数字图像处理图像基本运算
《数字图像处理教学课件》第3章图像的基本运算(2)

实例
源图像
(b)双线性插值方法的结果
实例
用最近邻插值和双线性插值的方法分别将老虎放大 1.5倍。
实例
采用最近邻插值放大1.5倍 采用双线性插值放大1.5倍
比例变换中对应图像的确定
比例变换中对应图像的确定
假设输出图像的宽度为W,高度为H; 输入图像的宽度为w高度为h,要将输入图像的尺度拉伸或压
枕形失真
由镜头引起的画面向中间“收缩”的现象。
6.图像变形
图像变形(Image Warping) 图像变形合成(Image morphing )
参数化(全局)变形(warping)
参数化变形实例
Translation 平移
Rotation 旋转
Aspect 缩放
Affine 仿射变换
Perspective 透视变换
x' a b c x y' d e f y 1 0 0 1 1
x' ax by c
y'
dx
ey
f
将三对对应点的坐标代入上面公式,
可以求得变换的
对于内的任意一个像素点,再计算其新的坐标,然后 颜色映像
三角变形实例
四边形区域的变换方法
图像变形的几何校正
用控制点及插值过程定义,通常具有较为复杂的数学 变换函数
投影变换
投影变换是下列变换的组合
仿射变换 投影变形
投影变换的性质:
原点无需变换至原点 线变换为线 比例不保持 平行线无需保持平行
x' a b c x y' d e f y w' g h i w
举例:三角变形
B
源图像
?
B’ 目标图像
T(x,y)
数字图像处理领域的二十四个典型算法

数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。
图像处理是信号处理在图像域上的⼀个应⽤。
⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。
本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。
由于篇幅所限,只给出某⼀算法的主体代码。
ok,请细看。
⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。
灰度分为256阶。
所以,⽤灰度表⽰的图像称作灰度图。
程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。
这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。
数字图像处理-图像基本运算

数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。
s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。
当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。
1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。
数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
数字图像-医学图像处理 Part2:解答题和计算题

Part2:解答题和计算题2.1 图像处理基础一、简答题1、解释模拟图像和数字图像的概念。
(10分)模拟图像在水平与垂直方向上灰度变化都是连续的,因此有时又将模拟图像称之为连续图像( continuous image)数字图像是指把模拟图像分解成被称作像素的若干小离散点,并将各像素的颜色值用量化的离散值,即整数值来表示的图像。
因此,又将数字图像称为离散图像(discrete image)。
像素是组成数字图像的基本元素。
2、简述图像的采样和量化过程,并解释图像的空间分辨率和灰度分辨率的概念。
(10分) 空间采样将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行。
量化把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
量化值一般用整数来表示。
考虑人眼的识别能力,目前非特殊用途的图像均为8bit量化,即用0~255描述“黑~白”。
空间分辨率(spatial resolution ):图像空间中可分辨的最小细节。
一般用单位长度上采样的像素数目或单位长度上的线对数目表示。
灰度分辨率(contrast resolution ):图像灰度级中可分辨的最小变化。
一般用灰度级或比特数表示。
3、在理想情况下获得一幅数字图像时,采样和量化间隔越小,图像的画面效果越好。
当一幅图像的数据量被限制在一个范围内时,如何考虑图像的采样和量化,使得图像的表现效果尽可能的好? (10 分)当限定数字图像的大小时, 为了得到质量较好的图像,一般可采用如下原则:①对缓变的图像,应该细量化,粗采样,以避免假轮廓②对细节丰富的图像,应细采样,粗量化,以避免模糊4、图像量化时,如果量化级别较少时会发生什么现象?为什么? (10分)如果量化级比较少,会出现伪轮廓现象。
原因:量化过程是将连续的颜色划分到有限个级别中,必然会导致颜色的信息缺失。
当量化级别数量级过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间过渡就会变得突然,所以可能会导致伪轮廓现象。
实验一数字图像基本操作及灰度调整

实验一 数字图像基本操作及灰度调整一.实验目的1.掌握读、写图像的基本方法;2.掌握MATLAB 语言中图像数据与信息的读取方法;3.理解图像灰度变换处理在图像增强的作用;4.掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方法。
二.实验基本原理1. 灰度变换灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。
1) 图像反转灰度级范围为[0, L-1]的图像反转可由下式获得r L s --=12) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围,如直接使用原图,则一部分细节可能丢失。
解决的方法是对原图进行灰度压缩,如对数变换:s = c log(1 + r ),c 为常数,r ≥ 03) 幂次变换:0,0,≥≥=γγc cr s4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸:其对应的数学表达式为:2. 直方图均衡化灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。
依据定义,在离散形式下, 用r k 代表离散灰度级,用p r (r k )代表p r (r ),并且有下式成立:nn r P k k r =)( 1,,2,1,010-=≤≤l k r k 式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。
直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。
假定变换函数为ωωd p r T s r r)()(0⎰==(a) Lena 图像 (b) Lena 图像的直方图图1-1 Lena 图像及直方图当灰度级是离散值时,可用频数近似代替概率值,即1,,1,010)(-=≤≤=l k r n n r p k k k r式中:l 是灰度级的总数目,p r (r k )是取第k 级灰度值的概率,n k 是图像中出现第k 级灰度的次数,n 是图像中像素总数。
数字图像处理复习

数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。
图-是物体透射或反射光的分布,是客观存在的。
像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。
数字图像是物体的一个数字表示,是以数字格式存放的图像。
2. 数字图像处理的概念。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。
3. 数字图像处理的优点。
精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。
3.光强度与主观亮度曲线。
P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。
(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。
采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。
采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。
设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。
(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。
8. 领域空间内像素距离的计算。
(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。
数字图像处理总复习(14)(1)

2.图像锐化与图像平滑有何区别与联系?
第三章 (不考计算题) 频域滤波的物理含义 傅立叶变换性质 频域滤波的基本方法
第四章 灰度基本变换(线形、非线性) 直方图处理(定义、直方图规定化、均衡化) 算术逻辑运算(帧差分,帧平均) 空间滤波(均值、中值、KNN) 同态滤波(滤波流程) 边缘检测(一阶,二阶,循环卷积) 图像锐化与图像平滑 真彩色图像处理与伪彩色图像处理
第一章图像数字图像处理灰度图像的概念图像工程定义分类图像的表达图像文件格式bmp文件第二章视觉感知要素图像采样和量化颜色模型像素之间的基本关系邻接连通距离度量第三章不考计算题频域滤波的物理含义傅立叶变换性质频域滤波的基本方法第四章灰度基本变换线形非线性直方图处理定义直方图规定化均衡化算术逻辑运算帧差分帧平均空间滤波均值中值knn同态滤波滤波流程边缘检测一阶二阶循环卷积图像锐化与图像平滑真彩色图像处理与伪彩色图像处理第五章图像编码与压缩不考计算图像编码的基本概念图像编码的方法第六章图像恢复颜色模型第七章图像分割图像的阈值分割图像的梯度分割图像边缘检测第八章目标的表达和描述目标表达目标的描述第九章形态学运算膨胀腐蚀开运算闭运算?除电磁波谱图像外按成像来源进行划分的话常见的计算机图像还包三种类型
8. 直方图修正有哪两种方法?二者有何主要区别于 联系?
方法:直方图均衡化和直方图规定化。
区别:直方图均衡化得到的结果是整幅图对比度的增 强,但一些较暗的区域有些细节仍不太清楚,直方图 规定化处理用规定化函数在高灰度区域较大,所以变 换的结果图像比均衡化更亮、细节更为清晰。联系: 都是以概率论为基础的,通过改变直方图的形状来达 到增强图像对比度的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3代数运算与逻辑运算 (Algebra and Logical Operation)
1.概念
代数运算是指两幅或多幅输入图像之间进行点对点 的加、减、乘、除运算得到输出图像的过程。如果记输 入图像为A(x,y)和B(x,y),输出图像为C(x,y),则有如 下四种形式:
3.1 图像基本运算的概述(Introduction)
图像基本运算的分类
按图像处理运算的数学特征, 图像基本运算可分为:
图像基本运算
点运算(Point Operation) 代数运算(Algebra Operation) 逻辑运算(Logical Operation) 几何运算(Geometric Operation)
C(x, y) A(x, y) B(x, y)
代数运算的四种基本形式
C(x, y) A(x, y) B(x, y) C(x, y) A(x, y) B(x, y) C(x, y) A(x, y) B(x, y)
逻辑运算
3.3代数运算与逻辑运算 (Algebra and Logical Operation)
线性点运算的应用 s ar b
1)如果a>1,输出图像的对比度增大(灰度扩展)
s
255
变换前
r 0 48 178 255
3.4 对比度增大
变换后
3.2.1线性点运算(Linear Point Operation)
2) 如果0<a<1,输出图像的对比度减小(灰度压缩)
255 Байду номын сангаас42
变换前
0
255
生成图象叠加效果:可以得到各种图像合成的效果,也可以 用于两张图片的衔接。
3.3.2减法运算 (Subtraction )
减法运算 将同一景物在不同时间拍摄的图像或同一景物在不同波段
的图像相减,这就是图像的减法运算。实际中常称为差影法。 C(x, y) A(x, y) B(x, y)
差值图像提供了图像间的差值信息,能用于指导动态监测、 运动目标的检测和跟踪、图像背景的消除及目标识别等。
本章知识点
1、图像基本运算可分为哪几类? 2、掌握线性点运算拉升对比度的算法实现 3、掌握Matlab实现图像对比度变化 4、图像代数运算有哪几类?各有什么意义? 5、理解通过多幅图像平均进行降噪的原理。 6、差影法的用处。 7、理解通过多幅图像平均进行降噪的原理。 8、图像的几何变换有哪几种? 9、理解灰度插值用在何种情况?
变换”等,按灰度变换函数T[ ]的性质,可将点运算分为:
线性灰度变换(线性点运算)
点运算
灰度变换增强 分段线性灰度变换(分段线性点运算)
非线性灰度变换(非线性点运算) 直方图增强(5.2.2 基于直方图处理的图像增强)
rs ar b
3.2.1线性点运算(Linear Point Operation)
则灰度变换函数可简化表示为: s T[r]
s
255
s
255 218
非线性灰度变换
0 48
r
178 255
3.1 对比度增大
0
r
128
255
3.2 加亮、减暗图像
点运算可以改变图像数据所占据的灰度值范围, 从而改善图像显示效果。
3.2 点运算 (Point Operation)
2.点运算的分类 点运算又称为“对比度增强”、“对比度拉伸”、“灰度
数字图像处理
第3章 图像基本运算
(Basic Operation in Digital Image Processing )
3.1 图像基本运算的概述(Introduction) 3.2 点运算 (Point Operation) 3.3 代数与逻辑运算(Algebra and Logical Operation) 3.4几何运算 (Geometric Operation)
3.5 降低对比度
变换后
3.2.1线性点运算(Linear Point Operation)
3)如果a为负值,暗区域将变亮,亮区域将变暗
255
0
变换前
255
变换后
3.2.1线性点运算(Linear Point Operation)
2、分段线性点运算
将感兴趣的灰度范围线性扩展,相对抑制不感兴趣的灰度区域。
加暗、减亮图像
3.2.2非线性点运算(Non-Linear Point Operation)
思考问题:
1、点运算是否会改变图像内像素点之间的空间位置关系?
点运算是一种像素的逐点运算,它与相邻的像素之间没有 运算关系,点运算不会改变图像内像素点之间的空间位置关系 。 2、对图像灰度的拉伸,非线性拉伸与分段线性拉伸的区别?
3.2.1线性点运算(Linear Point Operation)
分段线性点运算的应用
g(x,y) Mg
d
变换前
c
f(x,y)
0
ab
Mf
变换后
3.2.2非线性点运算(Non-Linear Point Operation)
1、非线性点运算 非线性点运算的输出灰度级与输入灰度级呈非线性关
系,常见的非线性灰度变换为对数变换和幂次变换。 1)、对数变换
i =1,2,...M
M个图像的均值为:
g(x, y) 1
M
M
fi (x, y) ei (x, y)
i 1
f (x, y) 1 M
M
ei (x, y)
i 1
当:噪音ei(x,y)为互不相关,且均值为0时,上述图象均值将降低噪音的影响。
3.3.1加法运算(Addition)
g(x, y) 1
逻辑运算是指将两幅或多幅图像通过对应像素之间 的与、或、非逻辑运算得到输出图像的方法。
在进行图像理解与分析领域比较有用。运用这种方法可 以为图像提供模板,与其他运算方法结合起来可以获得某种 特殊的效果。
3.3.1加法运算(Addition)
1、加法运算
C(x, y) A(x, y) B(x, y)
3.3.2减法运算 (Subtraction )
混合图像的分离
(a)混合图像
(b)被减图像
图3.6 差影法进行混合图像的分离
(c)差影图像
3.3.2减法运算 (Subtraction )
消除背景影响
即去除不需要的叠加性图案 设:背景图像b(x ,y),前景背景混合图像f(x ,y)
g(x,y)=f(x,y)–b(x,y) g(x,y) 为去除了背景图像
f x, y
利用同一景物的多幅图像取平均、消除噪声。取M个图像相 加求平均得到1幅新图像,平均后图像的信噪比提高M倍。
3.3.1加法运算(Addition)
相加
▪ Addition:
– averaging for noise reduction
M=1
M=2
M=4
M=16
3.3.1加法运算(Addition)
设f(x,y)灰度范围为[0,Mf],g(x,y)灰度范围为[0,Mg],
g(x,y)
Mg
M
f
d b
[
f
(x,
y)
b]
d
b f (x, y) M f
Mg
d
g
(x,
y)
d b
c a
[
f
(
x,
y)
a]
c
c
a
f
(x,
y)
a f (x, y) b 0 f (x, y) a
c
0
ab
f(x,y) Mf
1、线性点运算
线性点运算的灰度变换函数形式可以采用线性方程描述,即
s ar b
黑线: 0 a 1, b 0 输出灰度压缩
红线: a 1, b 0
输出灰度不变
蓝线: a 1, b 0
输出灰度扩展 整体变亮
45º
绿线: 0 a 1,
b0
输出灰度压缩, 整体变暗
图 3.3线性点运算
3.2.1线性点运算(Linear Point Operation)
非线性点运算应用实例3
输 L-1 出
灰
度
级 L/2
s
=0.04
=0.1 =0.4 =1 =2.5
=10.0
=25.0
0
L/2
L-1
输入灰度级r
不同的s=cr曲线及图像变换
结果
加暗、减亮图像
=1.5
=0.66
加亮、减暗图像
原始图像
3.2.2非线性点运算(Non-Linear Point Operation)
对数变换的一般表达式为: s = c log(1 + r) 其中C是一个常数。
低灰度区扩展,高灰度区压缩。 图像加亮、减暗。
s
s=log(1+r)
r
图3.9 对数曲线图
非线性拉伸不是对图像的整个灰 度范围进行扩展,而是有选择地对某 一灰度值范围进行扩展,其他范围的 灰度值则有可能被压缩。
3.2.2非线性点运算(Non-Linear Point Operation) 非线性点运算应用实例1
T2(x,y)
3.3.2减法运算 (Subtraction )
差影法在自动现场监测中的应用
1、在银行金库内,摄像头每隔一固定时间拍摄一幅图像,并与上 一幅图像做差影,如果图像差别超过了预先设置的阈值,则表明可 能有异常情况发生,应自动或以某种方式报警; 2、用于遥感图像的动态监测,差值图像可以发现森林火灾、洪水泛滥, 监测灾情变化等; 3、也可用于监测河口、海岸的泥沙淤积及监视江河、湖泊、海岸等的污染; 4、利用差值图像还能鉴别出耕地及不同的作物覆盖情况。