2007年天津中考数学试卷及答案
2005--2011年天津市中考数学试卷及答案(7套)

浙江省2006年初中毕业生学业水平考试(金华卷)数学试卷考生须知:1.全卷共三大题,24小题,满分为150分。
考试时间为100分钟。
本次考试采用开卷形式。
2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分。
试卷Ⅰ的答案必须填涂在“答题卡”上;试卷Ⅱ的答案必须做在“试卷Ⅱ答题卷”的相应位置上。
3.请用钢笔或圆珠笔在“答题卡”上先填写姓名和准考证号,再用2B铅笔将准考证号和考试科目对应的方框涂黑、涂满。
4.用钢笔或圆珠笔在“试卷Ⅱ答题卷”密封区内填写县(市、区)、学校、姓名和准考证号。
试卷Ⅰ说明:本卷共有一大题,10小题,共40分。
请用2B铅笔在“答题卡”上将所选项对应字母的方框涂黑、涂满。
一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1. 当x=1时,代数式2x+5的值为( ▲ )A.3 B. 5 C. 7 D. -22.直角坐标系中,点P(1,4)在( ▲ )A. 第一象限B.第二象限C.第三象限D.第四象限3.我省各级人民政府非常关注“三农问题”.截止到2005年底,我省农村居民人均纯收入已连续二十一年位居全国各省区首位,据省统计局公布的数据,2005年底我省农村居民人均收入约6600元,用科学记数法表示应记为( ▲ )A.0.66×104 B. 6.6×103 C.66×102 D .6.6×1044.下图所示的几何体的主视图是( ▲ )A. B. C. D.5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( ▲ )A. B. C. D.6.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( ▲ ) A. 相离 B. 外切 C. 内切 D.相交7.不等式组⎩⎨⎧≤≥+4235x x 的解是( ▲ ) A. -2 ≤x ≤2 B. x ≤2 C. x ≥-2 D. x <2 8.将叶片图案旋转180°后,得到的图形是( ▲ )叶片图案 A B C D 9.下图能说明∠1>∠2的是( ▲ )A B C D10.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③b 2-4a c >0, 其中正确的个数是( ▲ )A. 0个B. 1个C. 2个D. 3个试 卷 Ⅱ说明:本卷共有两大题,14小题,共110分。
天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习思路分析:观察近几年的中考真题可以发现,每年倒数第二题的出题形式,都是将几何图形放在平面直角坐标系中。
但是,由于解析几何要到高中才学,所以坐标系在这里其实只能起到一个确定点的坐标的作用。
当然,如果把直线看成一次函数图像,一次函数解析式就是直线方程,也就可以将直线交点问题,转化为方程组求解问题,但在这道题中通常都不需要这样做。
题目每年都会对几何图形进行变换,近六年的变换规律是:旋转、对称、旋转、对称、旋转、平移,明年应该大概率是旋转。
因为无论是对称变换、旋转变换还是平移变换,图形的大小和形状都不会发生改变,所以每年的题目都会涉及到全等。
由于在图形变换的过程中,全等的判定通常都是比较容易的,所以本题对全等的考察又主要在全等性质的应用上。
题目设问无论是点的坐标、线段的长还是图形的面积,其核心都是求距离。
所有的距离又都可以转化为求两点间的距离或求点到直线间的距离。
任意两点之间的距离公式虽然要高中才学,但我们可以将两点之间的距离转化为求一个直角三角形的斜边长,用勾股定理求解。
因此,我们会发现每年的题目中几乎都会涉及到勾股定理。
任意点到任意直线的距离公式也要到高中才会学习,但对于一些特殊情况,我们现在就可以做了。
每年的第一问,都是送分问,用一次勾股定理基本都可以解决。
第二问和第三问,解题的关键是要抓住全等的性质和特殊三角形。
第三问通常也会和其它知识点结合,但涉及的都是一些基础知识点,基本功扎实的同学,问题都不大。
最后提醒一下,当对图形进行旋转变换时,尤其需要注意其与圆的结合。
在研究点、直线、圆和圆的位置关系时,只需要研究它们和圆心的位置关系即可。
而在旋转变换时,旋转中心自然就是圆心。
真题练习参考答案。
2007年天津市中考数学试卷和答案

2007年天津市中考数学试卷及答案本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.试卷满分120分.考试时间100分钟。
第I 卷(选择题 共30分)一. 选择题(本大题共10小题.每小题3分.共30分。
在每小题给出的四个选项中.只有一项是符合题目要求的。
)1.45cos 45sin +的值等于( ) A. 2B.213+ C. 3D. 12. 下列图形中.为轴对称图形的是( )3. 顺次连接对角线互相垂直的四边形各边中点.所得到的四边形一定是( ) A. 梯形 B. 菱形 C. 矩形 D. 正方形4. 下列判断中错误..的是( ) A. 有两角和一边对应相等的两个三角形全等 B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等 5. 已知2=a .则代数式aa a a a -+-2的值等于( )A. 3-B. 243-C. 324-D. 246. 已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根.则m 的取值范围是( )A. 43>m B. 43≥m C. 43>m 且2≠mD. 43≥m 且2≠m7. 在梯形ABCD 中.AD//BC.对角线AC ⊥BD.且cm AC 5=.BD=12c m.则梯形中位线的长等于( ) A. 7.5cmB. 7cmC. 6.5cmD. 6cm8. 已知.如图⋂BC 与⋂AD 的度数之差为20°.弦AB 与CD 交于点E.∠CEB=60°.则∠CAB 等于( )A. 50°B. 45°C. 40°D. 35°9. 将边长为3cm 的正三角形的各边三等分.以这六个分点为顶点构成一个正六边形.再顺次连接这个正六边形的各边中点.又形成一个新的正六边形.则这个新的正六边形的面积等于( )A.2433cm B.2839cm C.2439cm D.28327cm 10. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示.有下列5个结论: ① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+.(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个第II 卷(非选择题 共90分)二. 填空题(本大题共8小题.每小题3分.共24分。
天津市历年中考数学真题及答案

2014年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A)6 (B)-6 (C)1 (D)-1(2)cos60o的值等于(A)(B)(C)(D)(3)下列标志中,可以看作是轴对称图形的是(A)(B)(C)(D)(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608 000000人次.将1608 000 000用科学记数法表示应为(A)×107(B)×108(C)×109(D)×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A)(B)(C)(D)(6)正六边形的边心距为,则该正六边形的边长是(A)(B)2(C)3 (D)(7)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25o,则∠C的大小等于(A)20o(B)25o(C)40o(D)50o(8)如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于(A)3:2 (B)3:1(C)1:1 (D)1:2(9)已知反比例函数,当1<x<2时,y的取值范围是(A)0<y<5 (B)1<y<2(C)5<y<10(D)y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为(A)(B)(C)(D)(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取(A)甲(B)乙(C)丙(D)丁(12)已知二次函数y=ax2+b x+c(a≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=9没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是(A)0 (B)1 (C)2 (D)32014年天津市初中毕业生学业考试试卷数学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。
2007年天津市初中毕业生学业考试

2007年天津市初中毕业生学业考试化学试卷参考答案一、(20分)每题2分1.A 2. C 3. C 4. C 5. D 6. B 7. D 8. D 9. D 10. B二、(10分)每题2分。
11.BC 12.C 13. C 14.AD 15.CD三、(15分)16.(3分)混合物;SO 2;碱液(其他合理答案也给分) 每空1分共3分 17.(3分)(1)> (2)不能 (3)C 每空1分共3分 18.(3分)铜丝表面覆盖一层银白色的汞 1分===+23)(NO Hg Cu 23)(NO Cu Hg + 2分19.(2分)(1)HCl (2)H 2 每空1分共2分 20.(4分)(1)53 (2)C 每空1分共2分 (3)===+KOH HI O H KI 2+ 2分四、(15分) 21.(8分)(1)点燃====+22O Mg MgO 2 2分 (2)通电====O H 22↑+↑222O H 2分(3)∆===+CuO CO 2CO Cu + 2分 (4)===+NaOH HCl O H NaCl 2+ 2分22.(2分)3;2 2分23.(5分)(1)23)(NO Fe (2)Ag(3)23)(NO Fe 、23)(NO Cu 、3AgNO 共5分五、(15分) 24.(6分)(1)高锰酸钾 AC 或AD 锌和稀硫酸 BD 每空1分共4分 (2)碳酸钠和稀硫酸 ③ 每空1分共2分25.(3分)黑色的氧化铜逐渐变为光亮的红色铜,试管口有水滴生成 1分 通入氢气 1分 防止生成的铜再被氧化为氧化铜 1分26.(6分)(1)①② 1分 (2)③ 1分 (3)⑤⑥⑧⑨⑩ 2分 (4)①⑦⑧⑨ 2分六、(15分) 27.(6分)C CuO 每空1分共2分===+42SO H CuO O H CuSO 24+ 2分∆====232MnOKClO ↑+232O KCl 2分28.(5分)NaOH NaNO 3 23)(NO Ba 3H N O 4M g S O 每空1分共5分29.(4分)高温加热(煅烧) 1分 加水 1分 加热后过滤得到滤液 1分 通入适量二氧化碳后过滤(其他合理答案也给分) 1分七、(10分) 30.(3分)解:(1)设需用盐酸的体积为x%36/18.1%6.1410003⨯⨯=⨯cm g x g37.343cm x = 1分(2)设生成的氢气的质量为y===+HCl Zn 2↑+22H ZnCl65 2 13g yy g :132:65= g y 4.0= 2分31.(7分)解:H 2SO 4的质量:g g 6.19%2098=⨯;NaOH 的质量:g g 8%1080=⨯ 设与NaOH 反应的H 2SO 4的质量为x ,生成的Na 2SO 4的质量为1y===+422SO H NaOH O H SO Na 2422+402⨯ 98 1428g x 1yx g :898:80= g x 8.9= 1分 1:8142:80y g = g y 2.141= 1分与32CO Na 反应的H 2SO 4的质量:g g g 8.98.96.19=-设与H 2SO 4反应的Na 2CO 3的质量为m ,生成的Na 2SO 4的质量为2y ,生成的CO 2的质量为z===+4232SO H CO Na O H CO SO Na 2242+↑+106 98 142 44m g 8.9 2y zg m 8.9:98:106= g m 6.10= 1分 2:8.9142:98y g = g y 2.142= 1分z g :8.944:98= g z 4.4= 1分反应后溶液中Na 2SO 4的质量分数:%1.16%1004.41280986.10122.142.14=⨯-++-++gg g g gg g g 2分。
2007年全国各地中考试题130多份标题汇总

2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
1997—2019天津市中考数学试卷含详细解答(历年真题)
2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.62.(3分)2sin60︒的值等于()A B.2C.1D3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.64.2310⨯C.542.310⨯D.442310⨯4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算2211aa a+++的结果是()A.2B.22a+C.1D.41 a a+8.(3分)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D 在坐标轴上,则菱形ABCD的周长等于()AB.C.D .209.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18)13.(3分)计算5x x的结果等于.14.(3分)计算1)的结果等于.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)对于直线21y x=-与x轴的交点坐标是.17.(3分)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若5DE=,则GE的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC∆的顶点A在格点上,B是小正方形边的中点,50ABC∠=︒,30BAC∠=︒,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足PAC PBC PCB∠=∠=∠,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(8分)解不等式组11 211 xx+-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)已知PA,PB分别与O相切于点A,B,80∠=︒,C为O上一点.APB(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.22.(10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31︒,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin310.52︒≈.︒≈,tan310.60︒≈,cos310.8623.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.6【解答】解:(3)927-⨯=-;故选:A.2.(3分)2sin60︒的值等于()A B.2C.1D【解答】解:2sin602︒==故选:A.3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.7⨯B.60.4231042310⨯⨯D.442.3104.2310⨯C.5【解答】解:6=⨯.4230000 4.2310故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2. 故选:B .6.(3( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间【解答】解:253336<<,∴,56∴<.故选:D . 7.(3分)计算2211a a a +++的结果是( ) A .2B .22a +C .1D .41aa + 【解答】解:原式221a a +=+ 2(1)1a a +=+ 2=.故选:A .8.(3分)如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )AB .C .D .20【解答】解:A ,B 两点的坐标分别是(2,0),(0,1),AB ∴=, 四边形ABCD 是菱形,∴菱形的周长为故选:C .9.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩【解答】解:3276211x y x y +=⎧⎨-=⎩①②,①+②得,2x =,把2x =代入①得,627y +=,解得12y =, 故原方程组的解为:212x y =⎧⎪⎨=⎪⎩.故选:D .10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<【解答】解:当3x =-,11243y =-=-; 当2x =-,21262y =-=-; 当1x =,312121y =-=-, 所以312y y y <<. 故选:B .11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠【解答】解:将ABC ∆绕点C 顺时针旋转得到DEC ∆, AC CD ∴=,BC CE =,AB DE =,故A 错误,C 错误; ACD BCE ∴∠=∠,1802ACD A ADC ︒-∠∴∠=∠=,1802BCECBE ︒-∠∠=,A EBC ∴∠=∠,故D 正确; A ABC ∠+∠不一定等于90︒,ABC CBE ∴∠+∠不一定等于90︒,故B 错误故选:D .12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3【解答】解:当0x =时,2c =-, 当1x =时,22a b +-=-, 0a b ∴+=,22y ax ax ∴=--, 0abc ∴>,①正确; 12x =是对称轴, 2x =-时y t =,则3x =时,y t =,2∴-和3是关于x 的方程2ax bx c t ++=的两个根;②正确;2m a a =+-,422n a a =--, 22m n a ∴==-, 44m n a ∴+=-,当12x =-时,0y >,803a ∴<<, 203m n ∴+<, ③错误; 故选:C .二、填空题(本大题共6小题,每小题3分,共18) 13.(3分)计算5x x 的结果等于 6x . 【解答】解:56x x x =. 故答案为:6x14.(3分)计算1)的结果等于 2 . 【解答】解:原式31=-2=.故答案为2.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 37. 【解答】解:从袋子中随机取出1个球,则它是绿球的概率37=. 故答案为37. 16.(3分)对于直线21y x =-与x 轴的交点坐标是 1(2,0) .【解答】解:根据题意,知,当直线21y x =-与x 轴相交时,0y =, 210x ∴-=,解得,12x =; ∴直线21y x =+与x 轴的交点坐标是1(2,0);故答案是:1(2,0).17.(3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【解答】解:四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90FAH AFH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒,AFH BAH ∴∠=∠,()ABF DAE AAS ∴∆≅∆, 5AF DE ∴==,在Rt ADF ∆中,13BF =, 1122ABF S AB AF BF AH ∆==, 12513AH ∴⨯=,6013AH ∴=, 120213AG AH ∴==,13AE BF ==,12049131313GE AE AG ∴=-=-=, 故答案为:4913.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于; (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .【解答】解:(Ⅰ)AB ,(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组11211x x +-⎧⎨-⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 2x - ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为 .【解答】解:(Ⅰ)解不等式①,得2x -; (Ⅱ)解不等式②,得1x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为21x -. 故答案为:2x -,1x ,21x -.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为40,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:410%40÷=,10%100%25%40m=⨯=,故答案为:40,25;(Ⅱ)平均数是:0.94 1.28 1.515 1.810 2.131.540⨯+⨯+⨯+⨯+⨯=,众数是1.5,中位数是1.5;(Ⅲ)40480072040-⨯=(人),答:该校每天在校体育活动时间大于1h的学生有720人.21.(10分)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.【解答】解:(Ⅰ)连接OA、OB,PA,PB是O的切线,90OAP OBP∴∠=∠=︒,360909080100AOB ∴∠=︒-︒-︒-︒=︒,由圆周角定理得,1502ACB AOB ∠=∠=︒;(Ⅱ)连接CE ,AE 为O 的直径,90ACE ∴∠=︒, 50ACB ∠=︒,905040BCE ∴∠=︒-︒=︒, 40BAE BCE ∴=∠=︒,AB AD =,70ABD ADB ∴∠=∠=︒, 20EAC ADB ACB ∴∠=∠-∠=︒.22.(10分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.【解答】解:在Rt CAD ∆中,tan CDCAD AD∠=, 则5tan313CD AD CD =≈︒,在Rt CBD ∆中,45CBD ∠=︒, BD CD ∴=,AD AB BD =+,∴5303CD CD =+, 解得,45CD =,答:这座灯塔的高度CD 约为45m .23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.【解答】解:(Ⅰ)甲批发店:630180⨯=元,6150900⨯=元;乙批发店:730210⨯⨯=元,7505(15050)850⨯+-=元.故依次填写:180 900 210 850. (Ⅱ)16y x = (0)x >当050x <时,27y x = (050)x <当50x >时,27505(50)5100y x x =⨯+-=+ (50)x >因此1y ,2y 与x 的函数解析式为:16y x = (0)x >;27y x = 2(050)5100x y x <=+ (50)x >(Ⅲ)①当12y y =时,有:67x x =,解得0x =,不和题意舍去; 当12y y =时,也有:65100x x =+,解得100x =, 故他在同一个批发店一次购买苹果的数量为100千克. ②当120x =时,16120720y =⨯=元,25120100700y =⨯+=元, 720700>∴乙批发店花费少.故乙批发店花费少.③当360y =时,即:6360x =和5100360x +=;解得60x =和52x =, 6052>∴甲批发店购买数量多.故甲批发店购买的数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).【解答】解:(Ⅰ)点(6,0)A , 6OA ∴=, 2OD =,624AD OA OD ∴=-=-=,四边形CODE 是矩形, //DE OC ∴,30AED ABO ∴∠=∠=︒,在Rt AED ∆中,28AE AD ==,ED == 2OD =,∴点E 的坐标为(2,;(Ⅱ)①由平移的性质得:2O D ''=,E D ''=ME OO t '='=,////D E O C OB '''', 30E FM ABO ∴∠'=∠=︒,∴在Rt MFE ∆'中,22MF ME t ='=,FE ',1122MFE S ME FE t ∆'∴=''=⨯=,2C O D E S O D E D ''''=''⋅''=⨯矩形,MFE C O D E S S S ∆'''''∴=-=矩形2S ∴=+,其中t 的取值范围是:02t <<;②当S ③所示: 6O A OA OO t ''=-=-,90AO F '∠=︒,30AFO ABO '∠=∠=︒,)O F A t ''∴==-1(6))2S t t ∴=--=解得:6t =6t =,6t ∴=S =④所示:6O A t '=-,624D A t t '=--=-,)O G t '∴=-,)D F t '=-,1))]22S t t ∴=--⨯=,解得:52t =, ∴353S 时,t 的取值范围为5622t -.25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.【解答】解:(Ⅰ)抛物线2y x bx c =-+经过点(1,0)A -, 10b c ∴++=,即1c b =--,当2b =时,2223(1)4y x x x =--=--,∴抛物线的顶点坐标为(1,4)-;(Ⅱ)由(Ⅰ)知,抛物线的解析式为21y x bx b =---, 点(,)D D b y 在抛物线21y x bx b =---上,211D y b b b b b ∴=---=--, 由0b >,得02bb >>,10b --<, ∴点(,1)D b b --在第四象限,且在抛物线对称轴2bx =的右侧, 如图1,过点D 作DE x ⊥轴,垂足为E ,则点(,0)E b , 1AE b ∴=+,1DE b =+,得AE DE =,∴在Rt ADE ∆中,45ADE DAE ∠=∠=︒,AD ∴=,由已知AM AD =,5m =,5(1)1)b ∴--=+,1b ∴=;(Ⅲ)点1(2Q b +,)Q y 在抛物线21y x bx b =---上, 2113()()12224Q b y b b b b ∴=+-+--=--,可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,22()2QM AM QM +=+, ∴可取点(0,1)N ,如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,由45GAM ∠=︒,得2AM GM =, 则此时点M 满足题意,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0), 在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,QH MH ∴=,QM =,点(,0)M m ,310()()242b b m ∴---=+-,解得,124b m =-,24QM +=,∴1112[()(1)])()]24224b b b ---++--=4b ∴=.2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
2005--2011年天津市中考数学试卷及答案(7套)
2006年潍坊市初中学业水平考试(WAT )数学试题注意事项:1. 本试题分第I 卷和第II 卷两部分.第I 卷4页,为选择题,36分;第II 卷8页,为非选择题,84分;共120分.考试时间为120分钟.2. 答第I 卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3. 第I 卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第I 卷 选择题(共36分)一、选择题(本题共12小题,共36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列运算正确的是( ) A .933x x x ÷=B .4312()x x -=-C .248x x x =D .232456()x x x x x +=++2.国家统计局统计资料显示:一季度,全国规模以上工业企业(全部国有企业和年产品销售收入500万元以上的非国有企业)完成增加值17 822亿元,这个增加值用科学记数法(保留三位有效数字)表示为( ) A .121.78210⨯元B .111.7810⨯元C .121.7810⨯元D .121.7910⨯元3.计算tan 602sin 452cos30︒+︒-︒的结果是( ) A .2B .3C .2D .14.用AB C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( ) A .35︒ B .55︒ C .60︒ D .65︒ 5.函数112x y x -+=-中,自变量x 的取值范围是( )A .1x -≥B .2x >C .1x >-且2x ≠D .1x -≥且2x ≠ 6.如图,等腰梯形ABCD 中,AB DC ∥,AC BC ⊥, 点E 是AB 的中点,EC AD ∥,则ABC ∠等于( ) A .75︒ B .70︒ C .60︒ D .30︒7.如图,直线PA PB ,是O 的两条切线,A B ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为( )A .53厘米B .5厘米C .103厘米D .532厘米EA BCDABP O8.如图,在矩形ABCD 中,68AB BC ==,,若将矩形折叠,使B 点与D 点重合,则折痕EF 的长为( ) A .152 B .154C .5D .6 9.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:学科 数学 物理 化学 生物 甲 95 85 85 60 乙 80809080丙70 90 80 95综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是( )A .甲B .乙C .丙D .不确定 10.某厂投入200 000元购置生产某新型工艺品的专用设备和模具,共生产这种工艺品x 件,又知生产每件工艺品还需投入350元,每件工艺品以销售价550元全部售出,生产这x 件工艺品的销售利润=销售总收入-总投入,则下列说法错误的是( )A .若产量1000x <,则销售利润为负值; B .若产量1000x =,则销售利润为零; C .若产量1000x =,则销售利润为200 000元; D .若产量1000x >,则销售利润随着产量x 的增大而增加 11.已知a b >,且000a b a b ≠≠+≠,,,则函数y ax b =+与a by x+=在同一坐标系中的图象不可能是( )12.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( ) A .12B .33C .313-D .314-AB CDEF O x y A . O x y B . O xy C .OxyD . ABCDB 'D 'C '2006年潍坊市初中学业水平考试(WAT )数 学 试 题第II 卷 非选择题(共84分)注意事项:1. 第II 卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上. 2. 答卷前将密封线内的项目填写清楚.二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.其中,第14、15两小题为选做题,只须做(A )、(B )题中的一个即可,若两题都做,只以(A )题计分.) 13.方程121x x x x-+=+的解是 . 14.(A 题)小明与小亮玩掷骰子游戏,有两个均匀的正方体骰子,六个面上分别写有1,2,3,4,5,6这六个数.如果掷出的两个骰子的两个数的和为奇数则小明赢,如果掷出的两个骰子的两个数的和为偶数则小亮赢,则小明赢的概率是 .(B 题)2006年世界杯足球赛在德国举行,本次比赛共32支球队平均分成8个小组首先进行小组赛,每小组内举行单循环比赛(每个球队都与本小组的其它队比赛一场),选出两个球队进入16强.本次足球赛的小组赛共进行 场比赛.15.(A 题)已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是. (B 题)不等式组2425x a x b +>⎧⎨-<⎩的解是02x <<,那么a b +的值等于 .16.1883年,康托尔构造的这个分形,称做康托尔集.从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段.无限地重复这一过程,余下的无穷点集就称做康托尔集.上图是康托尔集的最初几个阶段,当达到第八个阶段时,余下的所有线段的长度之和为 .17.晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为 1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为 米.三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本小题满分8分)根据潍坊市2006年第一季度劳动力市场职业供求状况分析,其中10个职业(职业小类)的需求人数(百人)和求职人数(百人)的数据表格如下:职业纺织工车工电子元器件制造工电焊工 保险业务人员 行政办公人员 财会人员文秘、打字员 卫生职业技术人员 计算机操作员 需求人数(百人) 163 12387 51 33 12 19 11 4 5 求职人数(百人)71532922204952371514(1)写出求职人数(百人)的中位数;(2)仿照右图中需求人数折线图,画出求职人数的折线图;(3)观察图表,比较需求人数与求职人数,你得到什么结论.(只需写出2至3项即可)19.(本小题满分8分.本题为选做题,只须做(A )、(B )两题中的一题即可,若两题都做,按(A )题计分.)(A 题)小明家准备建造长为28米的蔬菜大棚,示意图如图(1).它的横截面为如图(2)所示的四边形ABCD ,已知3AB =米,6BC =米,45BCD =︒∠,AB BC ⊥,D 到BC 的距离DE 为1米.矩形棚顶ADD A ''及矩形DCC D ''由钢架及塑料薄膜制作,造价为每平方米120元,其它部分(保温墙体等)造价共9250元,则这个大棚的总造价为多少元?(精确到1元)(下列数据可供参考2 1.413 1.735 2.24 5.39 5.83=====,,,29,34)A BCD E C 'D 'A '图1ABCDE图2(B 题)如图,河边有一条笔直的公路l ,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B 点到公路的距离,请你设计一个测量方案.要求: (1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B 点到公路的距离.20.(本小题满分9分)据《潍坊日报》报道,潍坊市物价局下发了《关于调整潍坊市城市供水价格的通知》,本通知规定自今年5月1日起执行现行水价标准(见下表).用水类别基本水价 (元/吨) 代收污水处理费(元/吨)代收水资源费(元/吨)综合水价 (元/吨) 居民生活、行政事业用水 基数内 1.80 0.90 0.50 3.20 基数外一档 2.70 0.90 0.50 4.10 基数外二档3.70 0.90 0.50 5.10 工业生产用水……………(1)由上表可以看出:基数内用水的基本水价为1.80元/吨;基数外一档[即超基数50%(含)以内的部分]的基本水价在基数内基本水价的基础上,每立方米加收 元;基数外二档(即超基数50%以外的部分)的基本水价在基数内基本水价的基础上,每立方米加收 元;(2)若李明家基数内用水为每月6吨,5月份他家用水12吨,那么李明家5月份应交水费(按综合水价计算)多少元?若李明家计划6月份水费不超过30元,那么李明家6月份最多用水多少吨?(精确到0.01)公路lB21.(本小题满分10分)如图,在ABC △的外接圆O 中,D 是 BC的中点,AD 交BC 于点E ,连结BD . (1)列出图中所有相似三角形;(2)连结DC ,若在 BAC上任取一点K (点A B C ,,除外),连结CK DK DK ,,交BC 于点F ,2DC DF DK = 是否成立?若成立,给出证明;若不成立,举例说明.22.(本小题满分11分)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.下表是某款车在平坦道路上路况良好时刹车后的停止距离与汽车行驶速度的对应值表: 行驶速度(千米/时) 40 60 80 …停止距离(米)16 30 48 … (1)设汽车刹车后的停止距离y (米)是关于汽车行驶速度x (千米/时)的函数,给出以下三个函数:①y ax b =+;②()0ky k x=≠;③2y ax bx =+,请选择恰当的函数来描述停止距离y (米)与汽车行驶速度x (千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.AB C DEO23.(本小题满分11分)已知平行四边形ABCD ,AD a AB b ABC α===,,∠.点F 为线段BC 上一点(端点B C ,除外),连结AF AC ,,连结DF ,并延长DF 交AB 的延长线于点E ,连结CE . (1)当F 为BC 的中点时,求证EFC △与ABF △的面积相等;(2)当F 为BC 上任意一点时,EFC △与ABF △的面积还相等吗?说明理由.24.(本小题满分12分)已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线l 过()01-,点.(1)求一次函数与二次函数的解析式;(2)判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明;(3)把二次函数的图象向右平移2个单位,再向下平移t 个单位()0t >,二次函数的图象与x 轴交于M N ,两点,一次函数图象交y 轴于F 点.当t 为何值时,过F M N ,,三点的圆的面积最小?最小面积是多少?ABCDEFyxO l2006年潍坊市初中学业水平考试(WAT )数学试题(A )参考答案及评分标准一、选择题(本题共12小题,共36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCCBDCAAACBC二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.其中14,15小题为选做题,只须做(A),(B)题中的一个即可,如果两题都做,按(A)题计分). 13.12-14.(A)12(B)48 15.(A)5 (B)116.823⎛⎫⎪⎝⎭(或0.039)17.6.6三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.) 18.(本小题满分8分) (1)33; ······························································································· 2分 (2)见右图; ························································································· 6分(3)由图表可以看出:纺织工、车工、电子元器件制造工、电焊工等需求人数大于求职人数;行政办公人员、财会人员、文秘打字员等求职人数远大于需求人数. ···· 8分 (只要写出合理的2条即可得2分)19.(本小题满分8分)(A)解:过D 作DF AB ⊥于F , A B B C ⊥ ,DF BC ∴∥,又DE BC ⊥ ,DE AB ∴∥, ∴四边形BEDF 为矩形,1D E B F∴==,DF BE =, 又45BCD ∠=,12CE CD ∴==,, ·················································· 2分 又6BC =,5DF BE ∴==,在Rt AFD △中,25AF DF ==,,425295.39AD ∴=+==, ································································ 4分 ∴2928150.9A D DA S ''=⨯≈四边形,22839.5DC CD S ''=⨯≈四边形, ····································································· 6分 ∴总造价为(150.939.5)120925032098+⨯+≈(元). ································ 8分 [或用计算器计算得(2829282)120925032096+⨯+≈(元).](B)(1)测角器、尺子; ······································································· 2分 (2)测量示意图见右图; ·········································································· 4分测量步骤:①在公路上取两点C D ,,使BCD BDC ∠∠,为锐角;②用测角器测出BCD BDC αβ∠=∠=,;③用尺子测得CD 的长,记为m 米; ④计算求值.··························································································· 6分 (3)解:设B 到CD 的距离为x 米,作BA CD ⊥于点A ,在CAB △中,tan x CA α=, 在DAB △中,tan x AD β=,tan tan x x CA AD αβ∴==,,AF BEDCCA AD m += ,tan tan x x m αβ∴+=, tan tan tan tan x m αβαβ∴=+··. ··········································································· 8分(其它正确测法参照本解法得分) 20.(本小题满分9分) (1)0.9;1.9; ······················································································· 2分 (2)解:由题意知,李明家5月份基数内6吨水费为3.2619.2⨯=(元); 基数外一档3吨水费为4.1312.3⨯=(元); 基数外二档3吨水费为5.1315.3⨯=(元),所以,李明家5月份应交水费为19.212.315.346.8++=(元). ····················· 6分 设李明家6月份计划用水x 吨, 19.23019.212.3<<+ , ∴69x <<,依题意得19.2(6) 4.130x +-⨯≤, ···························································· 8分 解得8.63x ≤,∴李明家6月份最多用水8.63吨. ······························································ 9分 21.(本小题满分10分)(1)BDE CAE △∽△,DBE DAB △∽△,ABD AEC △∽△. ················ 3分(2)2DC DF DK =·成立. ······································································ 4分证明:D 是 BC的中点, DBC DCB ∴∠=∠, ··············································································· 5分又DBC DKC ∠=∠ , DCB DKC ∴∠=∠, 又KDC CDF ∠=∠, KDC CDF ∴△∽△, ············································································· 8分 KD DC DC DF∴=,2DC DF KD ∴=·. ························································· 10分 ABEFD CKO22.(本小题满分11分)解:(1)若选择y ax b =+,把4016x y ==,与6030x y ==,分别代入得 16403060a b a b =+⎧⎨=+⎩,解得0.712a b =⎧⎨=-⎩, 而把80x =代入0.712y x =-得4448y =<,所以选择y ax b =+不恰当; ······································································ 2分 若选择(0)k y k x =≠,由x y ,对应值表看出y 随x 的增大而增大, 而(0)k y k x=≠在第一象限y 随x 的增大而减小,所以不恰当;························ 4分 若选择2y ax bx =+,把4016x y ==,与6030x y ==,分别代入得1616004030360060a b a b =+⎧⎨=+⎩,解得0.0050.2a b =⎧⎨=⎩, 而把80x =代入20.0050.2y x x =+得48y =成立,所以选择2y ax bx =+恰当,解析式为20.0050.2y x x =+. ···························· 7分(2)把70y =代入20.0050.2y x x =+得2700.0050.2x x =+, 即240140000x x +-=,解得100x =或140x =-(舍去),所以,当停止距离为70米,汽车行驶速度为100千米/时. ··························· 11分23.(本小题满分11分)(1)证明: 点F 为BC 的中点,122a BF CF BC ∴===, 又BF AD ∥,BE AB b ∴==,A E ∴,两点到BC 的距离相等,为sin b α, ················································ 3分 则11sin sin 224ABF aS b ab αα==△··, 11sin sin 224EFC a S b ab αα==△·, ABF EFC S S ∴=△△. ·················································································· 5分 (2)解:法一:当F 为BC 上任意一点时,设BF x =,则FC a x =-,四边形ABCD 是平行四边形,BF BE x BE AD BE AB a BE b∴=∴=++,, bx BE a x∴=-, ······················································································· 7分 在EFC △中,FC 边上的高1sin h BE α=·,1s i n bx h a xα∴=-, 111s i n 1()s i n 222EFC bx S FC h a x bx a x αα∴==-=-△··, ··································· 9分 又在ABF △中,BF 边上的高2sin h b α=,1sin 2ABF S bx α∴=△, EFC ABF S S ∴=△△. ················································································ 11分 法二:ABCD 为平行四边形,1sin 2ABC CDE S S ab α∴==△△, 又AFC CDF S S = △△,ABC AFC CDE CDF S S S S ∴-=-△△△△,即ABF EFC S S =△△. ················································································ 11分24.(本小题满分12分)解:(1)把(44)A -,代入1y kx =+得34k =-, ∴一次函数的解析式为314y x =-+; ·························································· 1分 二次函数图象的顶点在原点,对称轴为y 轴,∴设二次函数解析式为2y ax =,把(44)A -,代入2y ax =得14a =, ∴二次函数解析式为214y x =. 3分(2)由231414y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得44x y =-⎧⎨=⎩或114x y =⎧⎪⎨=⎪⎩, 114B ⎛⎫∴ ⎪⎝⎭,, ··························································································· 5分 过A B ,点分别作直线l 的垂线,垂足为A B '',, 则15415144AA BB ''=+==+=,, ∴直角梯形AA B B ''的中位线长为5525428+=, ············································· 6分 过B 作BH 垂直于直线AA '于点H ,则5BH A B ''==,115444AH =-=, 221525544AB ⎛⎫∴=+= ⎪⎝⎭, ····································································· 7分 ∴AB 的长等于AB 中点到直线l 的距离的2倍,∴以AB 为直径的圆与直线l 相切. ····························································· 8分 (3)平移后二次函数解析式为2(2)y x t =--,令0y =,得2(2)0x t --=,12x t =-,22x t =+, 过F M N ,,三点的圆的圆心一定在直线2x =上,点F 为定点,∴要使圆面积最小,圆半径应等于点F 到直线2x =的距离,此时,半径为2,面积为4π, ··································································· 10分 设圆心为C MN ,中点为E ,连CE CM ,,则1CE =,在三角形CEM 中,2213ME =-=,23MN ∴=,而212MN x x t =-=,3t ∴=,∴当3t =时,过F M N ,,三点的圆面积最小,最小面积为4π. ············· 12分 说明:本答案解答题中解法只给出了1种或2种,其它解法只要步骤合理、解答正确均应得到相应分数.。
07年中考全真试题及答案北师
O CA B D E2007年中考数学复习同步检测(1)(圆的基本性质1)一.填空题:1.有长、宽分别为4 cm 、3 cm 的矩形ABCD ,以A 为圆心作圆,若B 、C 、D 至少与一点且至少只有一点在圆内,则圆的半径R 的取值范围是 ;2.圆的一条弦与直径相交成︒30的角,且把直径分为1 cm 和5 cm ,那么这弦的弦心距为 cm ,弦长为 cm ;3.⊙O 的半径为2 cm ,P 为⊙O 内一点,且PO = 1 cm ,则⊙O 过P 点的弦中,最短的弦长为 cm ,它所对的劣弧为 度;4.内接于圆的特殊四边形是 ; 5.如图2,AB 、AC 为⊙O 的两条弦,延长CA 到D ,使AD = AB ; 如果∠ADB =︒30,那么∠BOC = ; 6.一个半径是5cm 的圆,它的一条弦长是6cm ,则弦心距是 ; 7.已知,等边ΔABC 内接于⊙O ,AB=10cm,则⊙O 的半径是 ; 8.一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数是 ; 9.已知圆O 的弦AB 经过弦CD 的中点P ,若AP=2cm,CD=8cm,则PB 的长是 ;10.如图(5),弧AC 的度数是040,则_______=∠B ; 11.如图(6),085=∠A ,则________=∠DCE ;12.如图(7),BC AC =,043=∠CAB ,则_________=∠AOB 。
13.已知某圆的半径是6,请写出它的其中一条弦的长度____________。
14.如图(8),弦CD AB //,O Θ的半径为10,cm AB 12=,cm CD 16=,则AB 、CD 之间的距离是___________cm ; 15.如图(9),PO 是直径所在的直线,且PO 平分BPD ∠,AB OE ⊥,CD OF ⊥,则: ①CD AB =;②弧AC 等于弧CD ;③PE PO =;④弧AB 等于弧CD ;⑤PD PB =;其中结论正确的是________________(填序号) 。
2007年全国初中数学竞赛天津赛区初赛试卷含答案-
2007年全国初中数学竞赛天津赛区初赛试卷一、选择题:每小题5分 1.计算)7103)(32130(-+-+的值等于( )A .67 B.-67 C.20763+ D.20763- 2.若实数x,y ,使得x+y ,x -y,yx,xy 这四个数中的三个数相等,则x y -的值等于( ) A.-21 B.0 C.21 D.233.若实数a,b,c 满足条件cb ac b a ++=++1111,则a,b,c 中,( )A.必有两个数相等B.必有两个数互为相反的数C.必有两个数互为倒数D.每两个数都不等 4.如图在梯形ABCD 中,AD ∥BC ,AD ⊥CD ,BC=CD=2AD,E 是CD 上一点,∠ABE=450,则tan ∠AEB 的值等于( )A.23B.2C.25D.3 5.使用大小相同,表面均为白色和均为红色的若干个小正方体拼接成一个大正方体ABCD--EFGH 。
如果大正方体的对角线AG,BH,CE,DF 上所用的小正方体是表面均为红色的,并且共用了41个,大正方体其余部分用的都是表面均为白色的小正方体,则所用表面均为白色小正方体的个数为( )A.688个B.959个C.1290个D.1687个 6.八年级二班的同学参加社区公益活动----“收集废旧电池”,其中甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个,若三个小组共收集了233个废旧电池,则这三个小组共有学生( )A.12人B.13人C.14人D.15人 二、填空题: 7.若反比例函数y=xk的图像与一次函数y=kx+b 的图像相交于A(-2,m),B (5 ,n) 两点,则3a+b 的值等于 。
8.已知实数a,b,c 满足a -b+c=7 ,ab+bc+b+c 2+16=0,则ab的值等于 。
EDCBA9.如图,在△ABC 中,AD 交BC 边于D 点,∠B=450,∠ADC=600,DC=2BD ,则∠C 等于 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年天津市中考数学试卷及答案本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,试卷满分120分,考试时间100分钟。
第I 卷(选择题 共30分)一. 选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.45cos 45sin +的值等于( )A.2B.213+ C.3D. 12. 下列图形中,为轴对称图形的是( )3. 顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是( ) A. 梯形 B. 菱形 C. 矩形 D. 正方形4. 下列判断中错误..的是( ) A. 有两角和一边对应相等的两个三角形全等 B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等 5. 已知2=a ,则代数式aa a a a -+-2的值等于( )A. 3-B. 243-C. 324-D. 246. 已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>m B. 43≥m C. 43>m 且2≠mD. 43≥m 且2≠m7. 在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且cm AC 5=,B D=12c m ,则梯形中位线的长等于( ) A. 7.5cm B. 7cm C. 6.5cm D. 6cm 8. 已知,如图⋂BC 与⋂AD 的度数之差为20°,弦AB 与CD 交于点E ,∠CEB=60°,则∠CAB 等于( ) A. 50°B. 45°C. 40°D. 35°9. 将边长为3cm 的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于( )A.2433cm B.2839cm C.2439cm D.28327cm 10. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数) 其中正确的结论有( ) A. 2个 B. 3个 C. 4个D. 5个第II 卷(非选择题 共90分)二. 填空题(本大题共8小题,每小题3分,共24分。
请将答案直接填在题中横线上。
) 11. 若分式11||--x x 的值为零,则x 的值等于 。
12. 不等式组⎩⎨⎧-≥->+xx xx 410915465的解集是 。
13. 方程)1(56)1(2-=+-x x x x 的整数..解是 。
14. 如图,ABC ∆中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= 。
15. 如图,已知两圆外切于点P ,直线AD 依次与两圆相交于点A 、B 、C 、D 。
若∠BPC=42,则∠APD= (度)。
16. 已知矩形ABCD ,分别为AD 和CD 为一边向矩形外作正三角形ADE 和正三角形CDF ,连接BE 和BF ,则BFBE的值等于 。
17. 已知7=+y x 且12=xy ,则当y x <时,yx 11-的值等于 。
18. 如图,直线l 经过⊙O 的圆心O ,且与⊙O 交于A 、B 两点,点C 在⊙O 上,且AOC ∠=30,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q 。
问:是否存在点P ,使得QP=QO ; (用“存在”或“不存在”填空)。
若存在,满足上述条件的点有几个?并求出相应的∠OCP 的大小;若不存在,请简要说明理由:。
三. 解答题(本大题共8小题,共66分。
解答应写出文字说明、演算步骤或证明过程。
) 19. (本小题6分)为调查某校九年级学生右眼的视力情况,从中随机抽取了50名学生进行视力检查,检查结果如下表所示:(1)求这50名学生右眼视力的众数与中位数;(2)求这50名学生右眼视力的平均值;据此估计该校九年级学生右眼视力的平均值。
20. (本小题8分) 已知反比例函数xky =的图象与一次函数m x y +=3的图象相交于点(1,5)。
(1)求这两个函数的解析式;(2)求这两个函数图象的另一个交点的坐标。
21. (本小题8分)已知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点C (2,8)。
(1)求该抛物线的解析式; (2)求该抛物线的顶点坐标。
22. (本小题8分)如图,⊙O 和⊙O '都经过点A 、B ,点P 在BA 延长线上,过P 作⊙O 的割线PCD 交⊙O 于C 、D 两点,作⊙O '的切线PE 切⊙O '于点E 。
若PC=4,CD=8,⊙O 的半径为5。
(1)求PE 的长;(2)求COD ∆的面积。
23. (本小题8分)如图,从山顶A 处看到地面C 点的俯角为60°,看到地面D 点的俯角为45°,测得3150=CD 米,求山高AB 。
(精确到0.1米,732.13≈)24. (本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程。
如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可。
甲乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时。
问二人每小时各走几千米?(1)设乙每小时走x 千米,根据题意,利用速度、时间、路程之间的关系填写下表。
(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解。
25. (本小题10分)如图①,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。
(1)求证:AC AF AB AE ⋅=⋅;(2)如果将图①中的直线BC 向上平移与圆O 相交得图②,或向下平移得图③,此时,AC AF AB AE ⋅=⋅是否仍成立?若成立,请证明,若不成立,说明理由。
26. (本小题10分)已知关于x 的一元二次方程x c bx x =++2有两个实数根21,x x ,且满足01>x ,112>-x x 。
(1)试证明0>c ; (2)证明)2(22c b b +>;(3)对于二次函数c bx x y ++=2,若自变量取值为0x ,其对应的函数值为0y ,则当100x x <<时,试比较0y 与1x 的大小。
2007年天津市中考数学试卷参考答案一. 选择题(本大题共10小题,每小题3分,共30分。
) 1. A 2. D 3. C 4. B 5. A 6. C 7. C 8. D 9. B 10. B二. 填空题(本大题共8小题,每小题3分,共24分。
) 11. 1- 12. 16≤<-x 13. 2 14. 3 15. 138°16. 117.12118. ①存在;②符合条件的点P 共有3个:当点P 在线段AO 上时,∠OCP=40°;当点P 在OB 的延长线上时,∠OCP=20°;当点P 在OA 的延长线上时,∠OCP=100°。
三. 解答题(本大题共8小题。
共66分。
) 19. (本小题满分6分) 解:(1)在这50个数据中,1.2出现了10次,出现的次数最多,即这组数据的众数是1.2;将这50个数据按从小到大的顺序排列,其中第25个数是0.8,第26个数是1.0∴ 这组数据的中位数是0.9(3分) (2)∵ 这50个数据的平均数是35.044.033.012.011.0(501⨯+⨯+⨯+⨯+⨯=x )65.1102.190.158.047.046.0⨯+⨯+⨯+⨯+⨯+⨯+ 87.0505.43==(5分) ∴ 这50名学生右眼视力的平均值为0.87据此可估计该年级学生右眼视力的平均值为0.87(6分) 20. (本小题满分8分)解:(1)∵ 点A (1,5)在反比例函数xky =的图象上 有15k =,即5=k ∴ 反比例函数的解析式为xy 5=(3分)又∵ 点A (1,5)在一次函数m x y +=3的图象上 有m +=35 ∴ 2=m∴ 一次函数的解析式为23+=x y (6分) (2)由题意可得⎪⎩⎪⎨⎧+==235x y x y 解得⎩⎨⎧==5111y x 或⎪⎩⎪⎨⎧-=-=33522y x ∴ 这两个函数图象的另一个交点的坐标为)3,35(--(8分) 21. (本小题满分8分)解:(1)设这个抛物线的解析式为c bx ax y ++=2由已知,抛物线过)0,2(-A ,B (1,0),C (2,8)三点,得⎪⎩⎪⎨⎧=++=++=+-8240024c b a c b a c b a (3分) 解这个方程组,得4,2,2-===c b a∴ 所求抛物线的解析式为4222-+=x x y (6分) (2)29)21(2)2(2422222-+=-+=-+=x x x x x y ∴ 该抛物线的顶点坐标为)29,21(--(8分) 22. (本小题满分8分)解:(1)∵ PD 、PB 分别交⊙O 于C 、D 和A 、B 根据割线定理得PD PC PB PA ⋅=⋅(2分) 又∵ PE 为⊙O '的切线,PAB 为⊙O '的割线 根据切割线定理得PB PA PE ⋅=2(4分)即48)84(42=+⨯=⋅=PD PC PE ∴ 34=PE (5分)(2)在⊙O 中过O 点作OF ⊥CD ,垂足为F 根据垂径定理知OF 平分弦CD ,即421==CD CF (6分) 在OFC Rt ∆中,94522222=-=-=CF OC OF ∴ OF=3 ∴ 12382121=⨯⨯=⋅=∆OF CD S COD 个面积单位(8分)23. (本小题满分8分)解:由已知,可得∠ADB=45°,∠ACB=60°(2分) ∴ 在ABD Rt ∆中,DB=AB 在ABC Rt ∆中,60cot ⋅=AB CB∵ DB=DC+CB ∴60cot ⋅+=AB DC AB (5分)∴ )13(225331315060cot 1+=-=-=DC AB (7分)3.614≈(米)答:山高约614.3米。
(8分)24. (本小题满分8分) 解:(1)(3分)(2)根据题意,列方程得2111515=+-x x (5分) 整理得0302=-+x x解这个方程得6,521-==x x (7分)经检验,6,521-==x x 都是原方程的根。