能提高间隙的击穿电压?简述各自运用的局限性? 答:在高气压条件下,气压增加会使气体密度增大,电子的自由行程缩短, 而提高击穿电压, 但高气压适用于均匀电场的条件下而且要改进电极形状, 光洁,气体要过滤,滤去尘埃和水分 在高真空条件下虽然电子的自由行程变得很大, 但间隙中已无气体分子可供碰撞, 故电离过 程无从发展, 从而可以显著提高间隙的击穿电压, 但是在电气设备中气固液等几种绝缘材料 往往并存, 而固体液体绝缘材料在高真空下会逐渐释放出气体, 空断路器等特殊场合下才采用高真空作为绝缘。
2.8 什么是细线效应?答;当导线直径很小时, 导线周围容易形成比较均匀的电晕层, 另一个气隙就不 削弱电离工程从 点击应仔细加工 因此在电气设备中只有在真电压增加, 电晕层逐渐扩大,电晕放电所形成的空间电荷使电场与均匀电场类似,这种现象成为细线效应。
3.2 均匀电场中污面闪络电压比纯空气间隙的击穿电压要低,原因是什么?答:①固体介质表面吸附水分形成水膜,水膜中的离子在电场中沿介质表面移动,电极附近逐渐累积电荷,使介质表面电压分布不均匀,从而使沿面闪络电压低于空气间隙的击穿电压②介质表面电阻不均匀以及介质表面有伤痕裂纹也会畸变电场的分布,使闪络电压降低,③若电极和固体介质端面间存在气隙,气隙处场强大,极易发生电离,产生的带电质点到达介质表面会畸变原电场分布,从而使闪络电压降低3.5 沿面放电中导致滑闪放电的主要原因是什么,并加以解释?主要原因是极不均匀电场具有强垂直分量。
当外施电压超过某一临界值后,线状火花中的带电粒子受电场法线分量的作用被紧压在介质表面上,同时在切线分量的作用下向另一电极方向运动,使介质表面局部发热。
当外加电压超过某一临界值时,温度可高到足以引起气体的热电离,使通道中的带电粒子数量急剧增加,介质电导增大,使火花通道头部电场增强,火花通道迅速向前发展,形成树状火花。
个别细线突然迅速伸长,转变为分叉的树枝状明亮的火花通道,这种树枝状放电并不固定在一个位置上,而是在不同的位置交替出现,因而称为滑闪放电。
3.6 介质材料,作用电压种类,大气环境温度等对沿面闪络电压有何影响?答:介质材料:对不易吸潮的介质沿面闪络电压较高,易吸潮介质沿面闪络电压较低,烘干介质表面,可提高沿面闪络电压。
在均匀电场中,工频和直流电压作用下的沿面闪络电压要低于高频和冲击电压作用下的闪络电压大气环境影响:当空气中相对湿度小于0.4 是,湿度对各种固体介质的闪络电压无影响,当气体中相对湿度大于0.4 ,对于亲水性介质,随着湿度的增加闪络电压明显下降,对于憎水性材料由于吸湿很少,闪络电压随着湿度的增加下降不多3.7 绝缘子污闪过程绝缘子污闪的具体过程如下:绝缘子表面受潮后,污层湿润后变为干层。
在运行电压作用下,表面产生泄漏电流,产生热效应。
在电流密度大、污层电阻高的局部区域烘干污层,称为干带。
干带中断了泄漏电流,是作用电压集中形成高场强,而引起干带上空气击穿和泄漏电流的脉冲。
干带上出现的放电与未烘干的污层电阻串联,但串联电阻较低而泄漏电流脉冲较高时,放电将转为电弧,其燃烧和持续发展将导致绝缘子两极间的闪络4.2 极性液体和极性固体电介质的相对介电常数与温度和电压频率的关系如何?为什么?极化液体相对介电常数在温度不变时,随电压频率的增大而减小,然后就见趋近于某一个值,当频率很低时,偶极分子来来得及跟随电场交变转向,介电常数较大,当频率接近于某一值时,极性分子的转向已经跟不上电场的变化,介电常数就开始减小。
在电压频率不变时,随温度的升高先增大后减小,因为分子间粘附力减小,转向极化对介电常数的贡献就较大,另一方面,温度升高时分子的热运动加强,对极性分子的定向排列的干扰也随之增强,阻碍转向极化的完成。
极性固体介质的相对介电常数与温度和频率的关系类似与极性液体所呈现的规律。
4.4 测量电介质或电气设备的绝缘电阻时,为什么规定取加压 1 分钟时的数值?绝缘电阻是电介质流过的泄漏电流所对应的电阻电介质存在吸收现象,实际测得的绝缘电阻是一个随时间变化的曲线;吸收电流完全衰减到一恒定电流值ig 往往要数分钟以上的时间,所以通常测绝缘电阻规定取加压1 分钟时的数值4.6 电介质的电导与金属电导有何区别?答:电介质的电导主要由离子造成,电阻率在范围内,随着温度升高,电阻率下降,欢迎来主页下载---精品文档金属电导主要由电子造成,电阻率在范围,随着温度的升高金属的电阻率增加4.7直流和交流电场下的电介质损耗有何差别?选择交流电气设备的绝缘材料一般应注意什么问题?答:在直流电压作用下的介质损耗仅漏导损失,交流时有漏导损失和极化损失,仅用p V, p s不够,需用其他特征量来表示介质在交流电压作用下的能量损耗。
在选择交流电气设备中需要考虑tan S ,若tan S过大引起绝缘介质严重发热们甚至导致热击穿,固tan S应尽量小4.9为什么标准电容器采用气体绝缘?电力电容器用油纸气体电介质的相对介电常数接近1,极化率极小,气体电介质的损耗就是电导损耗,当电场强度小于使气体分子电离所需要值时,气体介质损耗很小,所以标准电容器采用气体绝缘。
而电力电容器采用油纸绝缘是因为油纸绝缘具有优良的电气性能,干纸和纯油组合后,油填充了纸中薄弱点的空气隙,纸在油中又起了屏障作用,使总体的耐电强度提高很多。
4.13固体介质点击穿的特点是什么,为提高其电击穿常采取什么措施?答:固体电介质电击穿特点:电压作用时间短,击穿电压高,与电场的均匀程度关系极大,与介质特性有关,在极不均匀电场中及冲击电压作用下会出现累积效应措施:①改进绝缘设计,改善电场分布②改进制造工艺,去除杂质③改善运行条件防潮防污加强散热等措施4.14固体电介质热击穿有什么特点,高压设备的绝缘材料受答:热击穿主要是由介质损耗的存在,固体电解质在电场中逐渐升温,导致介质电阻下降发热增大,同时刻,若发热超过散热,电介质温度不断上升至击穿。
高压设备的绝缘材料受潮后,绝缘电阻降低,致使电流增大,损耗发热增大4.15绝缘材料在冲击电压作用下常常是电击穿而不是热击穿,在高频电压下常常是热击穿,为什么?答:雷电冲击考验的是绝缘材料内部绝缘性,标准雷电波波尾时间在取值,不会产生热击穿,高频电压下,绝缘材料的绝缘性会降低,将承受很大的电流,且试验时间较长,产生热击穿。
4.16纯净液体介质的电击穿理论和气泡理论,二者差别在哪里?答:电击穿理论事是液体在强场发射产生的电子在电场中被加速,与液体分子发生碰撞电离,首先是典礼开始阶段,流注发展阶段,最后是主流贯通整个间隙气泡击穿理论是由于气泡 e r=1小于液体的,所以液体中的气泡承担了更高的场强,气泡现行电离,气泡中的气体温度升高,体积膨胀,进一步电离,使油分解出气体,若电离的气泡在电场中堆积成气体通道没击穿就在次通道内产生。
4.19为什么油的洁净度较高时改善油间隙电场的均匀性能显著提高工频或直流的击穿电压?答:由于液体击穿电压的分散性和电场的均匀程度有关,电场的不均匀程度增加时,击穿电压的分散性减小,但在品质较差的油中,固体杂质的聚集和排列时电场畸变,油电场均匀带欢迎来主页下载--- 精品文档来的好处不明显,故当油的洁净度较高时,尽量应使隙电场均匀。
4.20 为什么油纸组合绝缘的耐电强度比纸和油单一介质时的耐电强度都高?答:油纸绝缘的优点主要是优良的电气性能,干纸的耐电度仅为10kV/mm~13kV/mm二者组合以后,由于油填充了纸中薄弱点的空气隙,纸在油中又起了屏障作用,从而使总体耐电强度提高很多,油纸绝缘工频短时耐电强度可达50kV/mm~120kV/mm。
4.21 固体绝缘材料的耐热等级用什么表示,其含义是什么?答:耐热级别分别有Y,A,E,B,FM,H,200 ,220,250 等几种,为了使绝缘材料有一个经济合理的使用寿命,才有了耐热等级的划分,即规定一个最高持续工作温度,若材料使用温度超过规定温度则劣化加速,使用温度越高,寿命越短。
4.22 名词解释“小桥理论”答:液体中的杂质在电场力的作用下,排列成杂质小桥,且杂质的电导较大,使泄露的电流增加,病进而使“小桥“强烈发热,使油和水局部沸腾气化,最后沿此气桥发生击穿。