常用结构计算软件的分析模型与使用
PKPM操作步骤建筑结构设计

PKPM操作步骤建筑结构设计PKPM是一种常用的建筑结构设计软件,它能够对建筑结构进行分析和计算,并生成相应的计算报告。
下面是PKPM的操作步骤建筑结构设计的详细介绍。
1.启动PKPM软件。
在计算机桌面上找到PKPM的图标,双击打开软件。
2.新建项目。
在PKPM软件界面的菜单栏中,点击“文件”->“新建”->“工程”,输入项目名称和相关信息,并选择要设计的结构类型,如混凝土结构、钢结构等。
3.创建结构模型。
在PKPM软件界面的左侧工具栏中,选择相应的结构元素,如柱、梁、墙等,并根据实际情况进行绘制。
可以使用鼠标进行拖拉和绘制,也可以输入具体的坐标和尺寸进行绘制。
4.材料属性设置。
在PKPM软件界面的右侧属性设置栏中,选择各个结构元素的材料属性,并填写相应的参数,如混凝土的强度等。
可以根据实际情况选择不同的材料属性。
5.荷载设置。
在PKPM软件界面的左下方荷载设置栏中,选择相应的荷载类型,并填写荷载的大小和分布情况。
可以根据具体需求设置不同的荷载条件。
6.约束条件设置。
在PKPM软件界面的右下方约束条件栏中,选择各个结构元素的约束条件,如固定端、弹性支座等。
可以根据实际情况选择不同的约束条件。
7.进行分析计算。
在PKPM软件界面的菜单栏中,点击“计算”->“结构分析”,进行结构的分析计算。
软件会根据设计的结构模型、材料属性、荷载和约束条件等进行相应的分析计算。
8.结果查看与分析。
分析计算完成后,可以在PKPM软件界面的右侧结果查看栏中查看各个结构元素的应力、变形和位移等结果。
可以根据结果进行相应的结构优化和修改。
9.生成计算报告。
在PKPM软件界面的菜单栏中,点击“文件”->“生成报告”,可以将分析计算结果生成为计算报告。
报告中包括了结构模型、材料属性、荷载、约束条件和分析结果等信息。
10.保存项目文件。
在PKPM软件界面的菜单栏中,点击“文件”->“保存”,将项目文件保存到指定的文件夹中。
AMOS操作讲解

Amos软件操作1.模型设定结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos软件进行计算,阐述在实际应用中结构方程模型的构建、运算、修正与模型解释过程。
2.模型构建的思路根据构建的理论模型,通过设计问卷对留学生学习汉语的学习动机、学习策略和焦虑调查得到实际数据,然后利用对缺失值进行处理后的数据进行分析,并对文中提出的模型进行拟合、修正和解释。
3.潜变量和可测变量的设定模型中共包含2个因素(潜变量):学习动机、学习策略,7个可测变量:融入型动机、工具型动机、焦虑、记忆策略、认知策略、情感策略和社交策略。
4.关于调查数据的收集本次问卷调研的对象为不同国家的留学生5.缺失值的处理采用表列删除法,即在一条记录中,只要存在一项缺失,则删除该记录。
数据的的信度和效度检验1).数据的信度检验信度(reliability)指测量结果(数据)一致性或稳定性的程度。
一致性主要反映的是测验内部题目之间的关系,考察测验的各个题目是否测量了相同的内容或特质。
稳定性是指用一种测量工具(譬如同一份问卷)对同一群受试者进行不同时间上的重复测量结果间的可靠系数。
如果问卷设计合理,重复测量的结果间应该高度相关。
由于本案例并没有进行多次重复测量,所以主要采用反映内部一致性的指标来测量数据的信度。
Cronbach在1951年提出了一种新的方法(Cronbach's Alpha系数),这种方法将测量工具中任一条目结果同其他所有条目作比较,对量表进行内部一致性估计。
2).数据的效度检验效度(validity)指测量工具能够正确测量出所要测量的特质的程度,分为内容效度(content validity)、效标效度(criterion validity)和结构效度(construct validity)三个主要类型。
内容效度也称表面效度或逻辑效度,是指测量目标与测量内容之间的适合性与相符性。
工程结构计算软件PKPM讲解

1.1-5)Sap2000
在SAP2000三维图形环境中提供了多种建模、分析和设计 选项,且完全在一个集成的图形界面内实现。
先进的分析技术提供了:逐步大变形分析、多重P-Delta效 应、特征向量和Ritz向量分析、索分析、单拉和单压分析、 Buckling屈曲分析、爆炸分析、针对阻尼器、基础隔震和 支承塑性的快速非线性分析、用能量方法进行侧移控制和 分段施工分析等。
极限状态设计
1. 内力分析 2. 荷载效应、组合 3. 安全系数 4. 地震作用分析 5. 截面配筋设计 6. 稳定计算
正常使用阶段
结构的变型、挠度计算 钢筋混凝土裂缝计算 适应设计规范不断修订的需要
设计规范不断地补充修订,大多数建筑要 经过抗震设计,其计算内容比常规设计要增 加数倍的内容。国内自主开发的软件才能及 时跟上不断修订的规范。
1.1-6)建筑结构分析与设计CSI ETABS
国际领先的建筑结构分析与设计软件,ETABS除一般高层 结构计算功能外,还可计算钢结构、钩、顶、弹簧、结构 阻尼运动、斜板、变截面梁或腋梁等特殊构件和结构非线 性计算(Pushover, Buckling,施工顺序加载等),甚至 可以计算结构基础隔震问题,功能非常强大。
从房屋模型中提取一榀框架
生成结构计算数据文件
完成结构分析计算
画施工图前交互输入绘图控制参数
人工干预设计
布置图面
施工图生成
钢筋混凝土梁柱施工图
广东地区的梁柱表施工图
梁柱钢筋的平面表示法
钢筋混凝土异型截面柱施工图
结构平面、楼板配筋图
钢结构施工图 门式刚架
钢桁架支架
框架柱 框架梁 节点大样
建筑电气施工图
二、进入PKPM软件系统 开始学习
PKPM-STSL钢结构算量软件演示流程

05
结果查看与导出
结果查看方式
图形查看
软件支持以三维图形的方式展示 计算结果,用户可以直观地查看 结构的应力分布、位移变化等。
数据表格
软件提供详细的数据表格,用户 可以查看各部分的应力、应变、 位移等详细数据。
曲线图
软件支持生成各种数据曲线图, 用户可以通过曲线图查看数据的 变化趋势。
结果导出格式
安装完成
安装程序自动关闭,软件已成功安装在计算机上。
软件启动流程
打开软件安装目录
找到安装的PKPM-STSL钢结 构算量软件所在的文件夹。
1
运行软件
双击软件启动图标,开始启 动软件。
加载软件界面
等待软件加载,直至软件界 面完全显示。
开始使用软件
在软件界面中,根据需求选 择相应的功能模块,开始进 行钢结构算量工作。
兼容性
确保与其他软件的兼容性,方便用户在不同软 件间进行数据交换。
导入流程
提供详细的导入流程指南,帮助用户快速完成模型数据的导入。
模型编辑与修改
实时联动
支持对模型进行实时编辑和修改,确保数据的一致性和准确性。
参数化编辑
提供参数化编辑工具,方便用户对模型进行参数化调整和优化。
历史记录管理
保留历史记录,方便用户回溯和对比不同版本之间的差异。
04
算量设置与计算
材料设置
钢材类型
选择适用的钢材类型,如Q235、 Q345等,并设置相应的材料属性, 如密度、弹性模量、泊松比等。
连接方式
根据实际工程需要,选择合适的连接 方式,如焊接、螺栓连接等,并设置 相应的连接参数。
计算参数设置
截面类型
根据实际工程需要,选择合适的截面类型,如H型钢、工字钢等,并设置相应的截面参数。
几种常用结构计算软件介绍和区别

多肢剪 力墙 ; 框支剪力墙 ; 框架梁 与剪力 墙 的连接 ;柱 、 上 墙 下偏心 ; 悬挑剪力墙 、 无楼板约束 的剪力墙 等都不适合采 用薄
壁杆件单元计算 。 还有平 面楼 板有较大 变化或 有较大 开洞 的结构 , 已经 它
果 的精 度 , 准确度 和适用 范围。
不适合平 面刚度无限大 的假 定 了 , 面 内各 点的位移 已经 不 平
可分析 普通单体 结构 , 多塔楼结 构 , 错层结 构 , 体结构 等多 连
2 T T结构 计 算软 件 A
T T也是 由中国建筑科 学研究 院开发 的多 、 A 高层 建筑 的 结构专用程序 , 其计算模 型和原理 与 T S B A相似 , Байду номын сангаас里不再 赘
述。
种立 面结 构形式 。程序假定每一个独立结 构层的楼板在其平 面 内 的为刚度 无 限大 , 在其 平 面外 的刚度 为可 以忽略 不计 。 结构将建筑结 构离散为水 平构件 和竖 向构件 , 水平 构件 即梁 和楼板 , 向构件 为柱 , 撑 ( 竖 支 斜柱 ) 和剪 力墙 , 过上 述 假 , 通 定, 将楼板作 为一个 水平刚 片而独立存 在 , 不参 与整体分析 ,
陈 异 福州 300 ) 50 1 ( 福建 省永正建筑设计有 限公 司
摘
要: 介绍几款常用 的结构计 算软件 , 介绍 它们 的力 学模 型和假 定 , 以及各 自的优 劣。
墙元 膜 元 壳元 文献标识 码 : A 文章编号 :04— 15 2 0 )7— 0 5— 2 10 6 3 (0 7 0 04 0
相 同了 , 就不能使用 T S B A的计算模 型 了。
1 T S 结构 计算 软 件 BA
常用结构软件比较

常用结构软件比较本文仅限于混凝土结构计算程序。
目前的结构计算程序主要有:PKPM系列 TAT、SATWE 、TBSA系列 TBSA、TBWE、TBSAP 、BSCW、GSCAD、 SAP系列。
其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。
一、结构计算程序的分析与比较1、结构主体计算程序的模型与优缺点从主体计算程序所采用的模型单元来说:TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。
在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。
SATWE、TBWE和TBSAP在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。
SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元包括三角形和矩形薄壳单元、四节点等参薄壳单元和厚板单元包括三角形厚板单元和四节点等参厚板单元。
另外,通过与JCCAD 的联合,还能实现基础-上部结构的整体协同计算。
TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元包括罚单元与集中单元 ,以及进行基础计算用的弹性地基梁单元、弹性地基柱单元桩元、三角形或四边形弹性地基板单元和地基土元。
TBSAP可以对结构进行基础-上部结构-楼板的整体联算。
从计算准确性的角度来说:SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。
最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。
BSCW和GSCAD 的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。
AMOS操作讲解

Amos软件操作1.模型设定结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos软件进行计算,阐述在实际应用中结构方程模型的构建、运算、修正与模型解释过程。
2.模型构建的思路根据构建的理论模型,通过设计问卷对留学生学习汉语的学习动机、学习策略和焦虑调查得到实际数据,然后利用对缺失值进行处理后的数据进行分析,并对文中提出的模型进行拟合、修正和解释。
3.潜变量和可测变量的设定模型中共包含2个因素(潜变量):学习动机、学习策略,7个可测变量:融入型动机、工具型动机、焦虑、记忆策略、认知策略、情感策略和社交策略。
4.关于调查数据的收集本次问卷调研的对象为不同国家的留学生5.缺失值的处理采用表列删除法,即在一条记录中,只要存在一项缺失,则删除该记录。
数据的的信度和效度检验1).数据的信度检验信度(reliability)指测量结果(数据)一致性或稳定性的程度。
一致性主要反映的是测验内部题目之间的关系,考察测验的各个题目是否测量了相同的内容或特质。
稳定性是指用一种测量工具(譬如同一份问卷)对同一群受试者进行不同时间上的重复测量结果间的可靠系数。
如果问卷设计合理,重复测量的结果间应该高度相关。
由于本案例并没有进行多次重复测量,所以主要采用反映内部一致性的指标来测量数据的信度。
Cronbach在1951年提出了一种新的方法(Cronbach's Alpha系数),这种方法将测量工具中任一条目结果同其他所有条目作比较,对量表进行内部一致性估计。
2).数据的效度检验效度(validity)指测量工具能够正确测量出所要测量的特质的程度,分为内容效度(content validity)、效标效度(criterion validity)和结构效度(construct validity)三个主要类型。
内容效度也称表面效度或逻辑效度,是指测量目标与测量内容之间的适合性与相符性。
常用结构计算软件的合理使用

随着计算 机结构分析 软件 的广泛应 用和普及 , 它使人们摆 脱 墙肢 的约束 , 从而 消弱 了结构 的刚度 。连梁 越多 , 梁的 高度 越 连 了过去必须进行 大量 的手工 计算 , 使工 作效 率得 以大幅度 的提 大 , 结构 刚度 削弱越大 。3 引入楼板 在其 自身平面 内刚度无 限 则 ) 高 。与此 同时 , 们对结构 计算软件 的依赖性 也越来 越大 , 人 有时 大 , 而平面外刚度为零 的假定 。
常 用 结 构 计 算 软 件 的 合 理 使 用
刘 翔
摘 要: 结合计算机 结构 分析软件 的发 展, 对 国内外流行 的结构计算 软件 T T, B A,A WE, T B ,A 0 0等 针 A TS ST E A SS ห้องสมุดไป่ตู้ 0 进行 了分析 , 帮助结构工程 师选择合适 的结构计算软件 , 以满足 工程设 计精度 的要求。 关键词 : 结构设 计, 结构计算 , 软件 , 工程
假定 、 力学模型及其适用 范 围有 所 了解 , 应对计 算结 果进行 分 构 中, 并 常存 在薄壁杆件交叉连接 、 彼此相连的薄壁杆件截面不 同,
析判断 , 确认其正确合理、 有效后方可用于工程设 计。
甚至差异较大的情况。由于这些 薄壁 杆件的扇形坐标 不同 , 其翘
实际结构是空间的受力体系 , 不论是静力分析还是动 力分 曲角的含义也不 同 , 但 因而 由截 面翘 曲而 引起 的纵 向位 移不 易协 析, 往往必须采取一 定 的简 化处 理 , 以建立相 应 的计 算简 图或分 调 , 会导致一定 的计算误差。2 长墙 、 ) 矮墙 : 由于 薄壁 杆件模型不 析模型 。目前 , 常用 的结构分析 模型可分 为两大类 : 一类 为平 考虑剪切变形的影响 , 第 而长墙 、 矮墙是 以剪切 变形 为主的构件 , 其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用结构计算软件的分析模型与使用按语:读了工业建筑2005-5期,中国建筑设计研究院,常林润、罗振彪“常用结构计算软件与结构概念设计”一文,感到其内容、观点对更深层次讨论PKPM很有有帮助,现分几个部分摘编如下,供网友发帖时参考,其目的是将J区的讨论提高到一个更高的层次。
一、TAT的分析模型与使用。
二、SARWE的分析模型与使用,三、从整体上把握结构的各项性能。
四、现阶段常用的结构分析模型。
五、结构计算软件的局限性、适用性和近似性。
六、抗震概念设计的一些重要准则。
七、结语。
一、TAT的分析模型与使用TAT是中国建科院开发的,程序对剪力墙采用开口薄壁杆件模型,并假定楼板平面内刚度无限大,平面外刚度为零。
这使得结构自由度大为减少,计算分析得到一定程度的简化,从而大大提高了计算效率。
薄壁杆件模型采用开口薄壁杆件理论,将整个平面联肢墙或整个空间剪力墙模拟为开口薄壁杆件,每个杆件有两个端点,每个端点有7个自由度,前6个自由度的含义与空间杆单元相同,第7个自由度是用来描述薄壁杆件截面翘曲的。
开口薄壁杆件模型的基本假定是:1)在线弹性条件下,杆件截面外形轮廓线在其平面内保持不变,在平面外可以翘曲,同时忽略其剪切变形的影响。
这一假定实际上增大了结构的刚度,薄壁杆件单元及其墙肢越多,则结构刚度增加程度越高。
2)将同一层彼此相连的剪力墙墙肢作为一个薄壁杆件单元,将上下层剪力墙洞口之间的部分作为连梁单元。
这一假定将实际结构中连梁对墙肢的线约束简化为点约束,削弱了连梁对墙肢的约束,从而削弱了结构的刚度。
连梁越多,连梁的高度越大,则结构的刚度削弱越大。
3)引入了楼板平面内刚度无限大,平面外刚度为零。
实际工程中许多布置复杂的剪力墙难以满足薄壁杆件的基本假定,从而使计算结果难以满足工程设计的精度要求。
1)变截面剪力墙:在平面布置复杂的建筑结构中,常存在薄壁杆件交叉连接、彼此相连的薄壁杆件截面不同、甚至差异较大的情况。
由于这些薄壁杆件的扇形坐标不同,其翘曲角的含义也不同,因而由截面翘曲引起的纵向位移不易协调,会导致一定的计算误差。
2) 长墙、短墙:由于薄壁杆件模型不考虑剪切变形的影响,而长墙、短墙是以剪切变形为主的构件,其几何尺寸也难以满足薄壁杆件的基本要求,采用薄壁杆件理论分析这些剪力墙时,存在着较大的模型化误差。
3)多肢剪力墙:薄壁杆件模型的一个基本假定就是认为杆件截面外形轮廓线在自身平面内保持不变,在墙肢较多的情况下,该假定会会导致较大的误差。
4)框支剪力墙:框支剪力墙和转换梁在其交接面上是线变形协调的,而菜用薄壁杆件理论分析框支墙时,由于薄壁杆件是以点传力的,作为一个薄壁杆件的框支墙只有一点和转换梁的某点是变形协调的,这必然会带来较大的计算误差。
5)框架梁与剪力墙的连接:在一般情况下和剪力墙垂直相连的框架梁,其受剪力枪的约束并不强,梁这一端的弯距并不大。
但用薄壁杆件理论分析剪力墙时,梁要通过刚臂与薄壁杆件的剪心相连,其结果是强化了剪力墙对梁端的嵌固作用,使梁端弯距计算值偏大。
6)柱、墙上下偏心:程序将在上(薄壁)柱下端加一水平刚域,刚域的存在对结构整体刚毒有较大的影响。
7)对悬挑剪力墙,无楼板约束的剪力墙等也不适合采用薄壁杆件单元计算。
TAT软件可用于框架、框架—剪力墙、剪力墙及筒体结构,但应用时应根据工程的实际情况对剪力墙进行处理以减小计算误差。
1)剪力墙的输入处理:对长度超过8m的剪力墙和多肢剪力墙应在适当位置,按照使每个薄壁柱的刚度尽量均匀的原则人为设置计算洞口,这样可使壁柱的受力更符合实际。
当洞口较小时,在实际施工时按无洞处理。
2)剪力墙洞口的处理:因为TAT采用薄壁柱模型,每层薄壁柱上下各有一个节点与上下层的柱、薄壁柱或无柱节点相连,通过这样的连系将上下层的力传递计算,当上下层的洞口不对齐时,由于洞口会切割一个薄壁柱为2个或更多。
造成上下节点不一一对应,使上下层传力混乱,这时应采用简化的方法进行处理。
剪力墙的洞口一般分对齐、开通、忽略三种处理方法。
3)框支剪力墙处理:对于框支剪力墙,用薄壁柱模拟的剪力墙有个传离问题,上部薄壁柱只能传给下一个点,而下部往往是由多个点支撑上部剪力墙的,这时应对框支梁上的剪力墙进行离散化处理,将计算产生的误差控制在局部平面内,这样才能在结构整体分析中得到一个比较满意的结果,然后再利用高精平面有限元程序对关键部位进行细致的内力分析。
TBSA其计算原理和TAT相似。
二、SATWE分析模型与使用SATWE是用墙元来模拟剪力墙的。
SATWE中的墙元是在板壳单元的基础上构造出的一种通用墙元,它采用静力凝聚原理将由于墙元细分而增加的内部自由度消去,将其刚度凝聚到边界节点上,从而保证了墙元的精度和有限的出口自由度,而且墙元的每个节点都具有空间全部6个自由度,可以方便地与任意空间梁、柱单元连接,而无需任何约束,同时也降低了剪力墙的几何描述和板壳单元划分的难度,提高了分析效率,板壳单元是目前模拟剪力墙的最理想单元,SATWE选用了这一单元并对墙元的细分和墙上开洞作了自动化处理。
板壳单元模型的主要特点是用每个节点6个自由度的壳元来模拟剪力墙单元。
剪力墙既有平面内刚度,又有平面外刚度,楼板既既可以按弹性考虑,也可按刚性板考虑,这是一种接近实际情况的模型。
该模型的特点是:1)具有平面内、外刚度,可与空间任何构件连接,较好的反映剪力墙真实收力状态,其刚度一实际刚度较为一致。
2}通过静力凝聚形成墙元来模拟剪力墙,解决了剪力墙模型化的问题。
3)允许剪力墙洞口不对齐,适用于较复杂的结构,较真实地分析出剪力墙的内力和变形。
4)结构自由度数目增多,计算工作量增加,计算效率有所降低。
SATWE在对楼板的处理上采用了四种不同的假定:1)假定搂板平面内无限刚。
2)假定搂板分块平面内无限刚。
3)假定搂板分块平面内无限刚,并带有弹性连接板带。
4)假定搂板为弹性楼板。
为提高计算效率,在保证一定的分析精度的前提下,针对不同类型的工程,采用不同的楼板假定。
在使用SATWE软件时,值得注意的有两点:1)墙元的划分,并非越细越好。
当墙元划分过细时,由于单元有一定的厚度,当单元的长、宽、厚比教接近时,墙单元就不能再作为墙单元计算。
2)在地震作用分析时,程序对振型分解法提供了两种解法:总刚分析法和侧刚分析法。
两者的主要区别在于对墙元侧向节点自由度的处理上,前者将其作为子结构的出口自由度,参加总刚的集成,后者将其作为子结构的内部自由度,在单元计算阶段就凝聚掉,这就造成墙元之间的变型不协调,使之在变形过程中可以自由开裂,使的计算出来的结构刚度偏小,尤其在采用弹性楼板假定以及错层结构中会产生较大的误差。
三、从整体上把握结构的各项性能[1]、剪重比控制:剪重比指任一楼层的水平剪力与该层及其以上各层总重力荷载代表值的比值。
一般是指底层水平剪力与结构总重力荷载代表值之比。
它在某种程度上反映了结构的刚柔程度,剪重比应在一个合理的范围内,以保证结构整体的刚度适中,剪重比太小,说明结构整体刚度偏柔,在水平荷载或水平地震作用下将产升过大的水平位移或层间位移;剪重比过大,说明结构整体刚度偏刚,会引起很大的地震力,不经济。
附规范规定:《抗规》5.2.5条“剪重比”在新规范中就是水平地震剪力系数λ。
《高规》3.3.13条出于结构安全的考虑,增加了对各层水平地震剪力最小值的要求,结构的水平地震效应据此进行相应调整。
[2]、位移比控制:位移比是指楼层的最大弹性水平位移(或层间位移)与该楼层弹性水位移(或层间位移)的平均值之比。
位移比的大小是反映结构平面规则与否的重要依据,它侧重控制的是结构侧向刚度和扭转之间的一种相对关系,而非绝对大小,它的目的是使结构抗侧力构件布置更有效、更合理。
附规范规定:《高规》的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B 级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.3倍。
[3]、周期比控制:周期比使指结构扭转为主的第一周期T1与以平动为主的第一周T1的比值,其主要目的是控制结构在地震作用下的扭转效应。
周期比实际上反映了结构的扭转刚度和侧向刚度之间的一种对应关系,同时也反映了结构抗侧力钩件布置的合理性和有效性。
附规范规定:《高规》4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.850[4]、层刚比控制:我国的“抗震规范”和“高规”均对结构的楼层侧向刚度比作出了规定,其主要目的是为了保证结构竖向刚度变化的均匀性,防止出现突变的情况。
层刚度比比较直观反映了结构楼层侧向刚度沿竖向分布的均匀程度,它是衡量结构竖向规则与否的重要标志。
附规范规定:《抗规》附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2;《高规》4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%;《高规》5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍:《高规》10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合《高规》附录E的规定。
<> 附规范规定,是后加的,欢迎斧正、补充。
四、现阶段常用的结构分析模型。
实际结构是空间受力体系,但不论是静力分析还是动力分析,往往采取一定的简化处理,以建立相应的计算简图或分析模型。
目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。
1)平面结构空间协同分析模型。
将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载或地震作用,所有正交或斜交的平面抗侧力结构均参于工作,并按空间位移协调条件进行水平力的分配,楼板假定在其平面刚度无限大。
这一分析模型目前已经很少采用。
其主要适用于平面布置较为规则框架结构、框-剪结构、剪力墙结构。
2)三维空间有限元分析模型。
将建筑结构作为空间体系,梁、柱支撑均采用空间杆单元,剪力墙单元模型目前薄壁杆件模型、空间膜元模型、板壳单元模型以及墙组元模型。
楼板可假定为弹性、也可假定其自身平面内刚度无限大。
还可假定楼板分块无限刚。
该模型以节点位依为未知量,由矩阵位移法形成线性方程求解。
五、结构计算软件的局限性、适用性和近似性。
随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得已大幅度的提高。