理论力学习题答案
理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N.放在水平梁AC的中央.如图所示。
理论力学习题答案

2-3 梁的支承及载荷如图示,梁的自重不计。
以载荷M、P、q表示支承处的约束力。
(a) (b)(c) (d)(e) (f)(a)题2-3(a)图题2-3(a)答案图解: 对象:AB杆,受力如图示:建立参考基如图示∑==niixF1=AxF∑==niiAzFm1)(22=⋅+-⋅-⋅aqaMaFaFByaMqaFFBy2412+-=∑==niiyF1=--+qaFFFByAyaMqaFFAy2452-+=(b)、题2-3(b )图 题2-3(b )答案图解: 对象AB 杆,受力如图示,建立参考基如图示∑==n i ix F 100=Ax F∑==ni i Az F m 10)( 03212=-⋅⋅-⋅+⋅M a a q a F a F ByaMF qa F By 2243+-=∑==ni iy F 10 0321=-⋅-+F a q F F By AyaM F qa F Ay 22343-+=(C )、题2-3(C )图 题2-3(C )答案图 解:以AD 梁为研究对象,画出受力图如图所示。
建立参考基如图示0)(1=∑=i n i A F m 02342=⋅-⋅-⋅b qb b qb b F N C 得qb F N C 85= 01=∑=n i iy F 04=--+qb qb F F N C Ay 得qb F Ay 85= 01=∑=n i ix F0=Ax F(d )题2-3(d )图 题2-3(d )答案图解:以AB 梁为研究对象,画受力图如图所示。
建立参考基如图示0)(1=∑=i n i A F m 0222=-⋅⋅-⋅qb b b q b F N B 得qb F N B 23=01=∑=n i iy F 02=⋅-+b q F F Ay N B 得qb F Ay21= 01=∑=n i ix F0=Ax F(e )、题2-3(e )图 题2-3(e )答案图解:以AB 梁为研究对象,画受力图如图所示。
理论力学课后习题答案

理论力学(盛冬发)课后习题答案c h12(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第12章动能定理一、是非题(正确的在括号内打“√”、错误的打“×”)1.圆轮纯滚动时,与地面接触点的法向约束力和滑动摩擦力均不做功。
( √ )2.理想约束的约束反力做功之和恒等于零。
( √ )3.由于质点系中的内力成对出现,所以内力的功的代数和恒等于零。
( × )4.弹簧从原长压缩10cm和拉长10cm,弹簧力做功相等。
( √ )5.质点系动能的变化与作用在质点系上的外力有关,与内力无关。
( × )6.三个质量相同的质点,从距地相同的高度上,以相同的初速度,一个向上抛出,一个水平抛出,一个向下抛出,则三质点落地时的速度相等。
( √ )7.动能定理的方程是矢量式。
( × )8.弹簧由其自然位置拉长10cm,再拉长10cm,在这两个过程中弹力做功相等。
143144( × )二、填空题1.当质点在铅垂平面内恰好转过一周时,其重力所做的功为 0 。
2.在理想约束的条件下,约束反力所做的功的代数和为零。
3.如图所示,质量为1m 的均质杆OA ,一端铰接在质量为2m 的均质圆轮的轮心,另一端放在水平面上,圆轮在地面上做纯滚动,若轮心的速度为o v ,则系统的动能=T 222014321v m v m +。
4.圆轮的一端连接弹簧,其刚度系数为k ,另一端连接一重量为P 的重物,如图所示。
初始时弹簧为自然长,当重物下降为h 时,系统的总功=W 221kh Ph -。
图 图5.如图所示的曲柄连杆机构,滑块A 与滑道BC 之间的摩擦力是系统的内力,设已知摩擦力为F 且等于常数,则曲柄转一周摩擦力的功为Fr 4-。
1456.平行四边形机构如图所示,r B O A O ==21,B O A O 21//,曲柄A O 1以角速度ω转动。
理论力学习题答案

理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 两点受力的构件都是二力杆。
( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 力的平行四边形法则只适用于刚体。
( × ) 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。
( × ) 凡是平衡力系,它的作用效果都等于零。
( × ) 合力总是比分力大。
( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ )当软绳受两个等值反向的压力时,可以平衡。
( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ )凡是两端用铰链连接的直杆都是二力杆。
( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。
( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。
对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
理论力学课后习题答案

第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。
(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。
(√)3. 质点系动量矩的变化与外力有关,与内力无关。
(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。
(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。
(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。
(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。
(√)8. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 2213ml mr =+,式中m 为AB 杆的质量。
(×)9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。
(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。
(×)图二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。
2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。
3. 质点系的质量与质心速度的乘积称为质点系的动量。
4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。
5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。
理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
理论力学课后习题及答案解析

理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学习题及解答1

理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 静力学公理和物体的受力分析一、是非判断题1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × )1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 1.1.5 两点受力的构件都是二力杆。
( × ) 1.1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 1.1.7 力的平行四边形法则只适用于刚体。
( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。
( ∨ ) ¥1.1.9 只要物体平衡,都能应用加减平衡力系公理。
( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。
( × ) 1.1.11 合力总是比分力大。
( × )1.1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × ) 1.1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ ) 1.1.14 当软绳受两个等值反向的压力时,可以平衡。
( × ) 1.1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ ) 1.1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ )1.1.17 凡是两端用铰链连接的直杆都是二力杆。
( × ) /1.1.18 如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。
( × )!二、填空题1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。
1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
1.2.3 如图所示三铰拱架中,若将作用于构件AC 上的力偶M 搬移到构件BC 上,则A 、B 、C 各处的约束力 C 。
A. 都不变;B. 只有C 处的不改变;C. 都改变;D. 只有C 处的改变。
三、受力图1.3.1 画出各物体的受力图。
下列各图中所有接触均处于光滑面,各物体的自重除图中已标出的外,其余均略去不计。
|)*1.3.2 画出下列各物体系中各指定研究对象的受力图。
接触面为光滑,各物自重除图中已画出的外均不计。
@…q…(c)AAP 2(a)A(b)(Aq& ,:;、(e)设B处不…* |IB(f)(g)(h)设ADC有销钉C;(第二章 平面力系(汇交力系与平面偶系)一、 是非判断题2.1.1当刚体受三个不平行的力作用时,只要这三个力的作用线汇交于同一点,则刚体一定处于平衡状态。
( × )2.1.2已知力F 的大小及其与x 轴的夹角,能确定力在x 轴方向上的分力。
(方向未知) ( × ) }2.1.3凡是力偶都不能用一个力来平衡。
( ∨ )2.1.4只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应。
( ∨ )二、 计算题2.2.1 铆接薄板在孔心A 、B 和C 处受三力作用,如图所示。
F 1=100N ,沿铅直方向;F 2=50N ,沿水平方向,并通过点A ;F 3=50N ,力的作用线也通过点A ,尺寸如图。
求此力系的合力。
(答案:F R =,与x 轴的夹角为300),*2.2.2 图示结构中各杆的重量不计,AB 和CD 两杆铅垂,力F 1和F 2的作用线水平。
已知 F 1=2kN ,F 2=l kN ,CE 、BC 杆与水平线的夹角为300,求杆件CE 所受的力。
(答案:F CE =) A B.EF 1F 1F 2F 3BY CY AX 'C Y NF F X F Rx 8032=+==∑αcos 4960.),cos(==∑RR F Xi F 解:由(2-6)式: NY X F R 2516122.)()(=+=∑∑αmmAB 100608022=+= NF F Y F Ry 14021=+==∑αsin 由(2-7)式:xy8680.,cos('==∑RR F Y j F 02660.,(=⇒i F R 07429.,(=⇒j F R xy解:1)取销钉B 为研究对象,设各杆均受拉力1学时<2.2.3 在水平梁上作用着两个力偶,其中一个力偶矩M 1=,另一个力偶矩M2=,已知AB =3.5m ,求A 、B 两支座处的约束反力。
(答案:F A =) )2.2.4 压榨机构如图所示,杆AB 、BC 的自重不计,A 、B 、C 处均为铰链连接。
油泵压力F =3kN ,方向水平,h =20mm ,l =150mm ,试求滑块C 施于工件的压力。
(答案:F C =)&~2.2.5 重为P 的均质圆球放在板AB 与墙壁AC 之间,D 、E 两处均为光滑接触,尺寸如图示,设板AB 的重量不计,求A 处的约束反力及绳BC 的拉力。
(答案:F C = F T = 23 P/3;)αα 0=∑X 1F F BC1=+-αcos BC F F kN F F BC 3341==⇒α2F CD CEF 2)取销钉C 为研究对象,设各杆均受拉力F '0=∑X 02=++-ααcos cos CE BC F F F kN F F F BC CE 3322=-=⇒αcos CE 杆受拉力∵力偶只能用力偶平衡,∴F = F ∑=0M kNM M F F BA 7155340605321...=-=-==⇒05321=+M M F A -.方向如图。
1)取销钉B 为研究对象,设AB 、BC 杆均受拉力 0=-ααsin sin BC AB F F αcos 2F F BC -=⇒0=∑X 0=---F F F BC AB ααcos cos ∑=0Y AB BC F F =⇒2)取滑块C 为研究对象:X 0=+C BC F F αsin '∑=0Y kN h Fl tg F F F BC C 251122.sin '==⋅=-=⇒αα∴滑块C 施于工件的压力为: )(.'↓=kN F C 2511"锻锤工作时,如受工件给它的反作用力有偏心,则会使锻锤C 发生偏斜,这将在导轨F =100kN ,偏心距e =20mm ,锻锤高度h =200mm 试求锻锤给导轨两侧的压力。
(答案:F N =10kN )¥EF DF y 解:1)取均质圆球为研究对象:0300=+sin -D F P PF D 2=⇒∑=0Y 2)取板AB 为研究对象:306000=-sin 'sin D A F F 332600P P F A ==⇒sin ∑=0Y 0306000=-+-T D A F F F cos 'cos =0方向如图03060cos 'cos D A T F F F +-=⇒P P P 33223221332=+-=方向如图∑=0M 解:取锻锤为研究对象∵力偶只能用力偶平衡,∴F = F kN h e F F F B A 1020020100=⨯=⋅==⇒0=⋅-⋅h F e F A 方向如图 锻锤给导轨两侧的压力分别是F A 和F B 的反作用力@第二章 平面力系(任意力系)一、 是非判断题2.1.1一个任意力系的合力矢是主矢。
( × ) 2.1.2某平面任意力系向A 、B 两点简化的主矩皆为零,即M A =M B =0,此力系简化的最终结果为:A 、可能简化为一个力。
( ∨ )B 、可能简化为一个力偶。
( × )C 、可能平衡。
( ∨ )》2.1.3若平面平行力系平衡,可以列出三个独立的平衡方程。
(1个) ( × ) 2.1.4平面任意力系的三个独立平衡方程不能全部采用投影方程。
( ∨ ) 2.1.5平面力系中,若其力多边形自行闭合,则力系平衡。
( × )对一空间任意力系,若其力多边形自行封闭,则该力系的主矢为零。
( √ )2.1.6 静不定问题的主要特点是其未知量的个数多于系统独立平衡方程的个数,所以未知量不能由平衡方程式全部求出。
( ∨ )二、 填空题2.2.1在边长为d 的正方形ABCD 所在平面内,作用一平面任意力系,该力系向A 点简化:∑M A =0,向B 点简化:∑M D =Fd (逆时针转向)。
则出)。
A}B d F d F M R D ⋅=⨯=∑22 F F F R 222==∴}2.2.2如图所示各结构,属静不定的结构是(a), (c), (d)。
…(a)(b)(c) (d)三、计算题2.3.1 把作用在平板上的各力向点O简化,已知F1=300kN,F2=200kN,F3=350kN,F4 =250kN,试求力系的主矢和对点O的主矩以及力系的最后合成结果。
图中长度单位为cm。
(答案:F R=,M O=4600 ,d=㎝,α=600)¥2.3.2露天厂房立柱的底部是杯形基础,立柱底部用混凝土砂浆与杯形基础固连在一起,已知吊车梁传来的铅直载荷F=60kN,风荷q=2kN/m,又立柱自身重P=40kN,a=0.5m,h=10m,试求立柱底部的约束反力。
(答案:F Ax=20kN,F Ay=100kN,M A=130 )《kNFFFX983403045431.coscos-=++=∑kNFFFY1358730450321.sinsin=++=∑5020.cos'==∑RFXα8650.cos'==∑RFYβ3213025104525coscos)(FFFFMMi-+==∑kNFFRR96678.'==cmFMdR786.==|解:kNYXFR9667822.)()('=+=∑∑cmkN⋅=584600.4353035FF-+sin力系的最后合成结果为:=∑X解:取立柱为研究对象:=+qhXA)(←-=-=⇒kNqhXA20=∑Y0=--FPYA)(↑=+=⇒kNFPYA100=∑A M022=--FaqhMA注意:不能用m=2n-3判别。
2学时—2.3.3 试求下列各梁的支座反力。
[答案:(a )F Ay =2qa ,M A =5qa 2/2;(b)F Ax =0,F Ay =3kN ,F B =]2.3.4 悬臂式吊车的结构简图如图所示,由DE 、AC 二杆组成,A 、B 、C 为铰链连接。