近五年天津中考数学试卷分析

合集下载

2020年天津市中考数学试卷(解析版)

2020年天津市中考数学试卷(解析版)

2020年~2021年最新天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算的结果为()A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于.14.计算的结果等于.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

试卷分析1天津中考数学试卷分析

试卷分析1天津中考数学试卷分析

天津中考数学试卷分析(2011-2013)一、在知识内容分布上,11年初一知识点占总分18分,初二知识点约占62分,初三知识点占总分约40分,;12年初一点知识约占总分28分,初二点知识约占36分,初三知识点约占56分;13年初一知识点约占27分,初二知识点约占43分,初三知识点约占50分。

13年与12年相比各年级的知识点所占比例基本持平,因此初二初三的相关复习非常重要。

二、在题型结构上,三年的分布稳定,均为选择题10小题,每小题3分;填空题8小题,每小题3分;解答题8小题,共66分。

选择填空部分的重点知识点,几乎每年必考:锐角三角函数、中心对称和轴对称、科学计数法、三视图、数据分析、四边形的定义和判定定理、圆与正多边形综合、函数图像分析、有理数的基本概念和运算、分式计算、一次函数、圆的三大基本定理的简单应用、概率、全等三角形、相似三角形。

解答题部分前六道所考察的知识点基本上是:解方程组和不等式组、反比例函数、数据分析、圆的三大基本定理和三大切线定理的简答应用、解直角三角形、方程应用题。

最后2题为压轴题,有一定难度,为删选拔高。

三、在试题难度上,13年考试相比前两年要简单,依然遵循7:2:1的难度比例。

四、具体题号、知识点及能力要求、章节分布见下表(一、二、三)。

表一年级与章节年题号考察的知识点能力要求分值占总分的比例2011 1 三角函数掌握3分 2.5% 九年级下,28 2011 2 中心对称掌握3分 2.5% 九年级上,23 2011 3 科学记数法掌握3分 2.5% 七年级上,1 2011 4 平方根和估数掌握3分 2.5% 八年级上13 2011 5 轴对称掌握3分 2.5% 八年级上,122011 6 圆与圆的位置关系灵活运用3分 2.5% 九年级上,24 2011 7 三视图掌握3分 2.5% 九年级下,29 2011 8 数据分析掌握3分 2.5% 八年级下,202011 9 一次函数和一次不等式综合应用灵活运用3分 2.5% 八年级下,14七年级下,92011 10 因式分解的应用灵活运用3分 2.5% 八年级上,15 2011 11 有理数的基本概念理解3分 2.5% 七年级上,1 2011 12 分式的基本概念了解3分 2.5% 八年级下,16 2011 13 一次函数图象基本性质灵活运用3分 2.5% 八年级上,14 2011 14 平行四边形的判定掌握3分 2.5% 八年级下,192011 15 勾股定理、圆周角定理、相似三角形、三角函数等灵活运用3分 2.5% 九年级,24、27、282011 16 概率掌握3分 2.5% 九年级上,25 2011 17 割补掌握3分 2.5% 八年级下,19 2011 18 折纸和拼图灵活运用3分 2.5% 八年级下,19 2011 19 解不等式组灵活运用6分5% 七年级下,9 2011 20 一次函数与反比例函数掌握8分 6.7% 八年级,14、172011 21 数据分析掌握8分 6.7% 八年级下,20 2011 22 圆与平行四边形性质及应用灵活运用8分 6.7% 八年级下,19;九年级上,24 2011 23 解直角三角形掌握8分 6.7% 九年级下,28 2011 24 一次函数的应用灵活运用8分 6.7% 八年级上,14 2011 25 旋转与简单函数综合灵活运用10分8.3% 综合题2011 26 二次函数灵活运用10分8.3% 综合题表二年题号考察的知识点能力要求分值占总分年级与章节的比例2012 1 三角函数掌握3分 2.5% 九年级下,28 2012 2 中心对称掌握3分 2.5% 九年级上,23 2012 3 科学记数法掌握3分 2.5% 七年级上,1 2012 4 平方根和估数掌握3分 2.5% 八年级上13 2012 5 数据描述掌握3分 2.5% 八年级下,20 2012 6 旋转掌握3分 2.5% 九年级上,23 2012 7 三视图掌握3分 2.5% 九年级下,29 2012 8 勾股定理掌握3分 2.5% 八年级下,18 2012 9 函数图象灵活运用3分 2.5% 八年级,14、172012 10 一元二次方程与二次函数的灵活运用3分 2.5% 九年级下,26 关系2012 11 有理数的基本概念理解3分 2.5% 七年级上,1 2012 12 分式化简掌握3分 2.5% 八年级下,16 2012 13 概率掌握3分 2.5% 九年级上,25 2012 14 函数图象平移掌握3分 2.5% 八年级上,14 2012 15 圆周角定理灵活运用3分 2.5% 九年级上,24 2012 16 正多边形求面积了解3分 2.5% 九年级上,24 2012 17 勾股定理的应用灵活运用3分 2.5% 八年级下,18 2012 18 尺规作图掌握3分 2.5% 九年级下2012 19 解不等式组灵活运用6分5% 七年级下,9 2012 20 反比例函数掌握8分 6.7% 八年级下,17 2012 21 数据分析掌握8分 6.7% 八年级下,20 2012 22 圆灵活运用8分 6.7% 九年级上,242012 23 解直角三角形掌握8分 6.7% 九年级下,28 2012 24 解方程应用题灵活运用8分 6.7% 七年级下,82012 25 对称与相似、一元二次方程灵活运用10分8.3% 九年级,22、272012 26 二次函数灵活运用10分8.3% 九年级下,26综合题表三年题号考察的知识点能力要求分值占总分的比例年级与章节2013 1 有理数的加法掌握3分 2.5% 七年级上,1 2013 2 三角函数掌握3分 2.5% 九年级下,28 2013 3 中心对称掌握3分 2.5% 九年级上,23 2013 4 科学记数法掌握3分 2.5% 七年级上,1 2013 5 方差理解3分 2.5% 八年级下,20 2013 6 三视图掌握3分 2.5% 九年级下,29 2013 7 旋转和矩形的判定掌握3分 2.5% 八年级下,19;九年级上,23 2013 8 正多边形了解3分 2.5% 九年级上,24 2013 9 分式化简灵活运用3分 2.5% 八年级下,16 2013 10 函数图象掌握3分 2.5% 八年级上,14 2013 11 同底数幂的乘法掌握3分 2.5% 八年级上,15 2013 12 解一元二次方程灵活运用3分 2.5% 九年级上,22 2013 13 一次函数图象与系数的关系掌握3分 2.5% 八年级上,14 2013 14 全等三角形的判定与性质灵活运用3分 2.5% 八年级上,112013 15 圆的切线的性质灵活运用3分 2.5% 九年级上,24 2013 16 概率掌握3分 2.5% 九年级上,25 2013 17 相似三角形和等边三角形掌握3分 2.5% 九年级下,272013 18 作图和相似变换、三角形的面积、正方形的性质灵活运用3分 2.5% 八年级下19;九年级下,272013 19 解不等式组灵活运用6分5% 七年级下,9 2013 20 反比例函数掌握8分 6.7% 八年级下,17 2013 21 数据分析掌握8分 6.7% 八年级下,20 2013 22 圆灵活运用8分 6.7% 九年级上,24 2013 23 解直角三角形的实际应用掌握8分 6.7% 九年级下,28 2013 24 一元一次不等式与一元一次方程的应用掌握8分 6.7% 七年级,3、82013 25 相似形综合题灵活运用10分8.3% 九年级下,272013 26 二次函数灵活运用10分8.3% 九年级下,26综合题。

2020年天津市中考数学试卷和答案解析

2020年天津市中考数学试卷和答案解析

2020年天津市中考数学试卷和答案解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算30+(﹣20)的结果等于()A.10B.﹣10C.50D.﹣50解析:根据有理数的加法法则计算即可,异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去减小的绝对值.参考答案:解:30+(﹣20)=+(30﹣20)=10.故选:A.知识点:本题主要考查了有理数的加法,熟记运算法则是解答本题的关键.2.(3分)2sin45°的值等于()A.1B.C.D.2解析:根据sin45°=解答即可.参考答案:解:2sin45°=2×=.故选:B.知识点:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.3.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.参考答案:解:58600000=5.86×107,故选:B.知识点:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.解析:直接利用轴对称图形的性质分析得出答案.参考答案:解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.知识点:此题主要考查了轴对称图形的性质,正确掌握相关定义是解题关键.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.解析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.参考答案:解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D.知识点:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间解析:用“夹逼法”找到在哪两个可化为整数的二次根式之间即可.参考答案:解:∵<<,∴4<<5,故选:B.知识点:考查估算无理数大小的知识;用“夹逼法”估算无理数是常用的估算无理数的方法.7.(3分)方程组的解是()A.B.C.D.解析:方程组利用加减消元法求出解即可.参考答案:解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.知识点:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(3分)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)解析:利用正方形的性质求出OB,BC,CD即可.参考答案:解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.知识点:本题考查了点的坐标,正方形的性质等知识,解题的关键是熟练掌握正方形的性质,属于中考常考题型.9.(3分)计算+的结果是()A.B.C.1D.x+1解析:直接利用分式的加减运算法则计算得出答案.参考答案:解:原式==.故选:A.知识点:此题主要考查了分式的加减法,正确化简分式是解题关键.10.(3分)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2解析:将点A(x1,﹣5),B(x2,2),C(x3,5)分别代入反比例函数y=,求得x1,x2,x3的值后,再来比较一下它们的大小.参考答案:解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.知识点:本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点的坐标都满足该函数的解析式.11.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A 的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF解析:依据旋转可得,△ABC≌△DEC,再根据全等三角形的性质,即可得出结论.参考答案:解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.知识点:本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0B.1C.2D.3解析:由题意得到抛物线的开口向下,对称轴﹣=,b=﹣a,判断a,b与0的关系,得到abc<0,即可判断①;根据题意得到抛物线开口向下,顶点在x轴上方,即可判断②;根据抛物线y=ax2+bx+c经过点(2,0)以及b=﹣a,得到4a﹣2a+c=0,即可判断③.参考答案:解:∵抛物线的对称轴为直线x=,而点(2,0)关于直线x=的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=,∴﹣=,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a<﹣,故③正确,故选:C.知识点:本题考查了二次函数图象与系数的关系:对于二次函数y =ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y 轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x+7x﹣5x的结果等于3x.解析:根据合并同类项法则求解即可.参考答案:解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.知识点:本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.14.(3分)计算(+1)(﹣1)的结果等于6.解析:利用平方差公式解答.参考答案:解:原式=()2﹣12=7﹣1=6.故答案是:6.知识点:本题主要考查了二次根式的混合运算,平方差公式,应用平方差公式计算时,应注意:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.15.(3分)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.解析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.参考答案:解:∵袋子中装有8个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是.故答案为:.知识点:本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为y=﹣2x+1.解析:根据一次函数图象上下平移时解析式的变化规律求解.参考答案:解:将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.知识点:本题考查了一次函数图象与几何变换:对于一次函数y=kx+b,若函数图象向上平移m(m>0)个单位,则平移的直线解析式为y=kx+b+m.17.(3分)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E 在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB =CF=2,则CG的长为.解析:根据平行四边形的性质和等边三角形的性质,可以得到BF 和BE的长,然后可以证明△DCG和△EHG全等,然后即可得到CG的长.参考答案:解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC∥AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点,∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC∥AB,∴∠CDG=∠HEG,在△DCG和△EHG中,,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3,∴△CBH是等边三角形,∴CH=BC=3,∴CG=CH=,故答案为:.知识点:本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明)取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.解析:(Ⅰ)利用网格根据勾股定理即可求出线段AC的长;(Ⅱ)取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,即可得点P,Q.参考答案:解:(Ⅰ)线段AC的长等于=;(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.知识点:本题考查了作图﹣复杂作图、勾股定理、圆周角定理、轴对称﹣最短路线问题,解决本题的关键是掌握轴对称性质.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.知识点:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为25,图①中m的值为24;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.解析:(Ⅰ)根据13cm长的株数和所占的百分比,可以求得本次抽取的麦苗的株数,再根据扇形统计图中的数据,可以计算出m 的值;(Ⅱ)根据条形统计图中的数据,可以计算出平均数,写出众数和中位数.参考答案:解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:==15.6,众数是16,中位数是16.知识点:本题考查条形统计图、扇形统计图、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.解析:(1)由三角形的外角性质得出∠C=37°,由圆周角定理得∠BAD=∠C=37°,∠ADC=∠B=63°,∠ADB=90°,即可得出答案;(2)连接OD,求出∠PCB=27°,由切线的性质得出∠ODE=90°,由圆周角定理得出∠BOD=2∠PCB=54°,即可得出答案.参考答案:解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.知识点:本题考查了切线的性质、圆周角定理、三角形的外角性质、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理是解题的关键.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.解析:通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.参考答案:解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.知识点:本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min 到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍25202330的时间/min离宿舍的0.20.50.70.71距离/km(Ⅱ)填空:①食堂到图书馆的距离为0.3km;②小亮从食堂到图书馆的速度为0.06km/min;③小亮从图书馆返回宿舍的速度为0.1km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为6或62min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.解析:(Ⅰ)根据题意和函数图象,可以将表格补充完整;(Ⅱ)根据函数图象中的数据,可以将各个小题中的空补充完整;(Ⅲ)根据(Ⅱ)中的结果和函数图象中的数据,可以写出当0≤x ≤28时,y关于x的函数解析式.参考答案:解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.知识点:本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).解析:(Ⅰ)如图①中,过点P作PH⊥OA于H.解直角三角形求出OH,PH即可.(Ⅱ)①解直角三角形求出DQ,DO′即可.②求出点O′落在AB上时,S=×()2=.当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t ﹣2,当x=﹣=时,S有最大值,最大值=.再求出当t=1或3时,S的值即可判断.参考答案:解:(Ⅰ)如图①中,过点P作PH⊥OA于H.∵∠OAB=90°,∠B=30°,∴∠BOA=90°﹣30°=60°,∴∠OPH=90°﹣60°=30°,∵OP=1,∴OH=OP=,PH=OP•cos30°=,∴P(,).(Ⅱ)①如图②中,由折叠可知,△O′PQ≌△OPQ,∴OP=O′P,OQ=O′Q,∵OP=OQ=t,∴OP=OQ=O′P=O′Q,∴四边形OPO′Q是菱形,∴QO′∥OB,∴∠ADQ=∠B=30°,∵A(2,0),∴OA=2,QA=2﹣t,在Rt△AQD中,DQ=2QA=4﹣2t,∵O′D=O′Q﹣QD=3t﹣4,∴<t<2.②①当点O′落在AB上时,重叠部分是△PQO′,此时t=,S=×()2=,当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t﹣2,当x=﹣=时,S有最大值,最大值=,当t=1时,S=,当t=3时,S=××=,综上所述,≤S≤.知识点:本题属于四边形综合题,考查了菱形的判定和性质,翻折变换,多边形的面积,解直角三角形,二次函数的性质等知识,解题的关键是理解题意,学会利用特殊位置解决问题,属于中考压轴题.25.(10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y 轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F 的坐标;②取EF的中点N,当m为何值时,MN的最小值是?解析:(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.参考答案:解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y =x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是.知识点:本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.。

2023年天津市近五年中考数学试卷知识点总结整理

2023年天津市近五年中考数学试卷知识点总结整理

天津近五年中考试卷数学知识点分类及分布1、 锐角三角函数选择题1道,解答题1道,共计11分,占总分值的9.2%. a. 特殊值(选择题:3分,难度:简朴) b. 应用题(解答题:8分,难度:简朴)(天津08)1. 60cos 的值等于( ) A .21 B .22 C .23 D .1(天津09)1.2sin 30°的值等于( ) A .1 BCD .2 (天津10)(1)sin30︒的值等于(A )12(B(C(D )1(天津11)(1)sin45°的值等于(A)12(B) 2(C)2(D) 1(天津12)1.2cos60°的值等于( ) A .1 B . 2 C . 3 D . 2 (天津08)23.(本小题8分)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)(天津09)23.(本小题8分)CAB在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.(天津10)(23)(本小题8分)永乐桥摩天轮是天津市的标志性景观之一.某校数学爱好小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该爱好小组测得的摩天轮的高度AB (3 1.732≈, 结果保存整数).(天津11)(23)(本小题8分)某校爱好小组坐游轮拍摄海河两岸美景.如图,游轮出发点A 与望海楼B 的距离为300 m .在一处测得望海校B 位于A 的北偏东30°方向.游轮沿正北方向行驶一段时间后到达C .在C 处测得望海楼B 位于C 的北偏东60°方向.求此时游轮与望梅楼之间的距离BC 3l.73.结果保存整数).ABC D45°60° 第(23)题CA(天津12)23.如图,甲楼AB的高度为123m,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为30°,求乙楼CD的高度(结果精确到0.1m,3取1.73).2、轴对称图形、中心对称图形:选择题1道,3分,占总分值的2.5%.难度:简朴,(天津08)2.对称现象无处不在,请你观测下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个B.2个C.3个D.4个(天津09)2.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()E H I N AA.2个B.3个C.4个D.5个(天津10)(2)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(A)(B)(C)(D)(天津11)(2)下列汽车标志中,可以看作是中心对称图形的是2.下列标志中,可以看作是中心对称图形的是()A. B. C. D.3、科学计数法:选择题1道,3分,占总分值的2.5%.难度:简朴,(天津08)4.纳米是非常小的长度单位,已知1纳米=610 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是()A.210个10个D.8 10个B.410个C.6(天津10)(3)上海世博会是我国第一次举办的综合类世界博览会.据记录自2023年5月1日开幕至5月31日,累计参观人数约为8 030 000人,将8 030 000用科学记数法表达 应为 (A )480310⨯(B )580.310⨯(C )68.0310⨯(D )70.80310⨯(天津11)(3)根据第六次全国人口普查的记录,截止到2023年11月1日零时,我国总人口约为1 370 000 000人,将1 370 000 000用科学记数法表达应为 (A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯(天津12)3.据某域名记录机构公布的数据显示,截至2023年5月21日,我国“.NET ”域名注册量约为560000个,居全球第三位,将560000用科学记数法表达应为( )A . 310560⨯B .41056⨯C .5106.5⨯D . 61056.0⨯4、 二次根式:选择题或者填空题1道,3分,占总分值的2.5%. 难度:简朴,考察内容:估计无理数的整数范围,有理数与无理数比较大小,二次根式计算。

2022年天津市中考数学真题(解析版)

2022年天津市中考数学真题(解析版)

2022年天津市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 45︒的值等于( )A .2B .1CD 2.将290000用科学记数法表示应为( )A .60.2910⨯B .52.910⨯C .42910⨯D .329010⨯3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .5 )A .3和4之间B .4和5之间C .5和6之间D .6和7之间6.计算1122a a a ++++的结果是( )A .1B .22a +C .2a +D .2aa +7.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x =的图像上,则123,,x x x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<8.方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=-9.如图,△OAB 的顶点O (0,0),顶点A ,B 分别在第一、四象限,且AB ⊥x 轴,若AB =6,OA =OB =5,则点A 的坐标是( )A .(5,4)B .(3,4)C .(5,3)D .(4,3)10.如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN =B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥11.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论:①20a b +<;②当1x >时,y 随x 的增大而增大;③关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .3二、填空题12.计算7m m ⋅的结果等于___________.13.计算1)的结果等于___________.14.不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.15.若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个即可).16.如图,已知菱形ABCD 的边长为2,60DAB ∠=︒,E 为AB 的中点,F 为CE 的中点,AF 与DE 相交于点G ,则GF 的长等于___________.17.如图,在每个小正方形的边长为1的网格中,圆上的点A ,B ,C 及DPF ∠的一边上的点E ,F 均在格点上.(Ⅰ)线段EF 的长等于___________;(Ⅱ)若点M ,N 分别在射线,PD PF 上,满足90MBN ∠=︒且BM BN =.请用无刻度的直尺,在如图所示的网格中,画出点M ,N ,并简要说明点M ,N 的位置是如何找到的(不要求证明)___________.三、解答题18.解不等式组211 3.x x x ≥-⎧⎨+≤⎩,①②请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.19.在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为___________,图①中m 的值为___________;(2)求统计的这组项数数据的平均数、众数和中位数.20.已知AB 为O 的直径,6AB =,C 为O 上一点,连接,CA CB .(1)如图①,若C 为 AB 的中点,求CAB ∠的大小和AC 的长;(2)如图②,若2,AC OD =为O 的半径,且OD CB ⊥,垂足为E ,过点D 作O 的切线,与AC 的延长线相交于点F ,求FD 的长.21.如图,某座山AB 的项部有一座通讯塔BC ,且点A ,B ,C 在同一条直线上,从地面P 处测得塔顶C 的仰角为42︒,测得塔底B 的仰角为35︒.已知通讯塔BC 的高度为32m ,求这座山AB 的高度(结果取整数).参考数据:tan 350.70tan 420.90︒≈︒≈,.22.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km ,超市离学生公寓2km ,小琪从学生公寓出发,匀速步行了12min 到阅览室;在阅览室停留70min 后,匀速步行了10min 到超市;在超市停留20min 后,匀速骑行了8min 返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km y 与离开学生公寓的时间min x 之间的对应关系.请根据相关信息,解答下列问题:(1)填表:离开学生公寓的时间/min585087112离学生公寓的距离/km 0.5 1.6(2)填空:①阅览室到超市的距离为___________km ;②小琪从超市返回学生公寓的速度为___________km /min ;③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为___________min .(3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.23.将一个矩形纸片OABC 放置在平面直角坐标系中,点(0,0)O ,点(3,0)A ,点(0,6)C ,点P 在边OC 上(点P 不与点O ,C 重合),折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且30OPQ ∠=︒,点O 的对应点O '落在第一象限.设OQ t =.(1)如图①,当1t =时,求O QA ∠'的大小和点O '的坐标;(2)如图②,若折叠后重合部分为四边形,,O Q O P ''分别与边AB 相交于点E ,F ,试用含有t 的式子表示O E '的长,并直接写出t 的取值范围;(3)若折叠后重合部分的面积为t 的值可以是___________(请直接写出两个不同的值即可).24.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a >)的顶点为P ,与x 轴相交于点(1,0)A -和点B .(1)若2,3b c =-=-,①求点P 的坐标;②直线x m =(m 是常数,13m <<)与抛物线相交于点M ,与BP 相交于点G ,当MG 取得最大值时,求点M ,G 的坐标;(2)若32b c =,直线2x =与抛物线相交于点N ,E 是x 轴的正半轴上的动点,F 是y 轴的负半轴上的动点,当PF FE EN ++的最小值为5时,求点E ,F 的坐标.参考答案:1.B【分析】根据三角函数定义:正切=对边与邻边之比,进行求解.【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC ,∴根据正切定义,tan 1BC A AC∠==,∵∠A =45°,∴tan451︒=,故选 B .【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键.2.B【分析】利用科学记数法的表示方式表示即可.【详解】解:5290000=2.910⨯.故选:B【点睛】此题考查科学记数法表示绝对值大于1的数.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 与小数点移动的位数相同.解题关键要正确确定a 的值以及n 的值.3.D【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确.故选:D .【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.4.A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.5.C【分析】根据225296<<得到56<<,问题得解.【详解】解:225296<<,56∴<<,即在5和6之间.故选:C .的整数部分是解本题的关键.6.A【分析】利用同分母分式的加法法则计算,约分得到结果即可.【详解】解:1121222a a a a a +++==+++.故选:A .【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.7.B【分析】将三点坐标分别代入函数解析式求出213x x x 、、,然后进行比较即可.【详解】将三点坐标分别代入函数解析式8y x=,得:182x =,解得1=4x;28-1x =,解得2=-8x ;384x =,解得3=2x ;∵-8<2<4,∴231x x x <<,故选: B .【点睛】本题考查反比例函数,关键在于能熟练通过已知函数值求自变量.8.D【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴12=1=3x x --,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.9.D【分析】利用HL 证明△ACO ≌△BCO ,利用勾股定理得到OC =4,即可求解.【详解】解:∵AB ⊥x 轴,∴∠ACO =∠BCO =90°,∵OA =OB ,OC =OC ,∴△ACO ≌△BCO (HL ),∴AC =BC =12AB =3,∵OA =5,∴OC=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.10.C【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.11.C【详解】由题意可知:0a b c ++=,()b a c =-+,b c a +=-,0a c << ,2a c a ∴+>,即()2b a c a =-+<-,得出20b a +<,故①正确;20b a +< ,∴对称轴012b x a=->, 0a >,01x x ∴<<时,y 随x 的增大而减小,0x x >时,y 随x 的增大而增大,故②不正确;22224()4()40b a b c b a a b a -+=-⨯-=+> ,∴关于x 的方程2()0ax bx b c +++=有两个不相等的实数根,故③正确.故选:C .【点睛】本题考查二次函数的图象与性质及一元二次方程根的判别式,解题的关键是熟练掌握二次函数的性质并能应用求解.12.8m 【分析】根据同底数幂的乘法即可求得答案.【详解】解:7178m m m m +⋅==,故答案为:8m .【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.13.18【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.14.79【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有9个小球,其中绿球有7个,∴摸出一个球是绿球的概率是79,故答案为:79.【点睛】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.15.1(答案不唯一,满足0b >即可)【分析】根据一次函数经过第一、二、三象限,可得0b >,进而即可求解.【详解】解:∵一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,∴0b >故答案为:1答案不唯一,满足0b >即可)【点睛】本题考查了已知一次函数经过的象限求参数的值,掌握一次函数图象的性质是解题的关键.16【分析】连接FB ,作CG AB ⊥交AB 的延长线于点G .由菱形的性质得出60CBG DAB ∠=∠=︒,2AD AB BC CD ====,解直角BGC ∆求出CG =1BG =,推出FB 为ECG ∆的中位线,进而求出FB ,利用勾股定理求出AF ,再证明AEG ABF ∆∆ ,得出12AG GF AF ==.【详解】解:如图,连接FB ,作CG AB ⊥交AB 的延长线于点G .∵四边形ABCD 是边长为2的菱形,∴//AD BC ,2AD AB BC CD ====,∵60DAB ∠=︒,∴60CBG DAB ∠=∠=︒,∴sin 2CG BC CBG =⋅∠=,1cos 212BG BC CBG =⋅∠=⨯=,∵E 为AB 的中点,∴1AE EB ==,∴BE BG =,即点B 为线段EG 的中点,又∵F 为CE 的中点,∴FB 为ECG ∆的中位线,∴//FB CG,12FB CG ==,∴FB AB ⊥,即ABF ∆是直角三角形,∴AF ===在AED ∆和BGC ∆中,AD BC DAE CBG AE BG =⎧⎪∠=∠⎨⎪=⎩,‘∴AED BGC ∆≅∆,∴90AED BGC ∠=∠=︒,∴90AEG ABF ∠=∠=︒,又∵GAE FAB ∠=∠,∴AEG ABF ∆∆ ,∴12AG AE AF AB ==,∴12AG AF ==∴GF AF AG =-=..【点睛】本题考查菱形的性质,平行线的性质,三角函数解直角三角形,三角形中位线的性质,相似三角形的判定与性质等,综合性较强,添加辅助线构造直角BGC ∆是解题的关键.17.见解析【分析】(Ⅰ)根据勾股定理,从图中找出EF 所在直角三角形的直角边的长进行计算;(Ⅱ)由图可找到点Q,EQ BQ EF BF ====,即四边形EFBQ 是正方形,因为90BM BN MBN =∠=︒,,所以BQM BFN ∆≅∆,点M 在EQ 上,BM 、BN 与圆的交点为直径端点,所以EQ 与PD 交点为M ,通过BM 与圆的交点G 和圆心O 连线与圆相交于H ,所以H 在BN 上,则延长BH 与PF 相交点即为N .【详解】解:(Ⅰ)从图中可知:点E 、F 水平方向距离为3,竖直方向距离为1,所以EF ==,;(Ⅱ)连接AC ,与竖网格线相交于点O ,O 即为圆心;取格点Q (E 点向右1格,向上3格),连接EQ 与射线PD 相交于点M ;连接MB 与O 相交于点G ;连接GO 并延长,与O 相交于点H ;连接BH 并延长,与射线PF 相交于点N ,则点M ,N 即为所求,理由如下:连接,BQ BF由勾股定理算出BQ QE EF BF =====,由题意得90MQB QEF BFE QBF ∠=∠=∠=∠=︒,∴四边形BQEF 为正方形,在Rt BQM 和Rt BFN 中,BQ BF =,1tan tan 3QBA FBC ∠=∠= ,QBA FBC ∴∠=∠,AOG COH ∠=∠ ,AG CH ∴=,ABG HBC ∴∠=∠,MBQ NBF∴∠=∠()Rt BQM Rt BFN ASA ∴ ≌BM BN ∴=,90QBM MBF MBF FBN ∠+∠=∠+∠=︒90MBN ∴∠=,从而确定了点,M N 的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.18.(1)1x ≥-(2)2x ≤(3)见解析(4)12x -≤≤【分析】(1)通过移项、合并同类项直接求出结果;(2)通过移项直接求出结果;(3)根据在数轴上表示解集的方法求解即可;(4)根据数轴得出原不等式组的解集.【详解】(1)解:移项得:21x x -≥-解得:1x ≥-故答案为:1x ≥-;(2)移项得:31x ≤-,解得:2x ≤,故答案为:2x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)所以原不等式组的解集为:12x -≤≤,故答案为:12x -≤≤.【点睛】本题考查解一元一次不等式组,熟练掌握解一元一次不等式组的一般步骤是解题的关键.19.(1)40,10(2)平均数是2,众数是2,中位数是2【分析】(1)根据参加2项的人数和所占百分比即可求得总人数,再利用频数总数×100%=百分比,即可求解.(2)根据平均数、众数及中位数的含义即可求解.【详解】(1)解:由图可得,参加2项的人数有18人,占总体的45%,参加4项的有4人,则184045%=(人),4100%10%40⨯=,故答案为:40;10.(2)平均数:1132183544240⨯+⨯+⨯+⨯=,∵在这组数据中,2出现了18次,出现的次数最多,∴这组数据的众数是2,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是2,有2222+=,∴这组数据的中位数是2.则平均数是2,众数是2,中位数是2.【点睛】本题考查了条形统计图和扇形统计图,平均数、众数和中位数的求法,理解两个统计图中的数量关系是解题的关键.20.(1)45CAB ∠=︒,AC =(2)FD =【分析】(1)由圆周角定理得90ACB ∠=︒,由C 为 AB 的中点,得AC BC =,从而AC BC =,即可求得CAB ∠的度数,通过勾股定理即可求得AC 的长度;(2)证明四边形ECFD 为矩形,FD =CE =12CB ,由勾股定理求得BC 的长,即可得出答案.【详解】(1)∵AB 为O 的直径,∴90ACB ∠=︒,由C 为 AB 的中点,得AC BC =,∴AC BC =,得ABC CAB ∠=∠,在Rt ABC 中,90ABC CAB ∠+∠=︒,∴45CAB ∠=︒;根据勾股定理,有222AC BC AB +=,又6AB =,得2236AC =,∴AC =(2)∵FD 是O 的切线,∴OD FD ⊥,即90ODF ∠=︒,∵OD CB ⊥,垂足为E ,∴190,2CED CE CB ∠=︒=,同(1)可得90ACB ∠=︒,有90FCE ∠=︒,∴90FCE CED ODF ∠=∠=∠=︒,∴四边形ECFD 为矩形,∴FD CE =,于是12FD CB =,在Rt ABC 中,由6,2AB AC ==,得CB ==∴FD =.【点睛】本题是圆的综合题,考查了圆周角定理,切线的性质,等腰直角三角形的性质,垂径定理,勾股定理和矩形的判定和性质等,解题的关键是利用数形结合的思想解答此题.21.这座山AB 的高度约为112m【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解.【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan AC APC PA ∠=,∴tan AC PA APC=∠.在Rt PAB 中,tan AB APB PA ∠=,∴tan AB PA APB=∠.∵AC AB BC =+,∴tan tan AB BC AB APC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m .【点睛】本题考查三角函数测高,解题的关键在运用三角函数的定义表示出未知边,列出方程.22.(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当012x ≤≤时,0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,0.08 5.36y x =-【分析】(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当092x ≤≤时,y 关于x 的函数解析式.【详解】(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x =8时,离学生公寓的距离为8×0.1=0.8;在1282x ≤≤时,离学生公寓的距离不变,都是1.2km故当x =50时,距离不变,都是1.2km ;在92112x ≤≤时,离学生公寓的距离不变,都是2km ,所以,当x =112时,离学生公寓的距离为2km故填表为:离开学生公寓的时间/min585087112离学生公寓的距离/km 0.50.8 1.2 1.62(2)①阅览室到超市的距离为2-1.2=0.8km ;②小琪从超市返回学生公寓的速度为:2÷(120-112)=0.25km /min ;③分两种情形:当小琪离开学生公寓,与学生公寓的距离为1km 时,他离开学生公寓的时间为:1÷0.1=10min ;当小琪返回与学生公寓的距离为1km 时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min ;故答案为:①0.8;②0.25;③10或116(3)当012x ≤≤时,设直线解析式为y =kx ,把(12,1.2)代入得,12k =1.2,解得,k =0.1∴0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,设直线解析式为y mx n =+,把(82,1.2),(92,2)代入得,82 1.2922m n m n +=⎧⎨+=⎩解得,0.085.36m n =⎧⎨=-⎩ ∴0.08 5.36y x =-,由上可得,当092x ≤≤时,y 关于x 的函数解析式为()0.10121.2(1282)0.08 5.36(8292)y x x y x y x x ⎧=≤≤⎪=<≤⎨⎪=-<≤⎩.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)60O QA ∠='︒,点O '的坐标为32⎛ ⎝(2)36O E t '=-,其中t 的取值范围是23t <<(3)3,103.(答案不唯一,满足3t ≤<【分析】(1)先根据折叠的性质得60O QA ∠='︒,即可得出30∠=︒'QO H ,作O H OA '⊥,然后求出O H '和OH ,可得答案;(2)根据题意先表示3=-QA t ,再根据12QA QE =,表示QE ,然后根据O E O Q QE =''-表示即可,再求出取值范围;(3)求出t =3时的重合部分的面积,可得从t =3之后重合部分的面积始终是再求出P 与C 重合时t 的值可得t 的取值范围,问题得解.【详解】(1)在Rt POQ △中,由30OPQ ∠=︒,得9060OQP OPQ ∠=-∠=︒︒.根据折叠,知PO Q POQ '△≌△,∴O Q OQ '=,60︒∠=∠='O QP OQP .∵180O QA O QP OQP ∠=︒--∠'∠',∴60O QA ∠='︒.如图,过点O′作O H OA '⊥,垂足为H ,则90O HQ ∠='︒.∴在Rt O HQ ' 中,得9030QO H O QA ∠=︒-'∠='︒.由1t =,得1OQ =,则1O Q '=.由1122'==QH O Q ,222'+='O H QH O Q得32=+=OH OQ QH ,'=O H∴点O '的坐标为32⎛ ⎝.(2)∵点(3,0)A ,∴3OA =.又OQ t =,∴3QA OA OQ t =-=-.同(1)知,'=O Q t ,60O QA ∠='︒.∵四边形OABC 是矩形,∴90OAB ∠=︒.在Rt EAQ △中,9030QEA EQA ∠=-∠=︒︒,得12QA QE =.∴22(3)62QE QA t t ==-=-.又O E O Q QE =''-,∴36O E t '=-.如图,当点O ′与AB 重合时,OQ OQ t '==,60A Q O '∠=︒,则30AO Q ∠='︒,∴12AQ t =,∴132t t +=,解得t =2,∴t 的取值范围是23t <<;(3)3,103.(答案不唯一,满足3t ≤<当点Q 与点A 重合时,3AO '=,30DA O '∠=︒,∴cos 30A O A D '==︒,则132A D P S =⨯⨯=V∴t =3时,重合部分的面积是从t =3之后重合部分的面积始终是当P 与C 重合时,OP =6,∠OPQ =30°,此时t =OP ·tan30°=由于P 不能与C 重合,故t <,所以3t ≤<【点睛】这是一道关于动点的几何综合问题,考查了折叠的性质,勾股定理,含30°直角三角形的性质,矩形的性质,解直角三角形等.24.(1)①(1,4)-;②点M 的坐标为(2,3)-,点G 的坐标为(2,2)-;(2)点5,07E ⎛⎫ ⎪⎝⎭和点200,21F ⎛⎫- ⎪⎝⎭;【分析】(1)①将b 、c 的值代入解析式,再将A 点坐标代入解析式即可求出a 的值,再用配方法求出顶点坐标即可;②先令y =0得到B 点坐标,再求出直线BP 的解析式,设点M的坐标为()2,23m m m --,则点G 的坐标为(,26)m m -,再表示出MG 的长,配方求出最值得到M 、G 的坐标;(2)根据32b c =,解析式经过A 点,可得到解析式:223y ax ax a =--,再表示出P 点坐标,N 点坐标,接着作点P 关于y 轴的对称点P ',作点N 关于x 轴的对称点N ',再把P '和N '的坐标表示出来,由题意可知,当PF FE EN ++取得最小值,此时5PF FE EN P N +=''+=,将字母代入可得:222294925P N P H HN a ''=+'+='=,求出a 的值,即可得到E 、F 的坐标;【详解】(1)①∵抛物线2y ax bx c =++与x 轴相交于点(1,0)A -,∴0a b c -+=.又2,3b c =-=-,得1a =.∴抛物线的解析式为2=23y x x --.∵2223(1)4y x x x =--=--,∴点P 的坐标为(1,4)-.②当0y =时,由2230x x --=,解得1213x x =-=,.∴点B 的坐标为(30),.设经过B ,P 两点的直线的解析式为y kx n =+,有30,4.k n k n +=⎧⎨+=-⎩解得2,6.k n =⎧⎨=-⎩∴直线BP 的解析式为26y x =-.∵直线x m =(m 是常数,13m <<)与抛物线2=23y x x --相交于点M ,与BP 相交于点G ,如图所示:∴点M 的坐标为()2,23m m m --,点G 的坐标为(,26)m m -.∴()222(26)2343(2)1MG m m m m m m =----=-+-=--+.∴当2m =时,MG 有最大值1.此时,点M 的坐标为(2,3)-,点G 的坐标为(2,2)-.(2)由(1)知0a b c -+=,又32b c =,∴2,3b a c a =-=-.(0)a >∴抛物线的解析式为223y ax ax a =--.∵2223(1)4y ax ax a a x a =--=--,∴顶点P 的坐标为(1,4)a -.∵直线2x =与抛物线223y ax ax a =--相交于点N ,∴点N 的坐标为(2,3)a -.作点P 关于y 轴的对称点P ',作点N 关于x 轴的对称点N ',如图所示:得点P '的坐标为(1,4)a --,点N '的坐标为(2,3)a .当满足条件的点E ,F 落在直线P N ''上时,PF FE EN ++取得最小值,此时,5PF FE EN P N +=''+=.延长P P '与直线2x =相交于点H ,则P H N H '⊥'.在Rt P HN ''△中,3,3(4)7P H HN a a a '==--='.∴222294925P N P H HN a ''=+'+='=.解得1244,77a a ==-(舍).∴点P '的坐标为161,7⎛⎫-- ⎪⎝⎭,点N '的坐标为122,7⎛⎫ ⎪⎝⎭.则直线P N ''的解析式为420321y x =-.∴点5,07E ⎛⎫ ⎪⎝⎭和点200,21F ⎛⎫- ⎪⎝⎭.【点睛】本题考查二次函数的几何综合运用,熟练掌握待定系数法求函数解析式、配方法求函数顶点坐标、勾股定理解直角三角形等是解决此类问题的关键.。

天津中考数学试卷从考查形式和考查内容变动—天津中考数学试卷分析汇编

天津中考数学试卷从考查形式和考查内容变动—天津中考数学试卷分析汇编

天津中考数学试卷一、试题特点1-12题为选择题,选择题从10道题变成12道题,分值从30分增加到36分。

既注重基础的考查;又注重基础知识的灵活运用。

选择题延续了以往中考的题型,包括:科学计数法、三角函数值、中心对称、有理数计算、三视图、正多边形和圆、统计、相似、圆、反比例函数、一元二次方程的应用、二次函数图像等知识,其中只有第12题有些难度,其他难度均不大。

13-18题为填空题,填空题从8道题变成6道题,分值从24分降到18分。

题型包括:整式计算、反比例函数、概率、二次函数、三角形、作图题。

其中13-16为基础题,而17、18为较难题,其中18题第二问为整套试卷最难题之一,也是本套试卷的压分题。

19-25题为解答题,解答题从8道题变成7道题,分值仍然是66分。

取消了反比例函数与一次函数的综合题,将分值分到解不等式、圆、解直角三角形、应用题中,使得以上四题每题分值提高2分。

第19题为解不等式组,此题基本与往届中考无变化,只是分值变为8分,同时增加了在数轴上表示。

第20题为统计题,共3问占分8分。

统计题变化也不大,仍然是根据条形统计图、扇形统计图,回答问题,考察了看统计图、会计算中位数和众数,以及根据样本计算。

第21题几何证明题,主要考查圆的证明与计算,共2问占分10分。

第一问结合直径所对的圆周角90度、勾股定理、等弧所对的弦相等等知识,此问并不难,也是课本的一道例题的变形。

第二问实际也不难,主要是掌握辅助线,只要做对辅助线,此题几步便可解答完,但问题的关键就在于学生很难想到辅助线的做法,使得很多学生在此题上丢了分。

第22题为解直角三角形形体,共两问10分。

和以前中考不同,今年增加了一问填空,这第一问很简单,考察学生实际运用能力。

第二问是传统的解直角三角形题,学生在这一问丢分不多,唯一注意的便是数值计算问题。

23题为一次函数应用题,共三问10分,此题和以往相比有了很大变化,无论是问题数量,还是出题方式。

2024年天津市中考数学试卷+答案解析

2024年天津市中考数学试卷+答案解析

2024年天津市中考数学试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果等于()A. B.0 C.3 D.62.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.估算的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A. B. C. D.6.的值等于()A.0B.1C.D.7.计算的结果等于()A.3B.xC.D.8.若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳子长y尺,则可以列出的方程组为()A. B. C. D.10.如图,中,,,以点A为圆心,适当长为半径画弧,交AB于点E,交AC于点F;再分别以点E,F为圆心,大于的长为半径画弧,两弧所在圆的半径相等在的内部相交于点P;画射线AP,与BC相交于点D,则的大小为()A. B. C. D.11.如图,中,,将绕点C顺时针旋转得到,点A,B的对应点分别为D,E,延长BA交DE于点F,下列结论一定正确的是()A.B.C.D.12.从地面竖直向上抛出一小球,小球的高度单位:与小球的运动时间单位:之间的关系式是有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题:本题共6小题,每小题3分,共18分。

近五年中考数学试卷分析

近五年中考数学试卷分析

近五年中考数学试卷分析⼀、考点对⽐⼆、试卷分析数学中考主要考察学⽣对基本⽅法、基本知识、基本技能的考查,因此较少偏、怪、难的题⽬,⼤多数题⽬都来源于课本或者课本⽴体的改编,解法都能从课本上找到影⼦。

因此解题的关键就是要回归课本,掌握典型例题、课后习题的规律及解法,这样考试时才能得⼼应⼿,沉着应对。

把2015-2019这五年的中考数学试卷进⾏分析我们可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不⼤,基础题占有122分(82%),有难度拔⾼题占有28分(18%);4、代数部分考查分数⼤概是80~90分(),⼏何部分考查分数60~70分%);5、知识点的考查⽐较有规律,常规题型的变化不⼤三、题型探究1、代数部分(1)函数函数部分是代数部分的重点内容,也是难点内容,考查的对象主要是:⼀次函数、反⽐例函数、⼆次函数。

考查重点在于以下⼏点:函数解析式的求法,难度较低,熟悉待定系数法等⽅法即可;三种函数图像的基本性质的应⽤,难度中等;函数的实际应⽤,常出现在试卷难度最⼤的代数综合题、代⼏综合题中,分值在20-40分不等。

(2015)14.某⽔库的⽔位在5⼩时内持续上涨,初始的⽔位⾼度为6⽶,⽔位以每⼩时⽶的速度匀速上升,则⽔库的⽔位⾼度y ⽶与时间x ⼩时0≤x≤5的函数关系式为 . (2016?⼴州)⼀司机驾驶汽车从甲地去⼄地,他以平均80千⽶/⼩时的速度⽤了4个⼩时到达⼄地,当他按原路匀速返回时.汽车的速度v 千⽶/⼩时与时间t ⼩时的函数关系是()A .v=320tB .v=C .v=20tD .v=(2016)若⼀次函数y=ax+b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是() A .ab >0B .a ﹣b >0C .a 2+b >0 D .a+b >0(2017)关于的⼀元⼆次⽅程有两个不相等的实数根,则的取值范围是A.B.C. D.(2019)若点),1(1y A -,),2(2y B ,),3(3y C 在反⽐例函数xy 6=的图像上,则321,,y y y 的⼤⼩关系是()(A )123y y y << (B )312y y y << (C )231y y y << (D )321y y y << (2)不等式与⽅程不等式与⽅程的复习,要以基础为主,不要只研究难题,要注重过程以及⽅法的总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津中考数学试卷分析及命题方向(2008-2012)
试卷结构分析:
近五年的中考数学试卷结构基本相同,共三类题型:选择、填空、解答题,分Ⅰ卷(30分)、Ⅱ卷(90分),满分120分。

其中:
选择题10道每题3分共计:30分
填空题8道每题3分共计:24分
解答题8道19题6分,20-24题8分,25、26题10分,共计66分
从教材角度分析:
七年级所占比重百分之15左右,其中上占百分之6 下占百分之9左右
七年级上册章节较少,总共四章,但每一章都是初中后面学习的基础,所以应加以重视,其中直观出现考点的章节为第一章《有理数》和第三章《一元一次方程》。

七年级下册共六章,其中直观出现考点的章节为第三章《三角形》多出现于填空题,第四章《二元一次方程组》与第五章《不等式与不等式组》多出现为解答题第19题,第六章《数据收集与描述、分析》多出现选择题。

八年级所占知识比重为百分之33左右,其中上占百分之13 下占百分之20左右
八年级上册共有五章,每一章节均会有考点,其中重点第四章《一次函数》第五章《整式的乘法与因式分解》,难点为第一章、第四、五章。

八年级下册共有五章,每一章节均会有考点,其中重点章节为第二章《反比例函数》和第四章《四边形》,难点章节为第一章第四章。

九年级所占知识比重为百分之五十一左右,其中上占百分之22左右下占百分之29左右
九年级上册共有五章,每一章节均会有考点,其中分值较大的为第二章《一元二次方程》和第四章《圆》,第一章《二次根式》和第五章《概率》多以选择填空,第四章《旋转与中心对称》多结合于其他题中。

九年级下册共有四章,每一章均会有考点,前三章《二次函数》《相似》《锐角三角形》均会以大题形式出现,第四章《投影与视图》以选择题形式出现,其中重点与难点为第一二章。

从知识板块分析:
“数与代数”、“图形的认识”、“空间与图形”三大领域是考察重点,函数仍是重中之重。

“数与代数”内容方面,数与式常考的方面包括二次根式值的比较、相反数或者绝对值的概念、分式值与变换、平方根、算数平方根的概念及估数、因式分解。

近两年新增的一个考察方面:科学计数法。

基本都会以选择或者填空的形式出现,占10分左右。

方程组与不等式组占10分左右,第一道解答题通常是解不等式组,应用题12年创新的地方是利用函数去解题,而不是单纯的考察方程组了。

函数部分每年都是考察的核心,一次函数、反比例函数、二次函数的图像及其性质都会考到,解答题会出现2-3道,选择、填空也都涉及到。

最后一道二次函数综合题难度较大,学生在最后一道题上容易拉开分数。

“统计与概率”内容方面不强调单纯的计算,而是通过设置现实生活中的问题情景,考查学生能否从所给数据、统计图表中获取信息,作出分析和判断。

一般是一道选择3分、一道填空3分、一道解答题8分,共计14分。

解答题一般是概率和数据分析交差出现。

“图形的认识”内容方面,解直角三角形所占分值近几年持平,都是一道选择(三角函数值,3分),一道解答题(实际应用,8分),共计11分,单纯的考察三角形、四边形以及多边形相关知识所占比重越来越少,12年仅出现了一道选择题,趋势是将相关知识融合到解答题中,考察学生的综合应用能力。

对圆的知识了点考查近几年在难度上降低要求,仅在圆的切线、垂径定理等基本计算方面作出考查,共占14分左右。

“空间与图形”内容方面,重点考查学生对几何事实的理解、作图和推理能力。

淡化了对几何证明技巧的考查,但加强了对图形变换的理解,主要考查学生对图形的直观感受。

其中,三视图每年必考一道选择,3分。

轴对称、中心对称也是以选择题形式考察,3分。

倒数第二道解答题经常是对图形的旋转变换进行考察,作为几何部分的压轴题,考察学生的几何思想,要求学生灵活运用所掌握的知识去解题。

同时折叠问题、图形的割补问题等等也是考察的重点,相似三角形的知识一般都融合到解答题中,也要求学生灵活掌握。

“空间与图形”部分在近几年所占分值越来越多,共计25分左右。

近几年的中考数学卷子有80分左右的题目对于大多数考生来说还是比较容易的,难度比例基本上还是7:2:1,对于基础扎实的学生,达到100分以上还是不困难的。

中考更注重对基础知识的考察,所以学生应先做到夯实基础,再去做拔高题,一味的做难题,未必会产生好的效果。

相关文档
最新文档