生物发酵制药
生物发酵技术在生物制药中的应用

生物发酵技术在生物制药中的应用生物制药是指利用生物制备和生物法制备的药物,广泛应用于治疗疾病、改善人类健康。
其中,生物发酵技术是一种重要的生产手段,极大地推动了生物制药的发展。
本文将介绍生物发酵技术在生物制药中的应用,并探讨其优势和未来发展方向。
一、生物发酵技术概述生物发酵技术是指利用微生物、动植物细胞或其代谢产物进行酶法催化、代谢工程、酸碱反应等一系列反应的技术。
通过对微生物的培养和控制,可以使其合成所需的药物或药物前体。
二、生物发酵技术在生物制药中的应用1. 蛋白质药物的生产:蛋白质药物是生物制药的重要组成部分,包括重组蛋白、单克隆抗体等。
通过生物发酵技术,可以大量高效地生产这些蛋白质药物,并保证其质量的一致性和稳定性。
2. 抗生素的生产:抗生素是治疗多种感染性疾病的重要药物。
利用生物发酵技术,可以通过培养抗生素产生菌株,获得高产量的抗生素。
同时,通过基因工程技术的应用,还可以提高抗生素的产量和改善其性能。
三、生物发酵技术在生物制药中的优势1. 高效、规模化生产:通过合理的培养和控制条件,生物发酵技术可以实现大规模的药物生产,满足市场需求。
2. 产品质量可控:微生物发酵过程中的环境因素对药物质量具有重要影响,通过对培养条件的调控,可以实现对产品质量的可控制。
3. 生产成本低:相比传统的化学合成方法,生物发酵技术能够降低生产过程中的能耗和原料成本,提高资源利用效率,从而降低了生产成本。
四、生物发酵技术在生物制药中的未来发展方向1. 高效表达系统的研究:当前,科学家们正在研究开发更高效的蛋白质表达系统,以提高蛋白质药物的产量和纯度。
2. 代谢工程的应用:代谢工程是通过改变微生物的代谢途径和调控代谢网络,以实现高效产物合成的技术。
未来,代谢工程将在生物发酵技术中发挥重要作用。
3. 微生物菌株改良:通过基因工程技术对微生物菌株进行改良,使其具备更高的产物合成能力和更强的抗逆性,将进一步提高生物发酵技术的效率和稳定性。
发酵制药知识点归纳总结

发酵制药知识点归纳总结一、发酵制药概述1. 发酵制药的定义:发酵制药是利用微生物、酶或细胞等生物体的代谢活动,生产生物制药品的一种方法。
2. 发酵制药的历史:发酵制药起源于古代,但现代发酵制药始于19世纪末20世纪初,随着生物工程和分子生物学的发展,发酵制药技术得到了新的发展。
二、发酵制药的生物体1. 微生物:包括细菌、真菌、酵母等,广泛应用于发酵制药中。
2. 酶:可由微生物或动植物中分离提取,用于生产特定的药物。
3. 细胞:包括细菌、酵母、哺乳动物细胞等,用于生产重组蛋白等生物制药品。
三、发酵制药的基本工艺1. 发酵基质:包括碳源、氮源、微量元素、 pH 调节剂等,在发酵过程中提供必要的营养物质。
2. 发酵设备:发酵罐、搅拌器、通气设备等,用于提供生物体生长所需的条件。
3. 发酵条件:包括温度、 pH、氧气供应、营养物质浓度等,对生物体的生长和代谢有重要影响。
四、发酵制药的产品1. 生物制药品:包括重组蛋白、抗体、疫苗等,由生物体代谢活动产生的药物。
2. 发酵中间体:包括抗生素、激素、酶等,常用于制药过程中的中间体合成。
五、发酵制药的应用1. 医学:生产治疗癌症、糖尿病、风湿性关节炎等疾病的生物制药品。
2. 工业:生产纤维素、乳酸、醋酸等工业产品,用于化工、食品等领域。
六、发酵制药的发展趋势1. 高效发酵技术:包括批次发酵、连续发酵、固定化发酵等技术,提高发酵产物的产量和纯度。
2. 基因工程:通过基因修饰、基因克隆等技术,设计高产菌株、高表达蛋白等。
3. 生物反应器的智能化和自动化:利用先进的控制技术,提高生产效率和质量。
以上是关于发酵制药的一些知识点归纳总结,希望对你有所帮助。
如果对发酵制药还有其他疑问,欢迎随时与我交流。
生物发酵技术在制药工业中的应用

生物发酵技术在制药工业中的应用生物发酵技术是一种基于微生物生长代谢特性,利用人工环境培养出所需的微生物进行代谢反应,从而实现生物产物生产的技术。
近年来,随着微生物学、分子生物学的不断发展,生物发酵技术得到了广泛的应用,其中在制药工业中的应用更是引人注目。
药物开发过程中需要大量的药物原料,如果使用化学合成方法生产药物原料,则存在成本高、污染环境、反应废弃物处理等问题。
而生物发酵技术不仅可以生产高纯度的药物原料,而且无污染,具有可持续发展的优势。
下面将具体介绍生物发酵技术在制药工业中的应用。
一、抗生素的生物合成抗生素是一种具有抑制或杀灭某些细菌、真菌和其他微生物的药物。
利用生物发酵技术生产抗生素是制备高纯度抗生素的最佳选择。
常见的生产抗生素的微生物有青霉素的青霉菌属、链霉素的放线菌属、红霉素的链霉菌属等。
这些微生物在适宜的环境下进行生产,可以使抗生素的修饰与合成达到最佳效果。
现在,反问题中也有许多机构和团队致力于探索新的合成抗生素的方式,但是微生物生产仍然是主要方式之一。
二、其他药物的生物合成除了抗生素,许多其他药物的先导化合物也可以通过生物发酵技术生产,例如利用大肠杆菌生产肽类等生物药物。
生物药物因其可重复性、强大的临床效果和较小的不良反应而越来越受到关注。
通过生物发酵技术生产肽类药物可以有效地避免产生蛋白质结构错误,提高产品稳定性和可靠性,在生产过程中可以进行严格的质量控制。
三、工业酵素的生产酶是生物发酵技术在制药工业中的另一个成功领域,工业酵素分为水解酶和合成酶两大类。
水解酶包括淀粉酶、脂肪酶和蛋白酶等,是化学工业、食品工业、炭黑、造纸、印染、清洗剂、皮革加工、建筑材料、纺织、胶体等行业制造的基础原料和改性剂的重要组成部分。
合成酶用于药物合成、农业化学品合成和其他化学品的合成。
虽然生物发酵技术的应用优势明显,但生物发酵技术仍然面临着许多挑战。
生物发酵过程中因为微生物工程不稳定、酵母菌和大肠杆菌等常用的实验材料容易降解,所以需要优化发酵条件。
简述微生物发酵制药的基本过程

简述微生物发酵制药的基本过程
微生物发酵制药的基本过程可以概括为以下几个步骤:
1. 微生物培养:选择具有生长潜力的微生物,并将其培养在适当的培养基中。
2. 发酵反应:将培养的微生物在高温高压下(通常是100°C至150°C)进行发酵,以产生相应的代谢产物。
3. 分离和纯化:通过发酵产物的化学分析和分离技术,将发酵产物进行分离和纯化,获得所需的代谢产物。
4. 制剂化:将纯化的代谢产物制成药物制剂,包括口服溶液、胶囊、颗粒、注射剂等。
5. 质量控制:对制备的药物制剂进行质量控制,包括重量、密度、颜色、pH值、溶解度、稳定性等。
6. 生产和运输:根据药品标准和法规的要求,对生产和运输过程进行监控和控制,确保制备的药物符合要求。
7. 销售和使用:将制备的药物销售给的患者,并指导患者正确使
用药物。
微生物发酵制药是一种具有发展前景的制药途径,具有高效、低毒、可控性强等优点,可以解决传统药物制备过程中存在的问题。
生物制药-发酵工程

采用物理或化学方法破碎细胞,释放细胞内含物。
分离纯化
利用各种分离纯化技术,如离心、过滤、萃取、层析等,将目标产物从细胞破碎 液中分离出来并进行纯化。
04
生物制药的未来发展
新药研发与临床试验
创新药物研发
利用基因组学、蛋白质组学等技术, 发现和验证新药靶点,开发出针对特 定疾病的新药物。
临床试验
生物制药-发酵工程
• 生物制药概述 • 发酵工程在生物制药中的应用 • 发酵工程的关键技术 • 生物制药的未来发展 • 案例分析
01
生物制药概述
生物制药的定义与特点
生物制药的定义
生物制药是指利用生物技术手段,通过微生物发酵、细胞培 养、酶反应等过程,从生物体中提取、分离、纯化出具有药 用价值的生物活性物质或其衍生物,用于预防、诊断和治疗 人类疾病的一类药品。
02
发酵工程在生物制药中的应用
微生物发酵
微生物发酵是生物制药中常用的技术 手段,通过微生物发酵生产各种药物, 如抗生素、疫苗、生长因子等。
微生物发酵的过程需要经过菌种筛选、 培养基配制、发酵过程控制等环节, 这些环节都对最终产品的质量和产量 有着至关重要的影响。
微生物发酵具有高效率、低成本、大 规模生产等优点,能够满足市场需求, 同时也有利于提高药品质量和安全性。
详细描述
重组蛋白药物的生产涉及基因克隆、载体构 建、转化、表达及纯化等多个环节。目前市 场上已有多种重组蛋白药物,如胰岛素、人 生长激素、干扰素等。
案例三:基因工程疫苗的研发与生产
总结词
基因工程疫苗是利用基因工程技术制备的疫苗,通过将病原体的抗原基因导入微生物或 细胞中,实现病原体的抗原表达,从而激发人体免疫反应,达到预防和治疗疾病的目的。
微生物发酵制药

整理课件
3
发酵罐发酵
整理课件
4
摇床发酵
立式
卧式
整理课件
5
静置发酵
整理课件
6
发酵制药
利用制药微生物的生长繁殖,通过发酵、代谢 合成药物,然后从中提取、精制纯化,获得药 品的过程。
整理课件
的缺失。还有慢化离子、移位原子和本底元素复合反
应造成的化学损伤以及电荷交换引起的生物分子电子
转移造成的损伤。离子注入生物学效应显示出一些不
同于辐射生物学的特征,相当于物理和化学诱变两者
相结合的复合诱变效应
(2)激光辐射诱变和微波电整理磁课件辐射诱变
整理课件
17
二、制药微生物菌种的选育
1、选育的目的
改善菌种的特性,使产量提高,改进质 量、降低成本、改革工艺、方便管理及综 合利用等
2、选育的方法:
A、自然选育;
B、诱变育种
C、杂交育种
整理课件
18
自然选育
定义:不经过人工诱变处理,根据菌种的自然突变 而进行的菌种筛选过程。
应用: 1)菌种的纯化 2)菌株的复壮。 2)选育高产菌株
菌体自溶期(cell autolysis phase)
整理课件
10
发酵前期特征
从接种至菌体达到一定临界浓度的时间,包括延 滞期、对数生长期和减速期。
代谢特征:碳源、氮源等基质不断消耗 生长特征:菌体不断地生长和繁殖,生物量增加。 溶氧变化:不断下降,菌体临界值时,浓度最低。 pH变化:先升后降-以氨基酸为碳源,释放氨,整理Βιβλιοθήκη 件22诱变方案设计
微生物发酵制药工艺
3发酵制药的基本过程
菌种选育
孢子制备
实验室、种子库
种子制备
发酵工段
发酵车间
发酵控制
提炼工段
成品工段
预处理
分离提取
浓缩纯化
成品工段
提炼车间
包装车间
包装
原料药
2.2 微生物的生长特征
微生物发酵基本过程特征(批式)菌体生长与产物生成的特征,
三个阶段
❖
❖
❖
❖
❖
❖
发酵前期(fermentation prophase)
甲羟戊酸、糖类、不常见的氨基酸(如D-氨基酸、
β-氨基酸等)、环多醇和氨基环多醇等。
次级代谢产物的生物合成的基本过程
❖
次级代谢产物的合成基本过程包括构建单位
的聚合—再修饰—装配。在此过程中,次级
代谢产物的累积受合成途径中某些酶活性的
限制,这些关键酶活性大小与产量正相关。
(1)前体聚合
❖
微生物合成生源后,通过缩合反应形成聚酮体、寡肽、聚乙
菌体生长期(cell
发酵中期(fermentation metaphase)
产物合成(生产)期(product synthesis phase)
growth phase)
发酵后期(fermentation anaphase)
菌体自溶期(cell autolysis phase)
发酵前期特征
❖
❖
❖
❖
往往在静止期,加入诱导物,基因转录和产物表达,
所以产物生成速率和比速率分别为:
代谢产物的生物合成
❖
代谢(metabolism)是生物体内进行的生理生化反应的统称。
生物制药利用生物体产生药物的方法
生物制药利用生物体产生药物的方法生物制药是指利用生物体(包括微生物、哺乳动物等)作为药物生产的工具,通过生物体内的生物反应合成和提取药物。
这种方法具有高效、环保、可再生等特点。
下面将介绍几种常见的生物制药方法。
1. 微生物发酵生产药物微生物发酵是最常用的生物制药方法之一。
通过培养发酵菌株并提供合适的培养条件,使其产生所需药物。
例如,青霉素的生产就是利用青霉菌进行大规模发酵。
这种方法的优点在于微生物可以快速繁殖,产量高,且生产成本较低。
2. 基因工程技术基因工程技术是指将外源基因导入到宿主生物体中,使其产生目标药物。
常见的方法是将目标基因插入到大肠杆菌等细菌的染色体中,通过细菌的复制和表达机制,合成目标蛋白,进而得到所需药物。
这种方法的优势在于可通过基因技术使生产目标蛋白更加高效,有利于降低生产成本。
3. 哺乳动物细胞培养对于一些复杂的蛋白质药物,如抗体药物,常采用哺乳动物细胞培养进行生产。
通过将目标基因导入到哺乳动物细胞中,使其表达所需的药物。
这种方法能够确保药物的正确折叠和糖基化等重要的后修饰,从而增加药物的活性和稳定性。
4. 植物表达系统植物表达系统是一种新兴的生物制药方法。
通过将目标基因导入植物细胞中,通过植物的生长和代谢过程,合成目标药物。
植物表达系统具有许多优点,如生产成本低、易于扩大规模、无需复杂的设备等。
而且植物可以合成复杂的蛋白质,并且可以进行正确的修饰。
5. 动物体内制药某些药物,特别是针对罕见病的特效药物,可能需要通过动物体内制药来生产。
这种方法是将目标基因导入到动物的遗传物质中,使其在生长发育过程中产生所需药物,并通过动物的乳汁、血液或其他组织提取所需药物。
总结起来,生物制药利用生物体产生药物的方法包括微生物发酵、基因工程技术、哺乳动物细胞培养、植物表达系统和动物体内制药等。
这些方法在药物生产中发挥着重要的作用,为医药行业提供了更多有效、安全的药物选择。
未来随着生物技术的不断发展,生物制药的方法也会进一步创新和完善。
微生物发酵技术在制药和生物工程中的应用
微生物发酵技术在制药和生物工程中的应用微生物发酵技术是指利用微生物生物化学合成能力和代谢功能,通过优化培养基、控制发酵条件,使微生物在一定条件下进行生长繁殖、代谢产生需要的化合物的过程。
因其具有高效、环保、低成本等优势而被广泛应用于制药和生物工程等领域。
一、微生物发酵技术在制药中的应用1. 抗生素的生产抗生素是指可抑制或杀灭生物体中某些细菌的一类药物。
抗生素的生产利用了各种微生物的生物合成能力,如链霉菌发酵产生的青霉素、放线菌发酵产生的红霉素等。
此外,利用微生物在发酵过程中产生的化合物,可以进一步合成各种新型抗生素,如头孢菌素、青(黄)霉素等。
2. 激素的生产激素是神经系统、内分泌系统和免疫系统等多种生理系统中起调节作用的活性物质。
有些激素是人体无法合成的,需要通过发酵技术进行生产,如生长激素、胰岛素等。
3. 人类蛋白质类药物的生产人类蛋白质类药物包括生长因子、免疫调节剂、抗体等,具有特异性强、生物活性高、体内生存时间长等优点。
这些药物基本上都需要通过发酵技术进行生产,如重组人生长激素、重组人干扰素、单克隆抗体等。
二、微生物发酵技术在生物工程中的应用1. 生物酶的生产生物酶是一类可以加速生物反应速度的酶类物质。
利用微生物发酵技术合成酶,具有高产量、低成本、反应速度快等优点,广泛应用于制药、生化、食品加工、环境保护等领域。
如淀粉酶、葡萄糖氧化酶、抗体酶、纤维素酶等。
2. 生物质能的转化生物质能是指可转化为生物燃料或化学原料的生物物质。
利用微生物发酵技术将生物质能转化为生物酒精、乙酸、丙酮、酮等,可以替代传统化石能源,减少对环境的影响,开发可持续能源。
如生物柴油的生产,利用微生物对生物质进行发酵,生成油酸甲酯,再去水、纯化、异构等工艺制取生物柴油。
3. 基因工程基因工程是指通过对基因结构、序列进行修改、组合、转移等手段,使生物产生新的特性、新的功能的技术。
微生物发酵技术是基因工程的一个重要应用领域,可以将外源基因导入生物体中,利用其代谢和遗传特性生产各种转基因产物,如转基因大豆、转基因玉米、转基因棉花等。
生物发酵工程在制药中的应用
生物发酵工程在制药中的应用生物发酵工程是利用微生物代谢产生的基于生物化学反应来制造化学产品的过程。
这是一种应用广泛的技术,在制药业中应用较多。
生物发酵工程可以将微生物的天然代谢能力转化为制造药物或其他生物化学产品的能力。
本文将详细探讨生物发酵工程在制药中的应用。
一、利用发酵生产药剂生物发酵工程最常见的应用之一是制造药剂。
通过下列步骤可以制造出许多种不同的药物:1.获得微生物:制造药物的第一步是获得适当的微生物。
对于某些药物,采用常规的微生物如大肠杆菌或酵母菌就可以了。
但是,对于其他药物如抗生素,可能需要获得天然源微生物。
2.培养微生物:成功获得适当微生物之后,必须选择合适的培养条件来生长它们。
这些条件可能是液体培养基中的营养物和温度。
3.收获发酵产物:培养微生物并鼓励其发酵后,药品通常生成在液体或固体培养基中。
文献报道了多种方法来收获这些产物,其中最流行的方法是废除悬液物(如细菌)和培养基液(用于生长微生物)之间的界面。
为达到这个目标,可能需要使用离心或过滤。
4.纯化产物:最后一步是纯化药剂,以达到所需的纯度和生物活性。
该步骤通常涉及离心、过滤或电泳等方法,这些方法可以分离出目标药物,去除杂质。
二、应用生物反应器生物反应器是在控制条件下执行生物发酵的设备。
生物反应器已经有效地应用于制造药物。
在这种反应器中,生物材料在给定的环境下分解成更有用的产物。
生物反应器通常需要严格的控制,以保持所需的生长条件,达到预期的生产率和产物纯度。
这些条件包括光照,温度,压力和氧气浓度等。
三、将生物发酵技术与传统制药技术相结合除了单独使用生物发酵技术外,还有许多制药公司将传统制药技术与生物发酵工程相结合。
生物发酵技术可以为现有药品的制造提供额外的技术步骤,其中印度次枝杆菌曲霉素就是一个例子。
生物技术生产的生物制品也可以通过与小分子化学分离和精制序列、多肽抗体及类似物相结合来减少成本并增加产量。
四、生物发酵工程在制药业中的前景随着生物科技日益发展,认真研究微生物和应用生物反应器的发展速度也在不断加快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要指标与中间分析项目雷同
啤酒酵母 (Saccharomyces cerevisiae):生产啤 酒、酒精、药用酵母等;核酸、麦角固醇、细胞 色素C、凝血质和辅酶A等。 红酵母 (Rhodotorula):β-胡萝卜素 棉病针孢酵母(Nematspora gossypii):核黄素
真菌之其它
牛肝菌属:含有人体必需的8种氨基酸,还含有腺膘呤、 胆碱和腐胺等生物碱。 灵芝属:灵芝多糖、灵芝多肽、三萜类、16种氨基酸(其 中含有七种人体必需氨基酸)、蛋白质、甾类、甘露醇、
第一阶段
• 1676年制成第一台显微镜 ——微生物的存在 • 1857年巴斯德证明了酒精是由活的酵母发酵引起 的 • 1897年毕希纳发现磨碎的酵母仍使糖发酵形成酒 精——酶
第二阶段
• 对发酵技术的认识起始于19世纪末,主要来自于
厌氧发酵,如利用酵母菌、乳酸菌生产酒精、乳
酸和各种发酵食品。
第三阶段
温度
pH
溶氧 泡沫 染菌 发酵终点的判断
菌体浓度
• 在适合的生长速率下,发酵产物的产率与菌体浓 度成正比关系。特别是初级代谢产物。 • 菌体浓度过低,产物产率下降。 • 菌体浓度过高,产生其他影响。 • 措施:调节培养基中的营养物质的浓度。
营养物质
• 碳源 • 氮源 • 磷酸盐:生长亚适量浓度 • 补料:半饥饿状态
细菌之乳酸杆菌属 (Lactobacillus)
• 生产抗癌类药物
放线菌
• 抗生素12000余种,60%左右来自放线菌,经济 价值大。
放线菌之链霉菌属 ( Streptomyces )
灰色链霉菌(Streptomyces griseus)
金霉素链霉菌(Streptomyces aureofaciens) 红霉素链霉菌(Streptomyces erythreus) 龟裂链霉菌 (Streptomyces rimosus)
第三节 发酵设备及消毒灭菌
L/O/G/O
发酵的一般流程
培养基配制 种子扩大培养 空气除菌 发酵设备
培养基灭菌
发酵生产
下游处理
发酵设备——发酵罐
发酵罐的特点
轴封严密,泄漏少 能承受一定压力、温度
搅拌通风装置保证气液充分混合
具有足够的冷却面积
死角少,灭菌彻底
适宜的径高比(高与直径的比值为2.5—4)
• 生产氨基酸、核苷酸类药物,用于甾体转化
• 是谷氨酸和其他氨基酸的高产菌,
• 如北京棒杆菌AS1.299钝齿棒杆菌AS1.542
细菌之芽孢杆菌属(Bacillus)
• 生产氨基酸、核苷酸、抗生素类、维生素B12、用 于甾体转化等。
细菌之假单胞菌属 (Pseudomonas)
• 生产维生素B12、氨基酸、核苷酸类; • 进行类固醇(甾体)转化; • 有些菌株可利用烃类生产单细胞蛋白。
微生物发酵类型
1、微生物菌体的发酵
SCP、药用真菌(冬虫夏草、茯苓等)
生物防治制剂(如苏云金杆菌)
活性乳制剂
细胞的生长与产物的积累成平行关系,
生长速率最大的时期也是产物合成最高阶段
2、微生物酶发酵
各种酶制剂 糖化酶、α-淀粉酶、蛋白酶、脂肪酶等 天冬酰胺酶: 抗癌
纳豆激酶、链激酶: 治疗血栓
青霉素酰化酶:青霉素生产
温度
• 考虑菌种及生长阶段 • 综合考虑其他培养条件 • 考虑菌种生长情况
• 发酵热
pH
• 补加酸或碱和补料的方式
溶氧和CO2
• 溶氧异常下降 • 溶氧异常上升 措施
泡沫
• 负面影响 • 措施
染菌
• 发酵前期染菌
• 发酵后期染菌
发酵终点的判断
• 提高产物的产量和经济效益 • 降低生产成本
安全性:非病源菌,不产有害生物活性物质或毒素
发酵菌种的选育方法
从自然界中获得新菌种 诱变育种 杂交育种
原生质体融合
基因工程
从自然界中获得新菌种
土壤、空气、动植物等,严重污染的水域,极端
环境等 基本程序: • 采样预处理富集培养筛选鉴定野生型
菌株
诱变育种
物理或化学方法诱发突变
香豆精苷、生物碱、有机酸(主含延胡索酸),以及微量
元素Ge、P、Fe、Ca、Mn、Zn等。
发酵菌种的选育要求
生产力:能在廉价的培养基上迅速生长,所需的代
谢产物的产量高,其它类似代谢产物少
操作性:培养条件简单,发酵易控制,产品易分离
稳定性:抗噬菌体能力强,菌种纯粹,遗传性状稳
定、不易变异退化
冷冻真空干燥保藏法
用保护剂制备悬液,快 速冻结,减压抽真空, 需冻干机
各类微生物
5-15年
液氮超低温保藏法
保护剂,超低温(各类微生物 196℃),需超低温液氮 设备 与培养基混合直接低温 保存 专性活细胞寄生微生物(如 病毒)
15年以上
宿主保藏法
菌种保藏机构
• ATCC • CCCCM • NCTC
发酵工程制药的特点
• 微生物菌种选育获得高产
• 发酵的理论产量存在约10%的变量Biblioteka • 发酵过程常温常压,操作条件温和
• 纯种培养、无菌条件
• 生产过程是以生物体的自动调节方式进行的
• 分子水平生产,定向发酵、突变、杂交等手段
• 投资少、见效快
发展趋势
• 利用DNA重组技术和细胞工程技术的发展、新的
目的:保证菌种经过较长时间后仍保持生活能力,
防止被杂菌污染,形态特征和生理形状尽可能不 发生变异。
菌种保藏三要素
典型菌种的优良纯种的休眠体;
创造有利于种子休眠的环境(低温、干燥、缺氧、 避光、缺少营养); 尽可能采用多种不同的手段保藏同一菌株。
菌种保藏的常用方法
斜面低温保藏法
石蜡油封存法
抗生素、生物碱、毒素、色素、胞外多糖等
结构常较复杂对环境条件敏感
4、微生物转化发酵
利用微生物细胞的一种或几种酶,对外源化合物的
特定部位进行加工,如加入羟基、还原双键、脱氧
或切断支链等。 反应最显著的特点是特异性强,包括反应特异性、
结构位置特异性、立体特异性。 如: 甾体转化:环戊烷多氢菲核的化合物
物理诱变剂:紫外线、X-射线、γ-射线等
化学诱变剂:氮芥、亚硝酸、5-氟尿嘧啶等
杂交育种:借助有性重组,使不同菌株的遗传
物质得以交换
原生质体融合育种:借助原生质融合技术实现
遗传物质的交换
基因工程育种:DNA体外重组技术定向育种,
技术含量高,应用面广
菌种保藏(Culture conservation)
可的松(Cortisone)
药用发酵产品分类
生物来源 作用对象 作用机制 化学结构
细菌 真菌 放线菌
抗菌药 抗肿瘤药 抗病毒药 除草剂 酶抑制剂 免疫调节剂
抑制细胞壁合成药
抗生素 影响细胞膜功能药 维生素 氨基酸 干扰蛋白质合成药 核苷酸 抑制核酸合成药 甾体激素 抑制生物能量反应药 酶及酶抑制剂
砂土管保藏法
麸皮保藏法
甘油悬液保藏法 冷冻真空干燥保藏法 液氮超低温保藏法 宿主保藏法
方法名称 斜面低温保藏法 石蜡油封存法
主要特点 传代培养,4℃保藏 石蜡油隔绝空气,室温 或4℃保藏 沙土管作载体,干燥器 中抽真空,室温或4℃保 藏 麸皮作载体,干燥,4℃ 保藏 悬浮于10-15%甘油中, 需低温冰箱
tsinanesisn) 产创新霉素(creatmycin;1964)
真菌之根霉属(Rhizopus)
• 生产甾体激素、延胡索酸及酶制剂等。
真菌之曲霉属(Aspergillus)
• 生产枸橼酸、葡萄糖酸、有机酸类、抗生素,进 行甾体转化。
真菌之青霉属(Penicillum)
• 产黄青霉(Penicillum chrysogenum)
细菌之大肠杆菌属(Escherichia coli)
• 生产天冬氨酸、苏氨酸、缬氨酸等氨基酸类药物 • 基因工程的载体
细菌之短杆菌属(Brevibacterium)
• 维生素B12、氨基酸、核苷酸类药物生产中常用的
菌种,也是酶法合成生产辅酶A的菌种。
细菌之棒状杆菌属(Corynebacterium)
适用范围 各种微生物的短期保藏。 各种微生物的中短期保藏, 不适用某些能分解烃类的菌 种。 产孢子微生物和芽孢细菌的 长期保藏,不适用对干燥敏 感的微生物 产孢子霉菌和某些放线菌, 工厂多采用此法 基因工程菌
保藏期 1-6个月 1-2年
砂土管保藏法
1-10年
麸皮保藏法 甘油悬液保藏法
1年 1年/10年
• 20世纪40年代初,第二次世界大战爆发,青霉素 迅速工业大规摸生产。 • 深层培养、生产大规模化、多种抗生素、氨基酸、 核酸发酵成功。
第四阶段 • 20世纪50年代,利用代谢调控发酵氨基酸、核酸。 • 20世纪70年代,利用固定化酶或细胞连续发酵。 • 20世纪80年代,基因工程、蛋白质工程、细胞融合 技术等高新技术应用阶段。
微生物发酵制药
L/O/G/O
第一节 概述
L/O/G/O
微生物发酵制药的定义
利用微生物技术,通过高度工程化的新型综 合技术,以利用微生物反应过程为基础,依赖于 微生物机体在反应器内的生长繁殖及代谢过程来 合成一定产物,通过分离纯化进行提取精制,并 最终制剂成型来实现药物产品的生产。
发酵工程的4个阶段
• 空罐灭菌 • 实罐灭菌 • 连续灭菌
第四节 发酵工程制药的 过程与控制
L/O/G/O
种子的扩大培养
微生物发酵方式
• 分批发酵
• 补料分批发酵 • 半连续发酵 • 连续发酵
发酵过程中的中间分析项目